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A paradigmatic physical learning network
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Neurons are electrical circuit
elements.

Brain is 2% of body weight,
but 20% of metabolic load.
10x the cost of muscle.

Brain Power. PNAS 2021. VB

Computational function is
distributed across areas
of the brain and also
within each area




Brain areas are organized in interacting networks
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Microcircuits are distributed and heterogeneous
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Structural heterogeneity supports computational and resource efticiency in the brain (VB, Proc. of IEEE, 2015)

Masland 2001
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Modular language model
@® Broca’s area for articulation

Geschwind’s area for concepts
@ Wernicke's area for comprehension
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Hierarchical language model
@ Direct processing route

@ Indirect processing route

Integrative language model
@ Motor speech production

@ Semantic processing
@ Auditory speech comprehension
@ Verbal working memory

@® Inactive
O Active

* Brain regions are
extensively connected by
nerve tracts

* These can be imaged and
measured

* The effective connectivity
changes depending on the
task

Function emerges from
effective patterns of
connectivity that reorganize
with each task.




Learning and circuit reorganization via local rules

Neurons learn by autonomously rewiring their own circuits.

One mechanism is Spike Timing Dependent Plasticity (STDP). For example:
* Suppose two connected neurons fire voltage spikes
* |f the first neuron fires before the second one, the synapse strengthens
* If the first neuron tires after the second one, the synapse weakens.

You can also use neuromodulators as global knobs to modulate learning
* Dopamine released on a synapse reinforces changes that lead to
surprising rewards
* Norepinephrine release allows emotion to affect synaptic plasticity

An individual neuron or synapse has no direct knowledge
of how other neurons are adjusting themselves.
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Learning requires whole brain cooperation: e.q., song learninc

conductor  c;(?) The tutor should
Wi match the teaching

Major brain /AVC \
areas of the RA - — L’\\"‘AN

style (reinforcement
songbird act

s;(t) | student < tutor  g;(?) protocol) to student

col!ectively learning style (synaptic
during song plasticity rule) for
learning

efficient learning

» Student: Neurons in RA control the muscles to produce sounds. It must learn a
sequence of muscular movements.

* Conductor: Neurons in HVC produce a sequence of patterns marking time. After
learning each pattern drives RA to pull and push the right muscles at each moment

 Tutor: LMAN drives exploration by injecting variability while providing guidance

based on comparison of the desired song to the actual output.




Physical effects of learning in the brain

You become what you learn

1.Synaptic connectivity reorganizes with
learning

2.Low dimensional response repertoires
(response patterns and dynamics)

3. Response repertoires aligned with the
relevant features of relevant inputs and
desired outputs

Question: How do local learning rules at synapses produce these effects?




A Strategy

Construct a pared-down network with minimal features of
real neural networks and see if it can learn, and whether it
also develops the structural adaptations seen in the brain.




A class of tractable physical networks

Near equilibrium the network has energy:
E(Z, %) =~ E(2°, %) + %(f S a3
e x,a=1---N are physical degrees of freedom (nodes)

ew,1=1---N,_ are learning degrees of freedom (edges)

e F are (weak) forces applied to the nodes

1 .
Physical Hessian: Hab = 5 Z di(wi)[LasRip + Ry; L] = Z H,

¢(w;) is an edgewise nonlinearity. L and R are fixed, and specity the network
geometry.

The effect
e L= == ¥ ) — o
of forces: o (Z, W) =0 = azE(ﬂ?»W) E




Simple examples: flow and elastic networks

Fully connected Flow network Mechanical network
linear network

1 1
Linear Network: E(X, W) = EX’H(W)SE with H(w) = E(W + W

Flow/Elastic Network: EX, W) = (1/2)% = X°) HWw) (¥ — XV)
with H(W) = A’ diag(w) A where A is an edge incidence matrix (+1 for incoming, -1

for outcoming) with arbitrarily assigned orientation of each edge




Forces, inputs and outputs

Fully connected Flow network Mechanical network
linear network

The effect of forces

Notice that H~! and hence the “free state” X! depends non-locally on all of
the edge weights: the response of depends non-locally on the edges

Inputs: Pick some input nodes. Apply inputs as forces at these nodes
Outputs: Pick some output nodes and measure their deviation

Example task: Allostery — push some set of nodes, get responses at others




(a) Physical network (b) Free & clamped states

;xc—xf
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A physical learning protocol

Tasks as constraints: ¢/ = XY) =0

0

Cost (a sum over tasks)

C({z,},2"(w)) = —nle (&, — 2°)]°

Contrastive Learning (Scellier & Bengio):

Trained network

Nudge the free state by an additional output
force: F O = V=C. This gives a “clamped state”
%€ — ¥F = yH™'F© with energy EC = EF + 5 C

Contrastive function:
F =n"' (E‘GE, W) — EFGF, W)

Untrained
Trained

This local rule adjusts edges according to

Learning Rule: 6w = —aV_%

their own contribution to the energy.




