The Physical Effects of Learning

January 12, 2024: Aspen Center for Physics

- Vijay Balasubramanian
 - University of Pennsylvania
- Based on work with Menachem Stern & Andrea Liu

A paradigmatic physical learning network

Neurons are electrical circuit elements.

Brain is 2% of body weight, but 20% of metabolic load. 10x the cost of muscle.

Brain Power. PNAS 2021. VB

Computational function is distributed across areas of the brain and also within each area

Brain areas are organized in interacting networks

Information flow between areas of brain that act cooperatively

Sensory input: Perirhinal and Postrhinal cortex

Movement input: Pre- and parasubiculum; Retrosplenial cortex

Location and navigation: Entorhinal cortex & Hippocampus

Cell Types: border cells, boundary vector cells, head direction cells, speed cells, place cells, landmark cells, object vector cells, egocentric cells, allocentric cells

Microcircuits are distributed and heterogeneous

Structural heterogeneity supports computational and resource efficiency in the brain (VB, Proc. of IEEE, 2015)

Brain networks reorganize actively

Images: de Schotten and Forkel, Science, 2022

B

flexibly

Hierarchical language model

1 Direct processing route

2 Indirect processing route

Integrative language model

- **1** Motor speech production
- **2** Semantic processing
- Auditory speech comprehension
- •) Verbal working memory
- Inactive
- O Active

- Brain regions are extensively connected by nerve tracts
- These can be imaged and measured
- The effective connectivity changes depending on the task

Function emerges from effective patterns of connectivity that reorganize with each task.

Learning and circuit reorganization via local rules

Neurons learn by autonomously rewiring their own circuits.

One mechanism is Spike Timing Dependent Plasticity (STDP). For example: Suppose two connected neurons fire voltage spikes • If the first neuron fires before the second one, the synapse strengthens

- If the first neuron fires after the second one, the synapse weakens.

You can also use neuromodulators as global knobs to modulate learning

- Dopamine released on a synapse reinforces changes that lead to surprising rewards
- Norepinephrine release allows emotion to affect synaptic plasticity

An individual neuron or synapse has no direct knowledge of how other neurons are adjusting themselves.

1

2

eLIFE

Learning requires whole brain cooperation: e.g., song learning

Major brain areas of the songbird act collectively during song learning

- sequence of muscular movements.
- based on comparison of the desired song to the actual output.

The tutor should match the teaching style (reinforcement protocol) to student learning style (synaptic plasticity rule) for efficient learning

• Student: Neurons in RA control the muscles to produce sounds. It must learn a

 Conductor: Neurons in HVC produce a sequence of patterns marking time. After learning each pattern drives RA to pull and push the right muscles at each moment Tutor: LMAN drives exploration by injecting variability while providing guidance

<u>Physical effects of learning in the brain</u>

- You become what you learn
- 1. Synaptic connectivity reorganizes with learning
- 2. Low dimensional response repertoires
 - (response patterns and dynamics)
- 3. Response repertoires aligned with the relevant features of relevant inputs and desired outputs

Question: How do local learning rules at synapses produce these effects?

A Strategy Construct a pared-down network with minimal features of

real neural networks and see if it can learn, and whether it also develops the structural adaptations seen in the brain.

A class of tractable physical networks

 $E(\vec{x}, \vec{w})$

Physical Hessian: $H_{ab} = \frac{1}{2} \sum \phi_i(w_i)$ $\phi(w_i)$ is an edgewise nonlinearity. L geometry.

The effect of forces:

 $E^F(\vec{x}, \vec{w}) = E(\vec{x}, \vec{w}) - \bar{F}$ $\frac{\partial}{\partial x} E^F(\vec{x}, \vec{w}) = 0 \implies$

Near equilibrium the network has energy:

$$\vec{v}) \approx E(\vec{x}^0, \vec{w}) + \frac{1}{2}(\vec{x} - \vec{x}^0)^T H(\vec{w})(\vec{x} - \vec{x}^0)$$

