
The Physical Effects of Learning

Vijay Balasubramanian
University of Pennsylvania

January 12, 2024: Aspen Center for Physics

Based on work with Menachem Stern & Andrea Liu

WikipediaPurves et al.

Purves et al.

A paradigmatic physical learning network
Neurons are electrical circuit
elements.

Computational function is
distributed across areas
of the brain and also
within each area

Brain is 2% of body weight,
but 20% of metabolic load.
10x the cost of muscle.

Brain Power. PNAS 2021. VB

Current Biology

Magazine

R1120 Current Biology 25, R1107–R1125, December 7, 2015 ©2015 Elsevier Ltd All rights reserved

their fi ring rates substantially (in the
extreme case shutting off entirely), but
the fi ring fi elds of active cells remain
in the same locations (called ‘rate
remapping’). Partial remapping can
occur when some place fi elds remap
and others do not.

The remapping phenomenon may
refl ect the ability of the hippocampus
to support context-dependent memory.
The creation of new maps for different
environments, or different behavioral
situations in the same environment,
may allow the hippocampus to store
the specifi c memories and behavioral
contingencies specifi c to each situation.
Because grid cells of the MEC do
not share this remapping property,
the creation of context-specifi c
representations in the hippocampus may
be the most important transformation
that occurs between the spatial

representations of the MEC and of the
hippocampus.

Theta and large irregular activity
In rodents, the hippocampal EEG is
dominated by a striking oscillation
of approximately 8 Hz when the
animal is locomoting, performing
other investigatory behaviors, or is
in the REM stage of sleep. Principal
neurons and interneurons are strongly
modulated by this theta rhythm, fi ring
in bursts that are phase-locked to
the theta rhythm. Place cells show
a strong phenomenon called theta
phase precession: as the rat runs
through a place fi eld, each theta-
modulated burst of fi ring of the cell
occurs at increasingly earlier phases
of the theta rhythm. Because the
phase of theta provides information
about the precise location of the

animal in the larger place fi eld, the
phase precession provides one of the
more robust examples of a temporal
code in the brain. Numerous models
have been generated about the
origin and functional signifi cance of
phase precession, including that it
allows sequences of place fi elds to
be recapitulated in a compressed
sequence amenable to LTP
mechanisms to encode a memory
trace of the sequence.

When the rodent is engaged in
nonexploratory behaviors, such as
eating or grooming, and when it is
in the slow-wave stage of sleep, the
hippocampal EEG enters the ‘large
irregular activity’ (LIA) mode. During
this mode, intermittent bursts of
synchronized neural activity cause
large defl ections in the EEG called
sharp wave/ripples. The place cell
activity during the sharp wave/ripples in
slow wave sleep or quiet wakefulness
recapitulate, on a very compressed
time scale, the sequences of activity
that the rat recently experienced during
behavior — that is, the place cells fi re
in the same sequence as their place
fi elds were experienced. This ‘replay’
is hypothesized to be involved in the
systems consolidation process, as
a mechanism whereby the events
recently experienced by the animal
are replayed to the neocortex in order
to update the permanent, neocortical
memory stores.

Nonlocal representations during
behavior
When the rat is performing a
behavioral task, the hippocampus
generates brief (50–100 millisecond)
sequences that represent locations
away from the current location of the
rat (‘nonlocal representations’). These
sequences can occur during sharp
wave/ripples that are generated during
behavior, for example at a reward site,
and can take the form of sequences of
locations that replay the animal’s most
recent trajectory, as well as the same
trajectory played in reverse order.

Nonlocal representations can
also be prospective in nature: when
the animal is at the choice point of
a maze, it sometimes performs a
behavior called vicarious trial and
error, moving its head back and forth
as it appears to evaluate the different
behavioral choices and potential

Perirhinal
(superficial)
Items

Spatiotemporal framework

Postrhinal
(superficial)

(superficial) (superficial)

Scenes

LEC
Content
Items and events
What is out there?
Where is it?

MEC
Context

Where am I?
Where am I going?

CA1 CA1 proximal

DG
Pattern separation

Path integration/movementExternal sensory input

ADN
Pre/Para-
subiculum;
Retrosplenial

CA3
Autoassociation,
Attractor dynamics
proximal distal

distal

Hil

Output loop back to deep EC
(Direct and indirect, via subiculum)

DG/CA3 side loop combines
LEC and MEC input streams

 to create conjunctive representations
 of item + place (content + context)

CA2

Current Biology

Figure 3. Anatomical model of information fl ow and functions of the hippocampal system
in support of memory.
In this highly simplifi ed schematic, the LEC pathway (blue) receives input from the perirhinal cor-
tex (as well as other inputs, such as olfactory cortex). It is thought to convey information about
individual items and events in the external world, including information about their spatial loca-
tion. The MEC pathway (red) receives input from postrhinal cortex (parahippocampal cortex in
primates) about scenes as well as information about self-movement, head direction, and path
integration from presubiculum, parasubiculum, and retrosplenial cortex. Head direction input ar-
rives via the anterior dorsal nucleus (ADN) of the thalamus. The DG and CA3 combine overlapping
input from both pathways to store in memory conjunctive representations of the content of an
experience within its spatiotemporal context. Putative attractor networks in CA3 support mne-
monic computations associated with distributed memory systems, such as pattern separation
and pattern completion. The output of the DG/CA3 processing loop is sent to CA1, both directly
and indirectly via CA2, where it is compared with direct input from EC. The output of this com-
parison is fed back to the deep layers of EC, which distribute the information to other neocortical
areas as well as back to the superfi cial EC layers, where it can infl uence the next stage of memory
processing.

(Knieirim, Current Biology)

Information flow between areas of brain that

act cooperatively

Brain areas are organized in interacting networks

Sensory input: Perirhinal and Postrhinal
cortex

Movement input: Pre- and para-
subiculum; Retrosplenial cortex

Location and navigation: Entorhinal
cortex & Hippocampus

Cell Types: border cells, boundary vector
cells, head direction cells, speed cells,
place cells, landmark cells, object vector
cells, egocentric cells, allocentric cells

Microcircuits are distributed and heterogeneous
3 cones

10 bipolars

30
interneurons

15 ganglion
cells

Masland 2001

2 horizontal
cells

Retina: Ramón y Cajal 1917

slow bp fast bp

LE

BT

Structural heterogeneity supports computational and resource efficiency in the brain (VB, Proc. of IEEE, 2015)

Brain networks reorganize actively and flexibly

action, emotion, and decision-making. These
cortical regions are less connected with the
contralateral hemisphere via the corpus cal-
losum (Fig. 2C) (24). DWI has revealed that
the structure of the corpus callosum changes
along with brain size across and within spe-

cies (25, 26). In particular, the axonal con-
ductive properties can change (27), and axon
calibers correlate with the interhemispheric
speed of conduction (Fig. 2D) (28). Further, a
trade-off in the number of connections exists
between interhemispheric and intrahemispheric

connectivity across species (25). Taken together,
these studies suggest that during evolution,
brain size expansion may have led to functional
lateralization to avoid a disproportionate corpus
callosum or excessive conduction delays across
hemispheres.

Mapping evolution through connectivity

As structural connectivity can be used to de-
cipher the brain’s functional organization,multi-
ple studies compared different primate species
to understand human uniqueness and shed
light on the mechanisms involved in its evolu-
tion. For instance, human language capacity
parallels the extraordinary expansion of the ar-
cuate fasciculus in the left hemisphere (Fig. 3A)
(29). The anatomical delineation ofwhitematter
tracts (e.g., arcuate fasciculus or corpus cal-
losum) allowed for extracting corresponding
connectivity profiles across species. This point
of comparison permitted the computation of
deformation fields between species’ brains
(Fig. 3B) (30). These deformation fields define
similarities and differences across species.
Comparative studies assume that similarities
between species can be traced back to a com-
mon ancestor and account for the preservation
of specific functions across evolution. Recent
comparative work revealed one of the first
comprehensive maps of the phylogenetic or-
ganization of brain regions (30). Such tech-
nical advances in comparative neuroimaging
will allow for targeted studies that bettermatch
humanbrainmechanisms to their phylogenetic
counterparts. These advances may also help
discover and mimic neuroprotective mecha-
nisms in animals that could potentially trans-
late to improving human disease models and
therapeutics. For instance, frontoparietal dis-
connection is a very sensitive (85%) and specific
(95%) biomarker for persistent disorders of
visual neglect (31). Whereas most humans with
this disconnection will fail to recover from
visual neglect, monkeys with the same discon-
nectionwill recoverwithin a fewdays (32).Hence,
there is a distinctive mechanism in monkeys
that facilitates brain recovery. However, this
mechanism has yet to be identified, and its
translatability to humans needs to be explored.
One frequent limitation of comparative studies

is the small number of brains per species used
(usually fewer than 10), which fails to fully cap-
ture interindividual variability. While the
amount of connectivity variability (i.e., mag-
nitude) is proportional to the brain size, its
pattern of variability is similar between hu-
mans and other primates. Accordingly, brain
areas that have recently evolved increasingly
differ between individuals, whereas evolution-
arily older areas tend to be more stable (33).
Intraspecies variability in brain connections
might therefore be a novel dimension to our
understanding of evolutionary mechanisms
(Fig. 3C).

Thiebaut de Schotten et al., Science 378, 505–510 (2022) 4 November 2022 2 of 6

0

30

60

90

120

3 4 5 6 7
Brain areas (n)

1 0 0

0 1 0

0 0 1

D
Y Z

1 0 0

1 1 0

1 0 1

0 1 0

0 1 1

0 0 1

1 1 1

X Y Z

1 1 1

1 0 1

X Y Z

Br
ai

n
st

at
es

C
Integrative language model

Motor speech production

Verbal working memory

Auditory speech comprehension

Semantic processing

Inactive

Active

X

Br
ai

n
st

at
es

Models

Integrative
Hierarchical
Modular

E

1

3

2

2
1

A

Broca’s area for articulation
Geschwind’s area for concepts

Wernicke’s area for comprehension

Modular language model
Direct processing route

Indirect processing route

Hierarchical language model

B

1

2

4

1

3

2

4

Fig. 1. The superior flexibility of the integrative brain model compared with other classical models,
as exemplified by simplified language models. Brain models determine the flexibility of brain states
(i.e., functions). In a modular system (A), one region performs one function without cross-talk, and the
number of possible brain states increases linearly with the number of regions. In the hierarchical system (B),
functions emerge from the sequential activation of regions. Accordingly, the repetition of words or
sentences would rely on the temporal-parietal-frontal propagation from auditory-to-motor processes. In
contrast to (A) and (B), the integrative model (C) offers the highest computational flexibility, allowing for the
high complexity and flexibility of language processes as we know them. Each model can be translated
into different brain state patterns (D) across brain areas X, Y, and Z. Each line indicates a brain state
(function) (courtesy of Chris Foulon). (E) Illustration of the interaction between the brain model and the
number of areas involved in the number of brain states a system can take.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of Pennsylvania on A

ugust 22, 2023

action, emotion, and decision-making. These
cortical regions are less connected with the
contralateral hemisphere via the corpus cal-
losum (Fig. 2C) (24). DWI has revealed that
the structure of the corpus callosum changes
along with brain size across and within spe-

cies (25, 26). In particular, the axonal con-
ductive properties can change (27), and axon
calibers correlate with the interhemispheric
speed of conduction (Fig. 2D) (28). Further, a
trade-off in the number of connections exists
between interhemispheric and intrahemispheric

connectivity across species (25). Taken together,
these studies suggest that during evolution,
brain size expansion may have led to functional
lateralization to avoid a disproportionate corpus
callosum or excessive conduction delays across
hemispheres.