The learning algorithm works

(a) Fully connected Flow network Mechanical network

linear network TaSk: AI IOSte I‘y
w 1. Start with a random network and choose
and input and output node or nodes

o) randomly,
10 2. Pick an input force of fixed magnitude
5 10 and random direction
g 107 3. Detine the allosteric task as requiring a
210 response of a specificed amplitude at the
=0 output node

O 2510 5100 2510 sil00 125010 25010° | A Trainl

Time Time Time

Similar results for other tasks like input classification




The physical effects of training

Fully connected Flow network Mechanical network E(f, ”U_f) ~ E(fo, ?17) S —(f = fO)TH(@U) (f B fo)
linear network

Assume weak input forces and linearize the

output constraints: ¢ = A B ()

One step of our training protocol then gives the edge weight changes:

B¢ = v
Sw; ~ —— 2@ > (H™'F)7 [LoiRip + RG L (H™ Ay

ab
The physical Hessian H(W, X’(W)) depends explicitly and implicitly on W.

So, defining H, , = 0°E(X, W)/0x,0x;,

(5H:5u_jd_H :Zéwz 8HI28H8$2

—

dw
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a zb

1 |
Result Linearized task: c = A (x —3) =B Ha=j Z¢i(wi)[LaiRib + Ry L) = Zﬂéb

Use: chain rules, randomness of initial network, weak forces

—

1. Let v, and 4, be eigenvectors and eignvalues of the Hessian at any step

2. Letf, = F -v,and a, = A -V, be projections of the input force and the

(linearized) output constraint vector onto the eigenvectors
3. Use (perturbation theory

Change in Eigenvalues: 04, & — aB Z Y

X and Y are tensors that
depend on the L and R

mn mln T Jnlm) - tri defining th
Change in Eigenvectors: 6v, ~ aB U + Jnln) v, A g S B
A A (A — ) structure of the network

m=n

The changes in the eigenspace are larger for smaller eigenvalues, and larger
for eigenvalues aligned with the input forces and the output constraints.




The emergence of low eigenmodes aligned with the task

Example: linear networks

Sl fnan x5 Pn :
oM, " ~ aB Ve OzB)\—4 eigenvalues
Jman + fnam

5, ~ aB Y N O — ) 0m eigenvectors

m#n

2
Spn ~ aB Y fmn + fudm) alignment: o(f.a,)

1. One eigenvalue becomes small

2. The associated eigenvector aligns
increasingly with both the input
force and the task

3100 102 10 :
Time The network becomes what it learns




The network becomes soft and low dimensional

(b) Test the dimensionality by applying an
c 1.0 ensemble of M Gaussian random forces
g 0.9- {F*} and measuring the response
()
= Los
*g _S 0 Effective i Z e T
'§ % | conductance: == \F’;},}\
8 g o 2 2
05 Effective sk i)
dimension: <Za pfim>

Withp, =7V - (XX — X") = projection of responses to random forces onto the eigenvalues

[D=2h %) Dominated by the

Example: linear networks g = ALY i 4 .
za: 3 Za = lowest eigenvalues




The effects of training multiple tasks
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Empirical results

1. Multiple eigenvalues
become soft, but not
necessarily as many as
the number of tasks

2. Beyond the network

learning capacity, the
error grows, and the
network becomes stiff
but the effective
dimension remains low



Becoming what you learn

1.Network weights reorganizes with learning
2.The response becomes low dimensional
3. The responsive modes become soft and aligned with the input forces

and the task
4.Beyond capacity the network remains low dimensional but becomes

stiff

Comment 1: Can we discover what a physical network in nature has been trained for by
seeing how it responds to random inputs? In fact, this is one of the basic techniques of
neuroscience — apply random inputs and analyze circuit responses

Comment 2: Can we construct model networks that contain more features of real neural
circuits — heterogeneity of units, asymmetric connections, dynamics, neurogenesis & death