• x_a , $a = 1 \cdots N$ are physical degrees of freedom (nodes) • w_i , $i = 1 \cdots N_w$ are learning degrees of freedom (edges) • \overrightarrow{F} are (weak) forces applied to the nodes

$$(E_{i})[L_{ai}R_{ib} + R_{ai}^{T}L_{ib}^{T}] \equiv \sum_{i} H_{ab}^{i}$$

and R are fixed, and specify the network

$$\vec{x} \cdot \vec{x}$$

 $-E(\vec{x}, \vec{w}) = \vec{F}$ $\vec{x}^F - \vec{x}^0 = H^{-1}\vec{F}$

Simple examples: flow and elastic networks

Fully connected linear network

Mechanical network Flow network

Linear Network: $E(\vec{x}, W) = \frac{1}{2}\vec{x}W(W)\vec{x}$ with $W(w) = \frac{1}{2}(W + W^T)$ Flow/Elastic Network: $E(\vec{x}, W) = (1/2)(\vec{x} - \vec{x}^0)H(\vec{w})(\vec{x} - \vec{x}^0)$ with $\bar{H}(\vec{w}) = \Delta^T \operatorname{diag}(\vec{w})\Delta$ where Δ is an edge incidence matrix (+1 for incoming, -1 for outcoming) with arbitrarily assigned orientation of each edge

Forces, inputs and outputs

Notice that W^{-1} and hence the "free state" \vec{x}^F depends non-locally on all of the edge weights: the response of depends non-locally on the edges Inputs: Pick some input nodes. Apply inputs as forces at these nodes Outputs: Pick some output nodes and measure their deviation Example task: Allostery — push some set of nodes, get responses at others

The effect of forces $E^F(\vec{x}, \vec{w}) = E(\vec{x}, \vec{w}) - \vec{F} \cdot \vec{x}$ $\frac{\partial}{\partial x} E^F(\vec{x}, \vec{w}) = 0 \implies \frac{\partial}{\partial x} E(\vec{x}, \vec{w}) = \vec{F}$ $\vec{x}^F - \vec{x}^0 = H^{-1}\vec{F}$

A physical learning protocol

Tasks as constraints: $c(\vec{x}^F - \vec{x}^0) = 0$ Cost (a sum over tasks): $C(\{\vec{x}_r\}, \vec{x}^0(\vec{w})) \equiv \frac{1}{2}n_T^{-1}\sum [c^{(r)}(\vec{x}_r - \vec{x}^0)]^2$

Contrastive Learning (Scellier & Bengio): Nudge the free state by an additional output force: $\vec{F}^{O} = \nabla_{\vec{x}} C$. This gives a "clamped state" $\vec{x}^C - \vec{x}^F = \eta H^{-1} \vec{F}^O$ with energy $E^C = E^F + \eta C$

Contrastive function: $\mathcal{F} = \eta^{-1} \left(E^C(\vec{x}^C, \vec{w}) - E^F(\vec{x}^F, \vec{w}) \right)$

Learning Rule: $\delta \vec{w} = -\alpha \nabla_{\vec{w}} \mathcal{F}$

The learning algorithm works

Similar results for other tasks like input classification

Task: Allostery

- 1. Start with a random network and choose and input and output node or nodes randomly,
- 2. Pick an input force of fixed magnitude and random direction
- 3. Define the allosteric task as requiring a response of a specificed amplitude at the output node
- 4. Train!

The physical effects of training

The physical Hessian $H(\vec{w}, \vec{x}^0(\vec{w}))$ depends explicitly and implicitly on \vec{w} . So, defining $\tilde{H}_{ab} = \partial^2 E(\vec{x}, \vec{w}) / \partial x_a \partial x_b$: $\delta H = \delta \vec{w} \cdot \frac{dH}{d\vec{w}} \bigg|_{\vec{x} = \vec{x}^0} = \sum_i \delta^{\gamma}$

$$E(\vec{x}, \vec{w}) \approx E(\vec{x}^0, \vec{w}) + \frac{1}{2}(\vec{x} - \vec{x}^0)^T H(\vec{w})(\vec{x} - \vec{x}^0)^T H(\vec{w})(\vec{$$

rces and linearize the Assume weak inp output constraints: $c = \overrightarrow{A}(\overrightarrow{x}^F - \overrightarrow{x}^0) - B$