Mapping evolution through connectivity

As structural connectivity can be used to de-
cipher the brain’s functional organization,multi-
ple studies compared different primate species
to understand human uniqueness and shed
light on the mechanisms involved in its evolu-
tion. For instance, human language capacity
parallels the extraordinary expansion of the ar-
cuate fasciculus in the left hemisphere (Fig. 3A)
(29). The anatomical delineation ofwhitematter
tracts (e.g., arcuate fasciculus or corpus cal-
losum) allowed for extracting corresponding
connectivity profiles across species. This point
of comparison permitted the computation of
deformation fields between species’ brains
(Fig. 3B) (30). These deformation fields define
similarities and differences across species.
Comparative studies assume that similarities
between species can be traced back to a com-
mon ancestor and account for the preservation
of specific functions across evolution. Recent
comparative work revealed one of the first
comprehensive maps of the phylogenetic or-
ganization of brain regions (30). Such tech-
nical advances in comparative neuroimaging
will allow for targeted studies that bettermatch
humanbrainmechanisms to their phylogenetic
counterparts. These advances may also help
discover and mimic neuroprotective mecha-
nisms in animals that could potentially trans-
late to improving human disease models and
therapeutics. For instance, frontoparietal dis-
connection is a very sensitive (85%) and specific
(95%) biomarker for persistent disorders of
visual neglect (31). Whereas most humans with
this disconnection will fail to recover from
visual neglect, monkeys with the same discon-
nectionwill recoverwithin a fewdays (32).Hence,
there is a distinctive mechanism in monkeys
that facilitates brain recovery. However, this
mechanism has yet to be identified, and its
translatability to humans needs to be explored.
One frequent limitation of comparative studies

is the small number of brains per species used
(usually fewer than 10), which fails to fully cap-
ture interindividual variability. While the
amount of connectivity variability (i.e., mag-
nitude) is proportional to the brain size, its
pattern of variability is similar between hu-
mans and other primates. Accordingly, brain
areas that have recently evolved increasingly
differ between individuals, whereas evolution-
arily older areas tend to be more stable (33).
Intraspecies variability in brain connections
might therefore be a novel dimension to our
understanding of evolutionary mechanisms
(Fig. 3C).

Thiebaut de Schotten et al., Science 378, 505–510 (2022) 4 November 2022 2 of 6

0

30

60

90

120

3 4 5 6 7
Brain areas (n)

1 0 0

0 1 0

0 0 1

D
Y Z

1 0 0

1 1 0

1 0 1

0 1 0

0 1 1

0 0 1

1 1 1

X Y Z

1 1 1

1 0 1

X Y Z

Br
ai

n
st

at
es

C
Integrative language model

Motor speech production

Verbal working memory

Auditory speech comprehension

Semantic processing

Inactive

Active

X

Br
ai

n
st

at
es

Models

Integrative
Hierarchical
Modular

E

1

3

2

2
1

A

Broca’s area for articulation
Geschwind’s area for concepts

Wernicke’s area for comprehension

Modular language model
Direct processing route

Indirect processing route

Hierarchical language model

B

1

2

4

1

3

2

4

Fig. 1. The superior flexibility of the integrative brain model compared with other classical models,
as exemplified by simplified language models. Brain models determine the flexibility of brain states
(i.e., functions). In a modular system (A), one region performs one function without cross-talk, and the
number of possible brain states increases linearly with the number of regions. In the hierarchical system (B),
functions emerge from the sequential activation of regions. Accordingly, the repetition of words or
sentences would rely on the temporal-parietal-frontal propagation from auditory-to-motor processes. In
contrast to (A) and (B), the integrative model (C) offers the highest computational flexibility, allowing for the
high complexity and flexibility of language processes as we know them. Each model can be translated
into different brain state patterns (D) across brain areas X, Y, and Z. Each line indicates a brain state
(function) (courtesy of Chris Foulon). (E) Illustration of the interaction between the brain model and the
number of areas involved in the number of brain states a system can take.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of Pennsylvania on A

ugust 22, 2023

Images:
de Schotten

and
Forkel,
Science,

2022

• Brain regions are
extensively connected by
nerve tracts

• These can be imaged and
measured

• The effective connectivity
changes depending on the
task

Function emerges from
effective patterns of
connectivity that reorganize
with each task.

Importantly, while the identification of predic-
tive biomarkers holds vast potential for changing
the health of individuals and populations, it also
bears fundamental ethical risks and moral chal-
lenges (e.g., treatment of predicted brain dis-
ease that may never manifest or withholding
treatment on the basis of recovery predictions).
Overall, these recent studies put forth evidence
demonstrating that new behavioral patterns
and cognitive functions can arise from even
small changes in the interaction between brain
regions via their connections.

Functional disintegration through disconnection

Drastic disruptions of brain interactions [i.e.,
disconnections (18)] manifest secondary to

pathologies and can induce long-lasting func-
tional symptoms. For instance, a disconnec-
tion between visual and language networks
leads to irremediable alexia [i.e., inability to
read (43)]. Although advanced neuroimaging
can identify disconnections, these methods
are not yet systematically available across the
clinical sector. Therefore, new indirectmethods
that use a priori knowledge of connections (DWI
or fMRI) derived from the highest-resolution
datasets to estimate disconnection profiles after
a brain injury are needed to reliably and statis-
tically map the association between discon-
nection and symptoms (44). In doing so, it is
possible to reevaluate classical clinical neuro-
anatomical phenomena within brain networks

and understand the critical contribution of
connections to the realization of functions.
These new methods can even demonstrate
that clinical-anatomical lesion studies in neu-
roscience’smost famous cases can be extended
to a disconnection paradigm. This new para-
digm shows the networks considered function-
ally engaged for emotion and decision-making
(Phineas Gage), language production (Louis
Victor Leborgne), and declarative memory
(Henry Molaison) in the healthy population
(Fig. 4B) (45). Hence, consideration of brain
connections appears to reconcile brain lesion
studies with functional neuroimaging in
healthy volunteers and provides a more com-
prehensive biological interpretation of clinical

Thiebaut de Schotten et al., Science 378, 505–510 (2022) 4 November 2022 4 of 6

A B

Hu
m

an
s

Ch
im

pa
nz

ee
s

M
ac

aq
ue

s

Common
space

Common
space

625
Phylogenetic distance (millions of years)

Today

Tracts
T1

T2

T3

T4

T5

T1 T2T3 T4
V1
V2
V3
V4

…

…

T1 T2T3 T4
V1
V2
V3
V4

…

…

T1 T2T3 T4
V1
V2
V3
V4

…

…

St
re

ng
th

St
re

ng
th

St
re

ng
th

Left hemisphere

Right hemisphere

Inferior frontal gyrus

Superior temporal gyrus

Arcuate fasciculus

M
ac

aq
ue

s
Ch

im
pa

nz
ee

s
Hu

m
an

s

Size (streamlines)
1000 2000 3000

Humans (mm)

42

Chimpanzees (mm)

2.50.75

Macaques (mm)

20.5

C

Fig. 3. Connectivity sheds light on mechanisms of brain evolution. (A) A
comparison of the connections between frontal and temporal brain regions
in humans, chimpanzees, and macaques reveals the remarkable expansion and
lateralization of the arcuate fasciculus (29). (B) The extraction of a reliable
connectivity profile across species permits the computation of common spaces
allowing for an approximation of our ancestors’ brains (30). In this context,
the connectivity profile is defined as the number of streamlines per voxel

(i.e., as a surrogate for connectivity strength) for each tract of interest. T, tract;
V, voxel; Strength, connectivity strength. (C) Connectivity variability (i.e., average
white matter deformation required to match a common species-specific template)
reveals that the same variability that makes us individually different from
each other is also at the root of our differences from our ancestors and our
closest evolutionary relatives [modified from (33), thanks to data openly available
at http://www.chimpanzeebrain.org]. mm, millimeters.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of Pennsylvania on A

ugust 22, 2023

action, emotion, and decision-making. These
cortical regions are less connected with the
contralateral hemisphere via the corpus cal-
losum (Fig. 2C) (24). DWI has revealed that
the structure of the corpus callosum changes
along with brain size across and within spe-

cies (25, 26). In particular, the axonal con-
ductive properties can change (27), and axon
calibers correlate with the interhemispheric
speed of conduction (Fig. 2D) (28). Further, a
trade-off in the number of connections exists
between interhemispheric and intrahemispheric

connectivity across species (25). Taken together,
these studies suggest that during evolution,
brain size expansion may have led to functional
lateralization to avoid a disproportionate corpus
callosum or excessive conduction delays across
hemispheres.

Mapping evolution through connectivity

As structural connectivity can be used to de-
cipher the brain’s functional organization,multi-
ple studies compared different primate species
to understand human uniqueness and shed
light on the mechanisms involved in its evolu-
tion. For instance, human language capacity
parallels the extraordinary expansion of the ar-
cuate fasciculus in the left hemisphere (Fig. 3A)
(29). The anatomical delineation ofwhitematter
tracts (e.g., arcuate fasciculus or corpus cal-
losum) allowed for extracting corresponding
connectivity profiles across species. This point
of comparison permitted the computation of
deformation fields between species’ brains
(Fig. 3B) (30). These deformation fields define
similarities and differences across species.
Comparative studies assume that similarities
between species can be traced back to a com-
mon ancestor and account for the preservation
of specific functions across evolution. Recent
comparative work revealed one of the first
comprehensive maps of the phylogenetic or-
ganization of brain regions (30). Such tech-
nical advances in comparative neuroimaging
will allow for targeted studies that bettermatch
humanbrainmechanisms to their phylogenetic
counterparts. These advances may also help
discover and mimic neuroprotective mecha-
nisms in animals that could potentially trans-
late to improving human disease models and
therapeutics. For instance, frontoparietal dis-
connection is a very sensitive (85%) and specific
(95%) biomarker for persistent disorders of
visual neglect (31). Whereas most humans with
this disconnection will fail to recover from
visual neglect, monkeys with the same discon-
nectionwill recoverwithin a fewdays (32).Hence,
there is a distinctive mechanism in monkeys
that facilitates brain recovery. However, this
mechanism has yet to be identified, and its
translatability to humans needs to be explored.
One frequent limitation of comparative studies

is the small number of brains per species used
(usually fewer than 10), which fails to fully cap-
ture interindividual variability. While the
amount of connectivity variability (i.e., mag-
nitude) is proportional to the brain size, its
pattern of variability is similar between hu-
mans and other primates. Accordingly, brain
areas that have recently evolved increasingly
differ between individuals, whereas evolution-
arily older areas tend to be more stable (33).
Intraspecies variability in brain connections
might therefore be a novel dimension to our
understanding of evolutionary mechanisms
(Fig. 3C).

Thiebaut de Schotten et al., Science 378, 505–510 (2022) 4 November 2022 2 of 6

0

30

60

90

120

3 4 5 6 7
Brain areas (n)

1 0 0

0 1 0

0 0 1

D
Y Z

1 0 0

1 1 0

1 0 1

0 1 0

0 1 1

0 0 1

1 1 1

X Y Z

1 1 1

1 0 1

X Y Z

Br
ai

n
st

at
es

C
Integrative language model

Motor speech production

Verbal working memory

Auditory speech comprehension

Semantic processing

Inactive

Active

X

Br
ai

n
st

at
es

Models

Integrative
Hierarchical
Modular

E

1

3

2

2
1

A

Broca’s area for articulation
Geschwind’s area for concepts

Wernicke’s area for comprehension

Modular language model
Direct processing route

Indirect processing route

Hierarchical language model

B

1

2

4

1

3

2

4

Fig. 1. The superior flexibility of the integrative brain model compared with other classical models,
as exemplified by simplified language models. Brain models determine the flexibility of brain states
(i.e., functions). In a modular system (A), one region performs one function without cross-talk, and the
number of possible brain states increases linearly with the number of regions. In the hierarchical system (B),
functions emerge from the sequential activation of regions. Accordingly, the repetition of words or
sentences would rely on the temporal-parietal-frontal propagation from auditory-to-motor processes. In
contrast to (A) and (B), the integrative model (C) offers the highest computational flexibility, allowing for the
high complexity and flexibility of language processes as we know them. Each model can be translated
into different brain state patterns (D) across brain areas X, Y, and Z. Each line indicates a brain state
(function) (courtesy of Chris Foulon). (E) Illustration of the interaction between the brain model and the
number of areas involved in the number of brain states a system can take.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of Pennsylvania on A

ugust 22, 2023

Learning and circuit reorganization via local rules
Neurons learn by autonomously rewiring their own circuits.

One mechanism is Spike Timing Dependent Plasticity (STDP). For example:

• Suppose two connected neurons fire voltage spikes

• If the first neuron fires before the second one, the synapse strengthens

• If the first neuron fires after the second one, the synapse weakens.

You can also use neuromodulators as global knobs to modulate learning

• Dopamine released on a synapse reinforces changes that lead to

surprising rewards

• Norepinephrine release allows emotion to affect synaptic plasticity

1

2

An individual neuron or synapse has no direct knowledge

of how other neurons are adjusting themselves.

Because of the variability in its activity patterns, it was thought that LMAN’s role was simply to
inject variability into the song (Ölveczky et al., 2005). The resulting vocal experimentation would

enable reinforcement-based learning. For this reason, prior models tended to treat LMAN as a pure

Poisson noise generator, and assume that a reward signal is received directly in RA (Fiete et al.,

2007). More recent evidence, however, suggests that the reward signal reaches Area X, the song-

specialized basal ganglia, rather than RA (Gadagkar et al., 2016; Hoffmann et al., 2016;

Kubikova et al., 2010). Taken together with the fact that LMAN firing patterns are not uniformly

random, but rather contain a corrective bias guiding plasticity in RA (Andalman and Fee, 2009;

Warren et al., 2011), this suggests that we should rethink our models of song acquisition.
Here we build a general model of two-stage learning where one neural circuit ‘tutors’ another.

We develop a formalism for determining how the teaching signal should be adapted to a specific

plasticity rule, to best instruct a student circuit to improve its performance at each learning step. We

develop analytical results in a rate-based model, and show through simulations that the general find-

ings carry over to realistic spiking neurons. Applied to the vocal control circuit of songbirds, our

model reproduces the observed changes in the spiking statistics of RA neurons as juvenile birds

learn their song. Our framework also predicts how the LMAN signal should be adapted to properties

of RA synapses. This prediction can be tested in future experiments.
Our approach separates the mechanistic question of how learning is implemented from what the

resulting learning rules are. We nevertheless demonstrate that a simple reinforcement learning algo-

rithm suffices to implement the learning rule we propose. Our framework makes general predictions

Figure 1. Relation between the song system in zebra finches and our model. (A) Diagram of the major brain regions involved in birdsong. (B)
Conceptual model inspired by the birdsong system. The line from output to tutor is dashed because the reinforcement signal can reach the tutor either

directly or, as in songbirds, indirectly. (C) Plasticity rule measured in bird RA (measurement done in slice). When an HVC burst leads an LMAN burst by

about 100ms, the HVC–RA synapse is strengthened, while coincident firing leads to suppression. Figure adapted from Mehaffey and Doupe (2015).

(D) Plasticity rule in our model that mimics the Mehaffey and Doupe (2015) rule.

DOI: 10.7554/eLife.20944.002

Teşileanu et al. eLife 2017;6:e20944. DOI: 10.7554/eLife.20944 2 of 29

Research article Neuroscience

Mehaffey & Doupe, 2015

Zebra Finch

Because of the variability in its activity patterns, it was thought that LMAN’s role was simply to
inject variability into the song (Ölveczky et al., 2005). The resulting vocal experimentation would

enable reinforcement-based learning. For this reason, prior models tended to treat LMAN as a pure

Poisson noise generator, and assume that a reward signal is received directly in RA (Fiete et al.,

2007). More recent evidence, however, suggests that the reward signal reaches Area X, the song-

specialized basal ganglia, rather than RA (Gadagkar et al., 2016; Hoffmann et al., 2016;

Kubikova et al., 2010). Taken together with the fact that LMAN firing patterns are not uniformly

random, but rather contain a corrective bias guiding plasticity in RA (Andalman and Fee, 2009;

Warren et al., 2011), this suggests that we should rethink our models of song acquisition.
Here we build a general model of two-stage learning where one neural circuit ‘tutors’ another.

We develop a formalism for determining how the teaching signal should be adapted to a specific

plasticity rule, to best instruct a student circuit to improve its performance at each learning step. We

develop analytical results in a rate-based model, and show through simulations that the general find-

ings carry over to realistic spiking neurons. Applied to the vocal control circuit of songbirds, our

model reproduces the observed changes in the spiking statistics of RA neurons as juvenile birds

learn their song. Our framework also predicts how the LMAN signal should be adapted to properties

of RA synapses. This prediction can be tested in future experiments.
Our approach separates the mechanistic question of how learning is implemented from what the

resulting learning rules are. We nevertheless demonstrate that a simple reinforcement learning algo-

rithm suffices to implement the learning rule we propose. Our framework makes general predictions

Figure 1. Relation between the song system in zebra finches and our model. (A) Diagram of the major brain regions involved in birdsong. (B)
Conceptual model inspired by the birdsong system. The line from output to tutor is dashed because the reinforcement signal can reach the tutor either

directly or, as in songbirds, indirectly. (C) Plasticity rule measured in bird RA (measurement done in slice). When an HVC burst leads an LMAN burst by

about 100ms, the HVC–RA synapse is strengthened, while coincident firing leads to suppression. Figure adapted from Mehaffey and Doupe (2015).

(D) Plasticity rule in our model that mimics the Mehaffey and Doupe (2015) rule.

DOI: 10.7554/eLife.20944.002

Teşileanu et al. eLife 2017;6:e20944. DOI: 10.7554/eLife.20944 2 of 29

Research article Neuroscience

Because of the variability in its activity patterns, it was thought that LMAN’s role was simply to
inject variability into the song (Ölveczky et al., 2005). The resulting vocal experimentation would

enable reinforcement-based learning. For this reason, prior models tended to treat LMAN as a pure

Poisson noise generator, and assume that a reward signal is received directly in RA (Fiete et al.,

2007). More recent evidence, however, suggests that the reward signal reaches Area X, the song-

specialized basal ganglia, rather than RA (Gadagkar et al., 2016; Hoffmann et al., 2016;

Kubikova et al., 2010). Taken together with the fact that LMAN firing patterns are not uniformly

random, but rather contain a corrective bias guiding plasticity in RA (Andalman and Fee, 2009;

Warren et al., 2011), this suggests that we should rethink our models of song acquisition.
Here we build a general model of two-stage learning where one neural circuit ‘tutors’ another.

We develop a formalism for determining how the teaching signal should be adapted to a specific

plasticity rule, to best instruct a student circuit to improve its performance at each learning step. We

develop analytical results in a rate-based model, and show through simulations that the general find-

ings carry over to realistic spiking neurons. Applied to the vocal control circuit of songbirds, our

model reproduces the observed changes in the spiking statistics of RA neurons as juvenile birds

learn their song. Our framework also predicts how the LMAN signal should be adapted to properties

of RA synapses. This prediction can be tested in future experiments.
Our approach separates the mechanistic question of how learning is implemented from what the

resulting learning rules are. We nevertheless demonstrate that a simple reinforcement learning algo-

rithm suffices to implement the learning rule we propose. Our framework makes general predictions

Figure 1. Relation between the song system in zebra finches and our model. (A) Diagram of the major brain regions involved in birdsong. (B)
Conceptual model inspired by the birdsong system. The line from output to tutor is dashed because the reinforcement signal can reach the tutor either

directly or, as in songbirds, indirectly. (C) Plasticity rule measured in bird RA (measurement done in slice). When an HVC burst leads an LMAN burst by

about 100ms, the HVC–RA synapse is strengthened, while coincident firing leads to suppression. Figure adapted from Mehaffey and Doupe (2015).

(D) Plasticity rule in our model that mimics the Mehaffey and Doupe (2015) rule.

DOI: 10.7554/eLife.20944.002

Teşileanu et al. eLife 2017;6:e20944. DOI: 10.7554/eLife.20944 2 of 29

Research article NeuroscienceLearning requires whole brain cooperation: e.g., song learning

• Student: Neurons in RA control the muscles to produce sounds. It must learn a
sequence of muscular movements.

• Conductor: Neurons in HVC produce a sequence of patterns marking time. After
learning each pattern drives RA to pull and push the right muscles at each moment

• Tutor: LMAN drives exploration by injecting variability while providing guidance
based on comparison of the desired song to the actual output.

Major brain
areas of the
songbird act
collectively
during song

learning

The tutor should
match the teaching
style (reinforcement
protocol) to student

learning style (synaptic
plasticity rule) for
efficient learning

Physical effects of learning in the brain

Question: How do local learning rules at synapses produce these effects?

1.Synaptic connectivity reorganizes with
learning

2.Low dimensional response repertoires
(response patterns and dynamics)

3. Response repertoires aligned with the
relevant features of relevant inputs and
desired outputs

You become what you learn

A Strategy

Construct a pared-down network with minimal features of
real neural networks and see if it can learn, and whether it
also develops the structural adaptations seen in the brain.

A class of tractable physical networks

3

FIG. 1. Learning modifies the physical network. a) Input
forces (black) are applied to the physical degrees of freedom
(green, e.g. node positions) of a physical network (e.g. me-
chanical spring network), whose interactions correspond to
learning degrees of freedom (blue, e.g. spring constants). b)
In the physical configuration space, this input force causes the
system to respond, equilibrating in a free state (red dot). To
train the system, a further ‘output force’ is applied, nudging
the system to a clamped state (green dot). The blue arrows
describe the inherent physical coordinate system, with direc-
tion corresponding to eigenmodes vab of the physical Hessian
Hab, and lengths correspond to the associated inverse eigen-
values ��1

a . c) A local learning rule is applied, modifying the
learning degrees of freedom. On top of improving the sys-
tem free state response, learning tends to rotate the Hessian
coordinate system such that the eigenmode corresponding to
the lower eigenvalues align with the free state response, and
decrease these eigenvalues. d) Training results in a physical
system whose lower eigenvalues are reduced, and eigenmodes
aligned with the trained task(s). The system responds con-
siderably more strongly to random forces, shown by the area
spanned by the trained inverse eigenvalues (blue ellipse) com-
pared to the untrained ones (red ellipse). Training makes the
physical system more conductive and lower dimensional.

are fully determined by the physical cost function E(~x; ~w)
which controls how the physical degrees of freedom ~x re-
spond to external inputs. In the absence of such inputs
the system equilibrates, locally minimizing the physical
cost function to settle into a native state ~x

0(~w) in which
forces (for mechanical networks) or currents (for flow or
electrical networks) are balanced ~r~xE(~x, ~w)|~w = 0, or,
in components, @E/@xa|~w = 0 for all a. Below we will
consider small perturbations around such native states;
that is, we discuss learning in the limit of linear response,
by assuming that the forces applied to the system as in-
puts are weak in the sense that they cause small physical
deformations. The learning approaches we discuss are

practical and e↵ective well beyond linearity [21]. How-
ever, in the linear regime we will show that learning is
dominated by characteristic network phenomenology in-
cluding reduction of the e↵ective dimension of responses,
softening of the system, and alignment of dynamics with
the learned task. Beyond linear response, other mecha-
nisms, such as multi-state learning [16, 46, 56], also be-
come relevant.
In linear response it su�ces to consider an expansion

of the physical cost function around the native state up
to the first non-vanishing, i.e., second, order:

E(~x, ~w) ⇡ E(~x0
, ~w) +

1

2
(~x� ~x

0)TH(~w)(~x� ~x
0) (1)

where the superscript T denotes the transpose, andH is a
(symmetric) physical Hessian matrix, the components of
which are Hab(~w) = @

2
E(~x, ~w)/@xa@xb|~x=~x0 . In the fol-

lowing we name this matrix the Hessian as a shorthand.
The first order term in the Taylor expansion vanishes,
since the native state ~x

0(~w) is a minimum of the phys-
ical cost function. The Hessian is a function of ~w both
explicitly, and implicitly through the dependence of ~x0

on the learning degrees of freedom ~w.
To simplify the language in the remainder of this pa-

per, we will use “force” to denote forces in the case of
a mechanical network or currents in the case of a flow
network.