 $\delta w_i \approx -\frac{\alpha B \phi'}{2} \sum_{i} (H^{-1} \vec{F})_a^T [L_{ai} R_{ib} + R_{ai}^T L_{ib}^T] (H^{-1} \vec{A})_b$

$$w_{i} \left[\frac{\partial \tilde{H}}{\partial w_{i}} + \sum_{a} \frac{\partial \tilde{H}}{\partial x_{a}} \frac{\partial x_{a}^{0}}{\partial w_{i}} \right]_{\vec{x} = \vec{x}^{0}}$$

Result Linearized task: $c = \overrightarrow{A}(\overrightarrow{x}^F - \overrightarrow{A})$

1. Let \vec{v}_h and λ_h be eigenvectors and eignvalues of the Hessian at any step

(linearized) output constraint vector onto the eigenvectors 3. Use (perturbation theory

Change in Eigenvalues: $\delta \lambda_n \approx -\alpha B \sum Y_{nm} \frac{f_m a_m}{\lambda^2}$

Change in Eigenvectors: $\delta \vec{v}_n \approx \alpha B \sum \vec{A}$ $m \neq n$

The changes in the eigenspace are larger for smaller eigenvalues, and larger for eigenvalues aligned with the input forces and the output constraints.

$$-\vec{x}^{0} - B \qquad H_{ab} = \frac{1}{2} \sum_{i} \phi_{i}(w_{i}) [L_{ai}R_{ib} + R_{ai}^{T}L_{ib}^{T}] \equiv \sum_{i} H_{ab}$$

Use: chain rules, randomness of initial network, weak forces 2. Let $f_b = \vec{F} \cdot \vec{v}_b$ and $a_b = \vec{A} \cdot \vec{v}_b$ be projections of the input force and the

$$\frac{X_{mn}(f_m a_n + f_n a_m)}{\lambda_m \lambda_n (\lambda_m - \lambda_n)} \vec{v}_m$$

X and Y are tensors that depend on the L and R matrices defining the structure of the network

The emergence of low eigenmodes aligned with the task

10⁴

Example: linear networks $\delta\lambda_n^{-1} \approx \alpha B \frac{f_n a_n}{\lambda_n^4} = \alpha B \frac{\rho_n}{\lambda_n^4}$ eigenvalues $\delta \vec{v}_n \approx \alpha B \sum_{m \neq n} \frac{f_m a_n + f_n a_m}{\lambda_m \lambda_n (\lambda_m - \lambda_n)} \delta \vec{v}_m$ eigenvectors $\delta\rho_n \approx \alpha B \sum_{m \neq n} \frac{(f_m a_n + f_n a_m)^2}{\lambda_m \lambda_n (\lambda_m - \lambda_n)}$ alignment: $\delta(f_n a_n)$

 One eigenvalue becomes small
The associated eigenvector aligns increasingly with both the input force and the task

The network becomes what it learns

With $p_{am} \equiv \vec{v}_a \cdot (\vec{x}_m^R - \vec{x}^0) =$ projection of responses to random forces onto the eigenvalues

Example: linear networks

$$\bar{g} = \sqrt{\sum_{a} \lambda_a^{-2}} \qquad D_{\text{eff}} = \frac{(\sum_{a} \lambda_a^{-2})^2}{3\sum_{a} \lambda_a^{-4}}$$

<u>d low dimensional</u>

Test the dimensionality by applying an ensemble of M Gaussian random forces $\{F_m^R\}$ and measuring the response

Dominated by the lowest eigenvalues

Becoming what you learn

- 1. Network weights reorganizes with learning 2. The response becomes low dimensional
- and the task
- stiff

Comment 1: Can we discover what a physical network in nature has been trained for by seeing how it responds to random inputs? In fact, this is one of the basic techniques of neuroscience — apply random inputs and analyze circuit responses

Comment 2: Can we construct model networks that contain more features of real neural circuits — heterogeneity of units, asymmetric connections, dynamics, neurogenesis & death

3. The responsive modes become soft and aligned with the input forces

4. Beyond capacity the network remains low dimensional but becomes