A. Training physical responses at network nodes

Consider a generalized external input force ~F applied
to the physical degrees of freedom, namely tensile forces
in a mechanical network, or a set of currents in a flow
network, applied to specific nodes. This force could be
applied locally (at a subset of nodes) or globally, e.g.,
a “compression” applying forces to all the ~x toward a
certain point. These input forces will a↵ect the physical
cost function, prompting the system to equilibrate in a
new free state ~x

F which minimizes the free state physical
cost function:

E
F (~x, ~w) = E(~x, ~w)� ~F · ~x

@

@x
E

F (~x, ~w) = 0 =) @

@x
E(~x, ~w) = ~F

(2)

In the linearized approximation (1), this gives

~x
F � ~x

0 = H
�1 ~F (3)

where we used the fact that the Hessian matrix is sym-
metric. In other words, the system responds by shifting
the native state by the inverse Hessian applied to the
input force.
Thus, deformations around the native state with small

Hessian eigenvalues are “soft” – they exhibit a larger re-
sponse to applied forces. Note also that the entries of
the inverse Hessian depend globally on all the learning

3

FIG. 1. Learning modifies the physical network. a) Input
forces (black) are applied to the physical degrees of freedom
(green, e.g. node positions) of a physical network (e.g. me-
chanical spring network), whose interactions correspond to
learning degrees of freedom (blue, e.g. spring constants). b)
In the physical configuration space, this input force causes the
system to respond, equilibrating in a free state (red dot). To
train the system, a further ‘output force’ is applied, nudging
the system to a clamped state (green dot). The blue arrows
describe the inherent physical coordinate system, with direc-
tion corresponding to eigenmodes vab of the physical Hessian
Hab, and lengths correspond to the associated inverse eigen-
values ��1

a . c) A local learning rule is applied, modifying the
learning degrees of freedom. On top of improving the sys-
tem free state response, learning tends to rotate the Hessian
coordinate system such that the eigenmode corresponding to
the lower eigenvalues align with the free state response, and
decrease these eigenvalues. d) Training results in a physical
system whose lower eigenvalues are reduced, and eigenmodes
aligned with the trained task(s). The system responds con-
siderably more strongly to random forces, shown by the area
spanned by the trained inverse eigenvalues (blue ellipse) com-
pared to the untrained ones (red ellipse). Training makes the
physical system more conductive and lower dimensional.

are fully determined by the physical cost function E(~x; ~w)
which controls how the physical degrees of freedom ~x re-
spond to external inputs. In the absence of such inputs
the system equilibrates, locally minimizing the physical
cost function to settle into a native state ~x

0(~w) in which
forces (for mechanical networks) or currents (for flow or
electrical networks) are balanced ~r~xE(~x, ~w)|~w = 0, or,
in components, @E/@xa|~w = 0 for all a. Below we will
consider small perturbations around such native states;
that is, we discuss learning in the limit of linear response,
by assuming that the forces applied to the system as in-
puts are weak in the sense that they cause small physical
deformations. The learning approaches we discuss are

practical and e↵ective well beyond linearity [21]. How-
ever, in the linear regime we will show that learning is
dominated by characteristic network phenomenology in-
cluding reduction of the e↵ective dimension of responses,
softening of the system, and alignment of dynamics with
the learned task. Beyond linear response, other mecha-
nisms, such as multi-state learning [16, 46, 56], also be-
come relevant.
In linear response it su�ces to consider an expansion

of the physical cost function around the native state up
to the first non-vanishing, i.e., second, order:

E(~x, ~w) ⇡ E(~x0
, ~w) +

1

2
(~x� ~x

0)TH(~w)(~x� ~x
0) (1)

where the superscript T denotes the transpose, andH is a
(symmetric) physical Hessian matrix, the components of
which are Hab(~w) = @

2
E(~x, ~w)/@xa@xb|~x=~x0 . In the fol-

lowing we name this matrix the Hessian as a shorthand.
The first order term in the Taylor expansion vanishes,
since the native state ~x

0(~w) is a minimum of the phys-
ical cost function. The Hessian is a function of ~w both
explicitly, and implicitly through the dependence of ~x0

on the learning degrees of freedom ~w.
To simplify the language in the remainder of this pa-

per, we will use “force” to denote forces in the case of
a mechanical network or currents in the case of a flow
network.

A. Training physical responses at network nodes

Consider a generalized external input force ~F applied
to the physical degrees of freedom, namely tensile forces
in a mechanical network, or a set of currents in a flow
network, applied to specific nodes. This force could be
applied locally (at a subset of nodes) or globally, e.g.,
a “compression” applying forces to all the ~x toward a
certain point. These input forces will a↵ect the physical
cost function, prompting the system to equilibrate in a
new free state ~x

F which minimizes the free state physical
cost function:

E
F (~x, ~w) = E(~x, ~w)� ~F · ~x

@

@x
E

F (~x, ~w) = 0 =) @

@x
E(~x, ~w) = ~F

(2)

In the linearized approximation (1), this gives

~x
F � ~x

0 = H
�1 ~F (3)

where we used the fact that the Hessian matrix is sym-
metric. In other words, the system responds by shifting
the native state by the inverse Hessian applied to the
input force.
Thus, deformations around the native state with small

Hessian eigenvalues are “soft” – they exhibit a larger re-
sponse to applied forces. Note also that the entries of
the inverse Hessian depend globally on all the learning

15

trained by minimizing a cross entropy cost function that
is more appropriate for discrete classification [24]. In
essence, the modified learning rule is the same as Eq. 10
for specimens that are not classified correctly, while the
output force vanishes for specimens that are classified
correctly.

The results are shown in Fig. 7c (averaged over 10 re-
alizations of networks and choices of training sets). As
before, learning generally succeeds, significantly reducing
the cross entropy error for both the training set (full line)
and test set (dashed line). In terms of classification accu-
racy, the trained networks reach 100% training accuracy
and 95% test accuracy. More importantly, the e↵ects of
learning on the physical network itself are again similar
to the previous cases. The lowest Hessian eigenvalues
are significantly lowered by learning, reducing the phys-
ical dimension and increasing the e↵ective conductance
of the system. We conclude that, in the linear response
regime, the e↵ects of learning on physical systems are
generic and do not depend on the desired function.

Appendix B: Eigensystem dynamics for learning in
general linear physical networks

In this section we derive in more detail the main re-
sults for learning in linear physical networks. We show
that when these networks learn to perform tasks char-
acterized by weak input forces (compared to the desired
output and initial curvature of the energy function), cer-
tain eigenvalues of the physical Hessian are decreased and
associated eigenmodes align with the learned task. As-
sume a linear physical system whose energy is given by
Eq. 1. We also assume for convenience that the native
state is at the origin ~x

0 = 0. To discuss a generic linear
system, we consider a family of possible physical Hessian
at the native state, given by

Hab =
1

2

X

i

�i(wi)[LaiRib +R
T
aiL

T
ib] ⌘

X

i

H
i
ab.

(B1)
This Hessian can be understood as follows. There

exists a set of learning degrees of freedom wi, each of
which is potentially subject to a non-linear transforma-
tion �i(wi). These learning degrees of freedom are trans-
ported into the components of the physical Hessian Hab

by means of a left matrix Lai and a right matrix Rib,
which determine how the di↵erent physical degrees of
freedom xa interact through the learning parameters. For
this to be a sensible physical Hessian, note that we must
require that it is symmetric and positive definite. The
symmetry requirement is always satisfied by the sum of
the two terms in Eq. B1, but one should be more care-
ful about the Hessian being positive definite (with only
positive eigenvalues). Also note that the matrices L,R

describe the ‘geometry’ of the network and are fixed dur-
ing learning; only the learning degrees of freedom wi are

modified. The specific physical networks discussed in the
main text are given by special choices for the L,R ma-
trices and a linear relation �i(wi) = wi.
For the flow and mechanical systems described in the

main text, the left and right matrices are the same
R = L

T = �, equal to the incidence matrix (Eq. 16).
That is not the case for the node network (Eq. 13). We
chose a smart representation of the learning degrees of
freedom in a square matrix, with which the left and right
matrices appear the same, Hab(wab) =

1
2

P
ij [�aiwij�jb+

�biwij�ja], a choice which greatly simplifies calculations.
However, if we had represented the learning degrees of
freedom as a vector wi, the Hessian for the node network
would have di↵erent left and right matrices, correspond-
ing to the way in which every element of the vector wi

should be placed in the correct component of Hab.
We previously discussed how such a network can learn

a task in the context of weak input forces. For a given
linear constraint the network must satisfy, a learning step
is performed by clamping with a particular output force
(Eq. 34)

~F
O = �(~A ~A

T)H�1 ~F +B ~A ⇡ B ~A, (B2)

where we assumed the input force ~F is weak, or con-
versely that the physical Hessian H is initially sti↵ (with
low inverse eigenvalues) compared to the desired output
scale given by B > 0. As discussed in the main text,
this is a typical case for training realistic physical net-
works where the input and output sectors are generally
not correlated. We make the weak input assumption so
that the output force remains essentially fixed through-
out training (see explanation in main text). We now
use the inherent coordinate system of the Hessian, spec-
ified by a matrix v with rows that are eigenvectors so
that H = v

T⇤v to rotate the input and output force
vectors into these natural coordinates, fa ⌘ vabFb and
f
O
a ⌘ vabF

O
b ⇡ BvabA

O
b ⌘ Baa.

Our derivation of the physical learning dynamics in
Eq. 11 is valid for any HessianH, so we can write (setting
the learning rate ↵ = 1)

�wi ⇡ �~F
T
H

�1 @H

@wi
H

�1 ~F
O

⇡ �B ~f
T⇤�1

v
@H

@wi
v
T⇤�1

~a

= �B

2
~f
T⇤�1

v[�0
i[LR+R

T
L
T]i]vT⇤�1

~a

⌘ �B

X

cd

fc

�c
M

i
cd
ad

�d

(B3)

where we defined a set of square symmetric matrices,
M

i
ab ⌘=

P
cd vac

@Hcd
@wi

v
T
db, one for each learning degree of

freedom.
The change in each Hessian component Hab is given

by Eq. 19, where we assume, as before, that the change
in the native state ~x0 due to learning is small. Therefore

• are physical degrees of freedom (nodes)

• are learning degrees of freedom (edges)

• are (weak) forces applied to the nodes

xa, a = 1⋯N
wi, i = 1⋯Nw⃗F

Near equilibrium the network has energy:

Physical Hessian:

 is an edgewise nonlinearity. L and R are fixed, and specify the network
geometry.
ϕ(wi)

The effect

of forces:

3

FIG. 1. Learning modifies the physical network. a) Input
forces (black) are applied to the physical degrees of freedom
(green, e.g. node positions) of a physical network (e.g. me-
chanical spring network), whose interactions correspond to
learning degrees of freedom (blue, e.g. spring constants). b)
In the physical configuration space, this input force causes the
system to respond, equilibrating in a free state (red dot). To
train the system, a further ‘output force’ is applied, nudging
the system to a clamped state (green dot). The blue arrows
describe the inherent physical coordinate system, with direc-
tion corresponding to eigenmodes vab of the physical Hessian
Hab, and lengths correspond to the associated inverse eigen-
values ��1

a . c) A local learning rule is applied, modifying the
learning degrees of freedom. On top of improving the sys-
tem free state response, learning tends to rotate the Hessian
coordinate system such that the eigenmode corresponding to
the lower eigenvalues align with the free state response, and
decrease these eigenvalues. d) Training results in a physical
system whose lower eigenvalues are reduced, and eigenmodes
aligned with the trained task(s). The system responds con-
siderably more strongly to random forces, shown by the area
spanned by the trained inverse eigenvalues (blue ellipse) com-
pared to the untrained ones (red ellipse). Training makes the
physical system more conductive and lower dimensional.

are fully determined by the physical cost function E(~x; ~w)
which controls how the physical degrees of freedom ~x re-
spond to external inputs. In the absence of such inputs
the system equilibrates, locally minimizing the physical
cost function to settle into a native state ~x

0(~w) in which
forces (for mechanical networks) or currents (for flow or
electrical networks) are balanced ~r~xE(~x, ~w)|~w = 0, or,
in components, @E/@xa|~w = 0 for all a. Below we will
consider small perturbations around such native states;
that is, we discuss learning in the limit of linear response,
by assuming that the forces applied to the system as in-
puts are weak in the sense that they cause small physical
deformations. The learning approaches we discuss are

practical and e↵ective well beyond linearity [21]. How-
ever, in the linear regime we will show that learning is
dominated by characteristic network phenomenology in-
cluding reduction of the e↵ective dimension of responses,
softening of the system, and alignment of dynamics with
the learned task. Beyond linear response, other mecha-
nisms, such as multi-state learning [16, 46, 56], also be-
come relevant.
In linear response it su�ces to consider an expansion

of the physical cost function around the native state up
to the first non-vanishing, i.e., second, order:

E(~x, ~w) ⇡ E(~x0
, ~w) +

1

2
(~x� ~x

0)TH(~w)(~x� ~x
0) (1)

where the superscript T denotes the transpose, andH is a
(symmetric) physical Hessian matrix, the components of
which are Hab(~w) = @

2
E(~x, ~w)/@xa@xb|~x=~x0 . In the fol-

lowing we name this matrix the Hessian as a shorthand.
The first order term in the Taylor expansion vanishes,
since the native state ~x

0(~w) is a minimum of the phys-
ical cost function. The Hessian is a function of ~w both
explicitly, and implicitly through the dependence of ~x0

on the learning degrees of freedom ~w.
To simplify the language in the remainder of this pa-

per, we will use “force” to denote forces in the case of
a mechanical network or currents in the case of a flow
network.

A. Training physical responses at network nodes

Consider a generalized external input force ~F applied
to the physical degrees of freedom, namely tensile forces
in a mechanical network, or a set of currents in a flow
network, applied to specific nodes. This force could be
applied locally (at a subset of nodes) or globally, e.g.,
a “compression” applying forces to all the ~x toward a
certain point. These input forces will a↵ect the physical
cost function, prompting the system to equilibrate in a
new free state ~x

F which minimizes the free state physical
cost function:

E
F (~x, ~w) = E(~x, ~w)� ~F · ~x

@

@x
E

F (~x, ~w) = 0 =) @

@x
E(~x, ~w) = ~F

(2)

In the linearized approximation (1), this gives

~x
F � ~x

0 = H
�1 ~F (3)

where we used the fact that the Hessian matrix is sym-
metric. In other words, the system responds by shifting
the native state by the inverse Hessian applied to the
input force.
Thus, deformations around the native state with small

Hessian eigenvalues are “soft” – they exhibit a larger re-
sponse to applied forces. Note also that the entries of
the inverse Hessian depend globally on all the learning

3

FIG. 1. Learning modifies the physical network. a) Input
forces (black) are applied to the physical degrees of freedom
(green, e.g. node positions) of a physical network (e.g. me-
chanical spring network), whose interactions correspond to
learning degrees of freedom (blue, e.g. spring constants). b)
In the physical configuration space, this input force causes the
system to respond, equilibrating in a free state (red dot). To
train the system, a further ‘output force’ is applied, nudging
the system to a clamped state (green dot). The blue arrows
describe the inherent physical coordinate system, with direc-
tion corresponding to eigenmodes vab of the physical Hessian
Hab, and lengths correspond to the associated inverse eigen-
values ��1

a . c) A local learning rule is applied, modifying the
learning degrees of freedom. On top of improving the sys-
tem free state response, learning tends to rotate the Hessian
coordinate system such that the eigenmode corresponding to
the lower eigenvalues align with the free state response, and
decrease these eigenvalues. d) Training results in a physical
system whose lower eigenvalues are reduced, and eigenmodes
aligned with the trained task(s). The system responds con-
siderably more strongly to random forces, shown by the area
spanned by the trained inverse eigenvalues (blue ellipse) com-
pared to the untrained ones (red ellipse). Training makes the
physical system more conductive and lower dimensional.

are fully determined by the physical cost function E(~x; ~w)
which controls how the physical degrees of freedom ~x re-
spond to external inputs. In the absence of such inputs
the system equilibrates, locally minimizing the physical
cost function to settle into a native state ~x

0(~w) in which
forces (for mechanical networks) or currents (for flow or
electrical networks) are balanced ~r~xE(~x, ~w)|~w = 0, or,
in components, @E/@xa|~w = 0 for all a. Below we will
consider small perturbations around such native states;
that is, we discuss learning in the limit of linear response,
by assuming that the forces applied to the system as in-
puts are weak in the sense that they cause small physical
deformations. The learning approaches we discuss are

practical and e↵ective well beyond linearity [21]. How-
ever, in the linear regime we will show that learning is
dominated by characteristic network phenomenology in-
cluding reduction of the e↵ective dimension of responses,
softening of the system, and alignment of dynamics with
the learned task. Beyond linear response, other mecha-
nisms, such as multi-state learning [16, 46, 56], also be-
come relevant.
In linear response it su�ces to consider an expansion

of the physical cost function around the native state up
to the first non-vanishing, i.e., second, order:

E(~x, ~w) ⇡ E(~x0
, ~w) +

1

2
(~x� ~x

0)TH(~w)(~x� ~x
0) (1)

where the superscript T denotes the transpose, andH is a
(symmetric) physical Hessian matrix, the components of
which are Hab(~w) = @

2
E(~x, ~w)/@xa@xb|~x=~x0 . In the fol-

lowing we name this matrix the Hessian as a shorthand.
The first order term in the Taylor expansion vanishes,
since the native state ~x

0(~w) is a minimum of the phys-
ical cost function. The Hessian is a function of ~w both
explicitly, and implicitly through the dependence of ~x0

on the learning degrees of freedom ~w.
To simplify the language in the remainder of this pa-

per, we will use “force” to denote forces in the case of
a mechanical network or currents in the case of a flow
network.

A. Training physical responses at network nodes

Consider a generalized external input force ~F applied
to the physical degrees of freedom, namely tensile forces
in a mechanical network, or a set of currents in a flow
network, applied to specific nodes. This force could be
applied locally (at a subset of nodes) or globally, e.g.,
a “compression” applying forces to all the ~x toward a
certain point. These input forces will a↵ect the physical
cost function, prompting the system to equilibrate in a
new free state ~x

F which minimizes the free state physical
cost function:

E
F (~x, ~w) = E(~x, ~w)� ~F · ~x

@

@x
E

F (~x, ~w) = 0 =) @

@x
E(~x, ~w) = ~F

(2)

In the linearized approximation (1), this gives

~x
F � ~x

0 = H
�1 ~F (3)

where we used the fact that the Hessian matrix is sym-
metric. In other words, the system responds by shifting
the native state by the inverse Hessian applied to the
input force.
Thus, deformations around the native state with small

Hessian eigenvalues are “soft” – they exhibit a larger re-
sponse to applied forces. Note also that the entries of
the inverse Hessian depend globally on all the learning

Simple examples: flow and elastic networks
7

FIG. 2. Training physical networks. a) We train several types
of physical networks in the linear response regime, in partic-
ular fully connected linear networks (where physical degrees
of freedom are node values), Flow networks and mechanical
spring networks (where physical responses are naturally rep-
resented as di↵erence over edges). b) Training these systems
on single tasks, we generally find that local learning rules
succeed, reducing the mean squared error by many orders of
magnitude (geometric mean over 50 realizations of networks
trained with single tasks).

H̃(~w, ~x) = @
2
E(~x, ~w)/@xa@xb|~w. Evaluating H̃ at the

native state ~x = ~x
0(~w), which minimizes the physical

cost function, gives the Hessian H(~w) in (1).

In terms of H̃ the change in the Hessian can now be
written as

�H = � ~w · dH̃
d~w

�����
~x=~x0

=
X

i

�wi

"
@H̃

@wi
+

X

a

@H̃

@xa

@x
0
a

@wi

#

~x=~x0

(18)
In the right hand expression the sum on i in the second
term gives rwx

0
a · � ~w, which is the change in the native

state variable x
0
a driven by learning.

For the linear systems of interest, with Hessians given
by Eq. 12, H̃ is by construction independent of ~x, and
~x
0 is independent of ~w. In these cases the second term

in (19) vanishes and can be dropped. Such physical sys-
tems are in fact common: electrical resistor networks, as
in Ref. [29] always remain in the linear regime. Flow net-
works remain linear in the low Reynolds number regime,
while initially unstrained spring networks are also lin-
ear over a reasonable range of strain when learning is
performed on spring sti↵nesses. In such systems the na-
tive state ~x

0 does not depend on the learning degrees of
freedom and stays fixed throughout the learning process.
With this approximation we can compute the change in
each component of the physical Hessian (see Appendix B
for details).

�Hab ⇡ �↵B

X

i,cd

[
@h

i
ab

@wi
][v

@h
i

@wi
v
T]cd

fc

�c

ad

�d
, (19)

where Hab =
P

c v
T
ac�cvcb is a diagonalization of the

Hessian, with �a, vab the eigenvalues and eigenmodes of
the physical Hessian Hab. Here fa =

P
b vabFb, aa =P

b vabAb are projections of the input and output vec-

tors on each of the eigenmodes, and fc
�c
,
ad
�d

are these same
projections, where each component is scaled by the asso-
ciated inverse eigenvalue.
We see that regardless of the choice of model for the

physical Hessian Hab, the change in the Hessian due
to learning is given by a sum over symmetric matrices,
which yields a symmetric modification, as required. How-
ever, note that this learning rule does not guarantee that
the Hessian remains positive definite. Violation of posi-
tive semi-definiteness in this learning rule is a signature
of the failure of the linear approximation. For example,
if the learning rule tries to push a parameter into an un-
physical regime, the change simply will not happen. We
are focusing on learning in the linear regime where these
sorts of processes do not happen.
We wrote above the modification of the Hessian given a

single task, i.e., input force - output constraint pair. Each
additional task that the network is trained for contributes
such a modification, and therefore the total change in the
Hessian due to a learning step consisting of r = 1 · · ·nT

tasks is

�Hab =
X

r

�H
(r)
ab (20)

Now that we know how learning modifies the physical
Hessian, we can track its evolution and predict the im-
portant features of the system in the neighborhood of the
native state. To do so, we first discuss how the eigenspace
of the Hessian changes in response to learning. Using first
order perturbation theory, we can compute the changes
in the eigenvalues �n and eigenmodes ~vn of the Hessian
(n = 1 · · ·N) due to each task. To do this, we need to
compute sums of the form

Mab
mn ⌘

X

i,cdef

vac[
@h

i
cd

@wi
]vTdb · vme[

@h
i
ef

@wi
]vTfn (21)

In Appendix B we show how our choice of the Hessian
model (Eq. 12), the fact that there are many interactions,
coupled with some assumptions of their form, results in
simplification of the sum in Eq. 21. We can approximate
the sums Mab

mn, such that are only finite when indices
are chosen identical in pairs, i.e. Mmn

mn ⌘ Xmn > 0,
Mnn

mm ⌘ Ymn � 0, which are all non-negative factors.
With this in mind, we can estimate the change in the Hes-
sian eigenvalues and eigenvectors using first order pertur-

Linear Network: with E(⃗x, W) =
1
2

⃗x H(W) ⃗x H(w) =
1
2

(W + WT)

Flow/Elastic Network:

with where is an edge incidence matrix (+1 for incoming, -1
for outcoming) with arbitrarily assigned orientation of each edge

E(⃗x, W) = (1/2)(⃗x − ⃗x0) H(⃗w) (⃗x − ⃗x0)
H(⃗w) = ΔT diag(⃗w) Δ Δ

The effect of forces
Forces, inputs and outputs 7

FIG. 2. Training physical networks. a) We train several types
of physical networks in the linear response regime, in partic-
ular fully connected linear networks (where physical degrees
of freedom are node values), Flow networks and mechanical
spring networks (where physical responses are naturally rep-
resented as di↵erence over edges). b) Training these systems
on single tasks, we generally find that local learning rules
succeed, reducing the mean squared error by many orders of
magnitude (geometric mean over 50 realizations of networks
trained with single tasks).

H̃(~w, ~x) = @
2
E(~x, ~w)/@xa@xb|~w. Evaluating H̃ at the

native state ~x = ~x
0(~w), which minimizes the physical

cost function, gives the Hessian H(~w) in (1).

In terms of H̃ the change in the Hessian can now be
written as

�H = � ~w · dH̃
d~w

�����
~x=~x0

=
X

i

�wi

"
@H̃

@wi
+

X

a

@H̃

@xa

@x
0
a

@wi

#

~x=~x0

(18)
In the right hand expression the sum on i in the second
term gives rwx

0
a · � ~w, which is the change in the native

state variable x
0
a driven by learning.

For the linear systems of interest, with Hessians given
by Eq. 12, H̃ is by construction independent of ~x, and
~x
0 is independent of ~w. In these cases the second term

in (19) vanishes and can be dropped. Such physical sys-
tems are in fact common: electrical resistor networks, as
in Ref. [29] always remain in the linear regime. Flow net-
works remain linear in the low Reynolds number regime,
while initially unstrained spring networks are also lin-
ear over a reasonable range of strain when learning is
performed on spring sti↵nesses. In such systems the na-
tive state ~x

0 does not depend on the learning degrees of
freedom and stays fixed throughout the learning process.
With this approximation we can compute the change in
each component of the physical Hessian (see Appendix B
for details).

�Hab ⇡ �↵B

X

i,cd

[
@h

i
ab

@wi
][v

@h
i

@wi
v
T]cd

fc

�c

ad

�d
, (19)

where Hab =
P

c v
T
ac�cvcb is a diagonalization of the

Hessian, with �a, vab the eigenvalues and eigenmodes of
the physical Hessian Hab. Here fa =

P
b vabFb, aa =P

b vabAb are projections of the input and output vec-

tors on each of the eigenmodes, and fc
�c
,
ad
�d

are these same
projections, where each component is scaled by the asso-
ciated inverse eigenvalue.
We see that regardless of the choice of model for the

physical Hessian Hab, the change in the Hessian due
to learning is given by a sum over symmetric matrices,
which yields a symmetric modification, as required. How-
ever, note that this learning rule does not guarantee that
the Hessian remains positive definite. Violation of posi-
tive semi-definiteness in this learning rule is a signature
of the failure of the linear approximation. For example,
if the learning rule tries to push a parameter into an un-
physical regime, the change simply will not happen. We
are focusing on learning in the linear regime where these
sorts of processes do not happen.
We wrote above the modification of the Hessian given a

single task, i.e., input force - output constraint pair. Each
additional task that the network is trained for contributes
such a modification, and therefore the total change in the
Hessian due to a learning step consisting of r = 1 · · ·nT

tasks is

�Hab =
X

r

�H
(r)
ab (20)

Now that we know how learning modifies the physical
Hessian, we can track its evolution and predict the im-
portant features of the system in the neighborhood of the
native state. To do so, we first discuss how the eigenspace
of the Hessian changes in response to learning. Using first
order perturbation theory, we can compute the changes
in the eigenvalues �n and eigenmodes ~vn of the Hessian
(n = 1 · · ·N) due to each task. To do this, we need to
compute sums of the form

Mab
mn ⌘

X

i,cdef

vac[
@h

i
cd

@wi
]vTdb · vme[

@h
i
ef

@wi
]vTfn (21)

In Appendix B we show how our choice of the Hessian
model (Eq. 12), the fact that there are many interactions,
coupled with some assumptions of their form, results in
simplification of the sum in Eq. 21. We can approximate
the sums Mab

mn, such that are only finite when indices
are chosen identical in pairs, i.e. Mmn

mn ⌘ Xmn > 0,
Mnn

mm ⌘ Ymn � 0, which are all non-negative factors.
With this in mind, we can estimate the change in the Hes-
sian eigenvalues and eigenvectors using first order pertur-

3

FIG. 1. Learning modifies the physical network. a) Input
forces (black) are applied to the physical degrees of freedom
(green, e.g. node positions) of a physical network (e.g. me-
chanical spring network), whose interactions correspond to
learning degrees of freedom (blue, e.g. spring constants). b)
In the physical configuration space, this input force causes the
system to respond, equilibrating in a free state (red dot). To
train the system, a further ‘output force’ is applied, nudging
the system to a clamped state (green dot). The blue arrows
describe the inherent physical coordinate system, with direc-
tion corresponding to eigenmodes vab of the physical Hessian
Hab, and lengths correspond to the associated inverse eigen-
values ��1

a . c) A local learning rule is applied, modifying the
learning degrees of freedom. On top of improving the sys-
tem free state response, learning tends to rotate the Hessian
coordinate system such that the eigenmode corresponding to
the lower eigenvalues align with the free state response, and
decrease these eigenvalues. d) Training results in a physical
system whose lower eigenvalues are reduced, and eigenmodes
aligned with the trained task(s). The system responds con-
siderably more strongly to random forces, shown by the area
spanned by the trained inverse eigenvalues (blue ellipse) com-
pared to the untrained ones (red ellipse). Training makes the
physical system more conductive and lower dimensional.

are fully determined by the physical cost function E(~x; ~w)
which controls how the physical degrees of freedom ~x re-
spond to external inputs. In the absence of such inputs
the system equilibrates, locally minimizing the physical
cost function to settle into a native state ~x

0(~w) in which
forces (for mechanical networks) or currents (for flow or
electrical networks) are balanced ~r~xE(~x, ~w)|~w = 0, or,
in components, @E/@xa|~w = 0 for all a. Below we will
consider small perturbations around such native states;
that is, we discuss learning in the limit of linear response,
by assuming that the forces applied to the system as in-
puts are weak in the sense that they cause small physical
deformations. The learning approaches we discuss are

practical and e↵ective well beyond linearity [21]. How-
ever, in the linear regime we will show that learning is
dominated by characteristic network phenomenology in-
cluding reduction of the e↵ective dimension of responses,
softening of the system, and alignment of dynamics with
the learned task. Beyond linear response, other mecha-
nisms, such as multi-state learning [16, 46, 56], also be-
come relevant.
In linear response it su�ces to consider an expansion

of the physical cost function around the native state up
to the first non-vanishing, i.e., second, order:

E(~x, ~w) ⇡ E(~x0
, ~w) +

1

2
(~x� ~x

0)TH(~w)(~x� ~x
0) (1)

where the superscript T denotes the transpose, andH is a
(symmetric) physical Hessian matrix, the components of
which are Hab(~w) = @

2
E(~x, ~w)/@xa@xb|~x=~x0 . In the fol-

lowing we name this matrix the Hessian as a shorthand.
The first order term in the Taylor expansion vanishes,
since the native state ~x

0(~w) is a minimum of the phys-
ical cost function. The Hessian is a function of ~w both
explicitly, and implicitly through the dependence of ~x0

on the learning degrees of freedom ~w.
To simplify the language in the remainder of this pa-

per, we will use “force” to denote forces in the case of
a mechanical network or currents in the case of a flow
network.

A. Training physical responses at network nodes

Consider a generalized external input force ~F applied
to the physical degrees of freedom, namely tensile forces
in a mechanical network, or a set of currents in a flow
network, applied to specific nodes. This force could be
applied locally (at a subset of nodes) or globally, e.g.,
a “compression” applying forces to all the ~x toward a
certain point. These input forces will a↵ect the physical
cost function, prompting the system to equilibrate in a
new free state ~x

F which minimizes the free state physical
cost function:

E
F (~x, ~w) = E(~x, ~w)� ~F · ~x

@

@x
E

F (~x, ~w) = 0 =) @

@x
E(~x, ~w) = ~F

(2)

In the linearized approximation (1), this gives

~x
F � ~x

0 = H
�1 ~F (3)

where we used the fact that the Hessian matrix is sym-
metric. In other words, the system responds by shifting
the native state by the inverse Hessian applied to the
input force.
Thus, deformations around the native state with small

Hessian eigenvalues are “soft” – they exhibit a larger re-
sponse to applied forces. Note also that the entries of
the inverse Hessian depend globally on all the learning

3

FIG. 1. Learning modifies the physical network. a) Input
forces (black) are applied to the physical degrees of freedom
(green, e.g. node positions) of a physical network (e.g. me-
chanical spring network), whose interactions correspond to
learning degrees of freedom (blue, e.g. spring constants). b)
In the physical configuration space, this input force causes the
system to respond, equilibrating in a free state (red dot). To
train the system, a further ‘output force’ is applied, nudging
the system to a clamped state (green dot). The blue arrows
describe the inherent physical coordinate system, with direc-
tion corresponding to eigenmodes vab of the physical Hessian
Hab, and lengths correspond to the associated inverse eigen-
values ��1

a . c) A local learning rule is applied, modifying the
learning degrees of freedom. On top of improving the sys-
tem free state response, learning tends to rotate the Hessian
coordinate system such that the eigenmode corresponding to
the lower eigenvalues align with the free state response, and
decrease these eigenvalues. d) Training results in a physical
system whose lower eigenvalues are reduced, and eigenmodes
aligned with the trained task(s). The system responds con-
siderably more strongly to random forces, shown by the area
spanned by the trained inverse eigenvalues (blue ellipse) com-
pared to the untrained ones (red ellipse). Training makes the
physical system more conductive and lower dimensional.

are fully determined by the physical cost function E(~x; ~w)
which controls how the physical degrees of freedom ~x re-
spond to external inputs. In the absence of such inputs
the system equilibrates, locally minimizing the physical
cost function to settle into a native state ~x

0(~w) in which
forces (for mechanical networks) or currents (for flow or
electrical networks) are balanced ~r~xE(~x, ~w)|~w = 0, or,
in components, @E/@xa|~w = 0 for all a. Below we will
consider small perturbations around such native states;
that is, we discuss learning in the limit of linear response,
by assuming that the forces applied to the system as in-
puts are weak in the sense that they cause small physical
deformations. The learning approaches we discuss are

practical and e↵ective well beyond linearity [21]. How-
ever, in the linear regime we will show that learning is
dominated by characteristic network phenomenology in-
cluding reduction of the e↵ective dimension of responses,
softening of the system, and alignment of dynamics with
the learned task. Beyond linear response, other mecha-
nisms, such as multi-state learning [16, 46, 56], also be-
come relevant.
In linear response it su�ces to consider an expansion

of the physical cost function around the native state up
to the first non-vanishing, i.e., second, order:

E(~x, ~w) ⇡ E(~x0
, ~w) +

1

2
(~x� ~x

0)TH(~w)(~x� ~x
0) (1)

where the superscript T denotes the transpose, andH is a
(symmetric) physical Hessian matrix, the components of
which are Hab(~w) = @

2
E(~x, ~w)/@xa@xb|~x=~x0 . In the fol-

lowing we name this matrix the Hessian as a shorthand.
The first order term in the Taylor expansion vanishes,
since the native state ~x

0(~w) is a minimum of the phys-
ical cost function. The Hessian is a function of ~w both
explicitly, and implicitly through the dependence of ~x0

on the learning degrees of freedom ~w.
To simplify the language in the remainder of this pa-

per, we will use “force” to denote forces in the case of
a mechanical network or currents in the case of a flow
network.

A. Training physical responses at network nodes

Consider a generalized external input force ~F applied
to the physical degrees of freedom, namely tensile forces
in a mechanical network, or a set of currents in a flow
network, applied to specific nodes. This force could be
applied locally (at a subset of nodes) or globally, e.g.,
a “compression” applying forces to all the ~x toward a
certain point. These input forces will a↵ect the physical
cost function, prompting the system to equilibrate in a
new free state ~x

F which minimizes the free state physical
cost function:

E
F (~x, ~w) = E(~x, ~w)� ~F · ~x

@

@x
E

F (~x, ~w) = 0 =) @

@x
E(~x, ~w) = ~F

(2)

In the linearized approximation (1), this gives

~x
F � ~x

0 = H
�1 ~F (3)

where we used the fact that the Hessian matrix is sym-
metric. In other words, the system responds by shifting
the native state by the inverse Hessian applied to the
input force.
Thus, deformations around the native state with small

Hessian eigenvalues are “soft” – they exhibit a larger re-
sponse to applied forces. Note also that the entries of
the inverse Hessian depend globally on all the learning

Notice that and hence the “free state” depends non-locally on all of
the edge weights: the response of depends non-locally on the edges

H−1 ⃗xF

Inputs: Pick some input nodes. Apply inputs as forces at these nodes

Outputs: Pick some output nodes and measure their deviation

Example task: Allostery — push some set of nodes, get responses at others

A physical learning protocol

3

FIG. 1. Learning modifies the physical network. a) Input
forces (black) are applied to the physical degrees of freedom
(green, e.g. node positions) of a physical network (e.g. me-
chanical spring network), whose interactions correspond to
learning degrees of freedom (blue, e.g. spring constants). b)
In the physical configuration space, this input force causes the
system to respond, equilibrating in a free state (red dot). To
train the system, a further ‘output force’ is applied, nudging
the system to a clamped state (green dot). The blue arrows
describe the inherent physical coordinate system, with direc-
tion corresponding to eigenmodes vab of the physical Hessian
Hab, and lengths correspond to the associated inverse eigen-
values ��1

a . c) A local learning rule is applied, modifying the
learning degrees of freedom. On top of improving the sys-
tem free state response, learning tends to rotate the Hessian
coordinate system such that the eigenmode corresponding to
the lower eigenvalues align with the free state response, and
decrease these eigenvalues. d) Training results in a physical
system whose lower eigenvalues are reduced, and eigenmodes
aligned with the trained task(s). The system responds con-
siderably more strongly to random forces, shown by the area
spanned by the trained inverse eigenvalues (blue ellipse) com-
pared to the untrained ones (red ellipse). Training makes the
physical system more conductive and lower dimensional.

are fully determined by the physical cost function E(~x; ~w)
which controls how the physical degrees of freedom ~x re-
spond to external inputs. In the absence of such inputs
the system equilibrates, locally minimizing the physical
cost function to settle into a native state ~x

0(~w) in which
forces (for mechanical networks) or currents (for flow or
electrical networks) are balanced ~r~xE(~x, ~w)|~w = 0, or,
in components, @E/@xa|~w = 0 for all a. Below we will
consider small perturbations around such native states;
that is, we discuss learning in the limit of linear response,
by assuming that the forces applied to the system as in-
puts are weak in the sense that they cause small physical
deformations. The learning approaches we discuss are

practical and e↵ective well beyond linearity [21]. How-
ever, in the linear regime we will show that learning is
dominated by characteristic network phenomenology in-
cluding reduction of the e↵ective dimension of responses,
softening of the system, and alignment of dynamics with
the learned task. Beyond linear response, other mecha-
nisms, such as multi-state learning [16, 46, 56], also be-
come relevant.
In linear response it su�ces to consider an expansion

of the physical cost function around the native state up
to the first non-vanishing, i.e., second, order:

E(~x, ~w) ⇡ E(~x0
, ~w) +

1

2
(~x� ~x

0)TH(~w)(~x� ~x
0) (1)

where the superscript T denotes the transpose, andH is a
(symmetric) physical Hessian matrix, the components of
which are Hab(~w) = @

2
E(~x, ~w)/@xa@xb|~x=~x0 . In the fol-

lowing we name this matrix the Hessian as a shorthand.
The first order term in the Taylor expansion vanishes,
since the native state ~x

0(~w) is a minimum of the phys-
ical cost function. The Hessian is a function of ~w both
explicitly, and implicitly through the dependence of ~x0

on the learning degrees of freedom ~w.
To simplify the language in the remainder of this pa-

per, we will use “force” to denote forces in the case of
a mechanical network or currents in the case of a flow
network.

A. Training physical responses at network nodes

Consider a generalized external input force ~F applied
to the physical degrees of freedom, namely tensile forces
in a mechanical network, or a set of currents in a flow
network, applied to specific nodes. This force could be
applied locally (at a subset of nodes) or globally, e.g.,
a “compression” applying forces to all the ~x toward a
certain point. These input forces will a↵ect the physical
cost function, prompting the system to equilibrate in a
new free state ~x

F which minimizes the free state physical
cost function:

E
F (~x, ~w) = E(~x, ~w)� ~F · ~x

@

@x
E

F (~x, ~w) = 0 =) @

@x
E(~x, ~w) = ~F

(2)

In the linearized approximation (1), this gives

~x
F � ~x

0 = H
�1 ~F (3)

where we used the fact that the Hessian matrix is sym-
metric. In other words, the system responds by shifting
the native state by the inverse Hessian applied to the
input force.
Thus, deformations around the native state with small

Hessian eigenvalues are “soft” – they exhibit a larger re-
sponse to applied forces. Note also that the entries of
the inverse Hessian depend globally on all the learning

Tasks as constraints: c(⃗xF − ⃗x0) = 0

Cost (a sum over tasks):

4

parameters. So the change produced by an external force
on a given physical degree of freedom can depend non-
locally on the values of all the learning degrees of free-
dom, and not just on, say, the weights of edges connected
to the network node in question.

In order to proceed, we must define a task in terms
of desired outputs in response to the inputs, which we
can express in terms of physical constraints that must
be satisfied. The constraints can be local, applying to
a subset of nodes designated as output nodes, or global,
applying to all of the nodes. Because the response is
expressed in terms of the physical degrees of freedom,
the constraints can be defined by demanding that the
free state response ~xF �~x

0 satisfies a desired relationship
encoded in a functional c(~xF � ~x

0) = 0. For example, if
one desires ~x

F � ~x
0 to equal B at a given output node

o, then the functional is simply x
F
o � x

0
o � B. This can

be thought of as a single basic task. More complicated
tasks can be defined by adding functionals for many such
tasks. For example, a classification task may be posed
such that all members of each class (each set of inputs
in the class) prompt a response that satisfies a particular
constraint for that class.

Suppose we have multiple tasks, i.e., pairs of input
forces and output constraints: (~Fr, c

(r)(~xF
r �~x

0)) indexed
by r = 1 · · ·nT . Since we are studying the linear response
regime, we can linearize any constraint in terms of the
free state response as c

(r) ⇡ ~A
T
r (~x

F
r � ~x

0) � Br, with a
vector ~Ar and a scalar Br � 0 determining the desired
response. The weak input force regime dictates that, at
least prior to training, the system responds much more
weakly than desired, i.e. || ~AT

r (~x
F
r � ~x

0)|| ⌧ Br. This is
a sensible regime for untrained random systems, specif-
ically over-constrained flow and elastic networks, which
typically have a very weak coupling between putative in-
put and output sectors, specifically if they are physically
distant from each other.

We can quantify how well the system performs the
tasks, i.e., implements these response constraints, in
terms of a learning cost function C. For example, we
can use a Mean Squared Error (MSE) cost:

C({~xr}, ~x0(~w)) ⌘ 1

2
n
�1
T

X

r

[c(r)(~xr � ~x
0)]2 (4)

evaluated at the free state responses ~xr = ~x
F
r . For a

random, untrained physical system, the task has noth-
ing to do with the structure of the network, and so the
free state responses will be di↵usely and weakly spread
over the network. As a result free state does not move
much from the native state, and the cost function will be
dominated by Br. This gives C ⇡ 0.5n�1

T

P
r B

2
r which

will tend to be high. Learning is the process of modifying
the system, changing its learning degrees of freedom such
that the cost function is reduced. How can this be done?

Computational machine learning algorithms generally
minimize the learning cost function by performing gra-
dient descent on C. Typically, this means that global

information is required to determine local changes in the
network. By contrast, a physical learning system must
use local learning rules to achieve the same goal. We take
the approach of Contrastive Learning in its incarnation
as Equilibrium Propagation [20].
First consider training a system for a single task de-

fined by the target constraint c(~x� ~x
0) = 0. Suppose we

apply the input force ~F and the system equilibrates at
some free state ~x

F . To train the system we could nudge
it towards the desired output by applying an additional
weak output force

⌘ ~F
O = �⌘

@

@x
C|~x=~xF = ⌘ [~AT (~xF � ~x

0)�B] ~A, (5)

where ⌘ is a small parameter that we have explicitly sep-
arated out, and the last equation applies to a quadratic
cost function (Eq. 4) and linearized constraint. The
physical system responds to the nudge by settling into
a clamped state ~x

C satisfying

~x
C � ~x

F = ⌘H
�1 ~F

O
. (6)

The clamped state depends on the learning degrees of
freedom ~w explicitly through the Hessian and implicitly
through the additional dependencies in the free state ~xF .
We can describe this equivalently by saying that the sys-
tem minimizes a clamped physical cost function

E
C(~x, ~w) = E

F (~x, ~w) + ⌘C(~x, ~x0(~w)) (7)

Thus the clamped state is the free state, nudged slightly
by an extra output force related to a learning cost func-
tion that arises if the system does not satisfy the desired
constraints.
The contrastive learning approach compares the free

and clamped states to derive an approximation to the
gradient of the learning cost function that can be min-
imized more readily via local learning rules. Define the
contrastive function:

F ⌘ ⌘
�1[EC(~xC

, ~w)� E
F (~xF

, ~w)] (8)

Previous work has showed that the partial derivative
of the contrastive function with respect to the learning
degrees of freedom ~w approximates the gradient of the
learning cost function C in the limit ⌘ ! 0 [20]:

dC

d~w
= lim

⌘!0

@

@w
F (9)

On the right hand side we di↵erentiate only the explicit
~w dependencies in the contrastive function, and not the
implicit dependencies via the solutions for the free and
clamped states. We will also assume that the MSE cost
function C does not depend directly on ~w, as it is a com-
bination of physical constraints. The only explicit de-
pendence of the physical cost function on the learning
degrees of freedom then appears in the physical Hessian
H = H(~w).

Nudge the free state by an additional output
force: . This gives a “clamped state”

 with energy

⃗F O = ∇ ⃗xC
⃗xC − ⃗xF = ηH−1 ⃗F O EC = EF + η C

Contrastive Learning (Scellier & Bengio):

Contrastive function:
ℱ = η−1 (EC(⃗xC, ⃗w) − EF(⃗xF, ⃗w))

Learning Rule: δ ⃗w = − α∇ ⃗w ℱ This local rule adjusts edges according to
their own contribution to the energy.

7

FIG. 2. Training physical networks. a) We train several types
of physical networks in the linear response regime, in partic-
ular fully connected linear networks (where physical degrees
of freedom are node values), Flow networks and mechanical
spring networks (where physical responses are naturally rep-
resented as di↵erence over edges). b) Training these systems
on single tasks, we generally find that local learning rules
succeed, reducing the mean squared error by many orders of
magnitude (geometric mean over 50 realizations of networks
trained with single tasks).

H̃(~w, ~x) = @
2
E(~x, ~w)/@xa@xb|~w. Evaluating H̃ at the

native state ~x = ~x
0(~w), which minimizes the physical

cost function, gives the Hessian H(~w) in (1).

In terms of H̃ the change in the Hessian can now be
written as

�H = � ~w · dH̃
d~w

�����
~x=~x0

=
X

i

�wi

"
@H̃

@wi
+

X

a

@H̃

@xa

@x
0
a

@wi

#

~x=~x0

(18)
In the right hand expression the sum on i in the second
term gives rwx

0
a · � ~w, which is the change in the native

state variable x
0
a driven by learning.

For the linear systems of interest, with Hessians given
by Eq. 12, H̃ is by construction independent of ~x, and
~x
0 is independent of ~w. In these cases the second term

in (19) vanishes and can be dropped. Such physical sys-
tems are in fact common: electrical resistor networks, as
in Ref. [29] always remain in the linear regime. Flow net-
works remain linear in the low Reynolds number regime,
while initially unstrained spring networks are also lin-
ear over a reasonable range of strain when learning is
performed on spring sti↵nesses. In such systems the na-
tive state ~x

0 does not depend on the learning degrees of
freedom and stays fixed throughout the learning process.
With this approximation we can compute the change in
each component of the physical Hessian (see Appendix B
for details).

�Hab ⇡ �↵B

X

i,cd

[
@h

i
ab

@wi
][v

@h
i

@wi
v
T]cd

fc

�c

ad

�d
, (19)

where Hab =
P

c v
T
ac�cvcb is a diagonalization of the

Hessian, with �a, vab the eigenvalues and eigenmodes of
the physical Hessian Hab. Here fa =

P
b vabFb, aa =P

b vabAb are projections of the input and output vec-

tors on each of the eigenmodes, and fc
�c
,
ad
�d

are these same
projections, where each component is scaled by the asso-
ciated inverse eigenvalue.
We see that regardless of the choice of model for the

physical Hessian Hab, the change in the Hessian due
to learning is given by a sum over symmetric matrices,
which yields a symmetric modification, as required. How-
ever, note that this learning rule does not guarantee that
the Hessian remains positive definite. Violation of posi-
tive semi-definiteness in this learning rule is a signature
of the failure of the linear approximation. For example,
if the learning rule tries to push a parameter into an un-
physical regime, the change simply will not happen. We
are focusing on learning in the linear regime where these
sorts of processes do not happen.
We wrote above the modification of the Hessian given a

single task, i.e., input force - output constraint pair. Each
additional task that the network is trained for contributes
such a modification, and therefore the total change in the
Hessian due to a learning step consisting of r = 1 · · ·nT

tasks is

�Hab =
X

r

�H
(r)
ab (20)

Now that we know how learning modifies the physical
Hessian, we can track its evolution and predict the im-
portant features of the system in the neighborhood of the
native state. To do so, we first discuss how the eigenspace
of the Hessian changes in response to learning. Using first
order perturbation theory, we can compute the changes
in the eigenvalues �n and eigenmodes ~vn of the Hessian
(n = 1 · · ·N) due to each task. To do this, we need to
compute sums of the form

Mab
mn ⌘

X

i,cdef

vac[
@h

i
cd

@wi
]vTdb · vme[

@h
i
ef

@wi
]vTfn (21)

In Appendix B we show how our choice of the Hessian
model (Eq. 12), the fact that there are many interactions,
coupled with some assumptions of their form, results in
simplification of the sum in Eq. 21. We can approximate
the sums Mab

mn, such that are only finite when indices
are chosen identical in pairs, i.e. Mmn

mn ⌘ Xmn > 0,
Mnn

mm ⌘ Ymn � 0, which are all non-negative factors.
With this in mind, we can estimate the change in the Hes-
sian eigenvalues and eigenvectors using first order pertur-

The learning algorithm works

Task: Allostery

1. Start with a random network and choose

and input and output node or nodes
randomly,

2. Pick an input force of fixed magnitude
and random direction

3. Define the allosteric task as requiring a
response of a specificed amplitude at the
output node

4. Train!

Similar results for other tasks like input classification

The physical effects of training 7

FIG. 2. Training physical networks. a) We train several types
of physical networks in the linear response regime, in partic-
ular fully connected linear networks (where physical degrees
of freedom are node values), Flow networks and mechanical
spring networks (where physical responses are naturally rep-
resented as di↵erence over edges). b) Training these systems
on single tasks, we generally find that local learning rules
succeed, reducing the mean squared error by many orders of
magnitude (geometric mean over 50 realizations of networks
trained with single tasks).

H̃(~w, ~x) = @
2
E(~x, ~w)/@xa@xb|~w. Evaluating H̃ at the

native state ~x = ~x
0(~w), which minimizes the physical

cost function, gives the Hessian H(~w) in (1).

In terms of H̃ the change in the Hessian can now be
written as

�H = � ~w · dH̃
d~w

�����
~x=~x0

=
X

i

�wi

"
@H̃

@wi
+

X

a

@H̃

@xa

@x
0
a

@wi

#

~x=~x0

(18)
In the right hand expression the sum on i in the second
term gives rwx

0
a · � ~w, which is the change in the native

state variable x
0
a driven by learning.

For the linear systems of interest, with Hessians given
by Eq. 12, H̃ is by construction independent of ~x, and
~x
0 is independent of ~w. In these cases the second term

in (19) vanishes and can be dropped. Such physical sys-
tems are in fact common: electrical resistor networks, as
in Ref. [29] always remain in the linear regime. Flow net-
works remain linear in the low Reynolds number regime,
while initially unstrained spring networks are also lin-
ear over a reasonable range of strain when learning is
performed on spring sti↵nesses. In such systems the na-
tive state ~x

0 does not depend on the learning degrees of
freedom and stays fixed throughout the learning process.
With this approximation we can compute the change in
each component of the physical Hessian (see Appendix B
for details).

�Hab ⇡ �↵B

X

i,cd

[
@h

i
ab

@wi
][v

@h
i

@wi
v
T]cd

fc

�c

ad

�d
, (19)

where Hab =
P

c v
T
ac�cvcb is a diagonalization of the

Hessian, with �a, vab the eigenvalues and eigenmodes of
the physical Hessian Hab. Here fa =

P
b vabFb, aa =P

b vabAb are projections of the input and output vec-

tors on each of the eigenmodes, and fc
�c
,
ad
�d

are these same
projections, where each component is scaled by the asso-
ciated inverse eigenvalue.
We see that regardless of the choice of model for the

physical Hessian Hab, the change in the Hessian due
to learning is given by a sum over symmetric matrices,
which yields a symmetric modification, as required. How-
ever, note that this learning rule does not guarantee that
the Hessian remains positive definite. Violation of posi-
tive semi-definiteness in this learning rule is a signature
of the failure of the linear approximation. For example,
if the learning rule tries to push a parameter into an un-
physical regime, the change simply will not happen. We
are focusing on learning in the linear regime where these
sorts of processes do not happen.
We wrote above the modification of the Hessian given a

single task, i.e., input force - output constraint pair. Each
additional task that the network is trained for contributes
such a modification, and therefore the total change in the
Hessian due to a learning step consisting of r = 1 · · ·nT

tasks is

�Hab =
X

r

�H
(r)
ab (20)

Now that we know how learning modifies the physical
Hessian, we can track its evolution and predict the im-
portant features of the system in the neighborhood of the
native state. To do so, we first discuss how the eigenspace
of the Hessian changes in response to learning. Using first
order perturbation theory, we can compute the changes
in the eigenvalues �n and eigenmodes ~vn of the Hessian
(n = 1 · · ·N) due to each task. To do this, we need to
compute sums of the form

Mab
mn ⌘

X

i,cdef

vac[
@h

i
cd

@wi
]vTdb · vme[

@h
i
ef

@wi
]vTfn (21)

In Appendix B we show how our choice of the Hessian
model (Eq. 12), the fact that there are many interactions,
coupled with some assumptions of their form, results in
simplification of the sum in Eq. 21. We can approximate
the sums Mab

mn, such that are only finite when indices
are chosen identical in pairs, i.e. Mmn

mn ⌘ Xmn > 0,
Mnn

mm ⌘ Ymn � 0, which are all non-negative factors.
With this in mind, we can estimate the change in the Hes-
sian eigenvalues and eigenvectors using first order pertur-

3

FIG. 1. Learning modifies the physical network. a) Input
forces (black) are applied to the physical degrees of freedom
(green, e.g. node positions) of a physical network (e.g. me-
chanical spring network), whose interactions correspond to
learning degrees of freedom (blue, e.g. spring constants). b)
In the physical configuration space, this input force causes the
system to respond, equilibrating in a free state (red dot). To
train the system, a further ‘output force’ is applied, nudging
the system to a clamped state (green dot). The blue arrows
describe the inherent physical coordinate system, with direc-
tion corresponding to eigenmodes vab of the physical Hessian
Hab, and lengths correspond to the associated inverse eigen-
values ��1

a . c) A local learning rule is applied, modifying the
learning degrees of freedom. On top of improving the sys-
tem free state response, learning tends to rotate the Hessian
coordinate system such that the eigenmode corresponding to
the lower eigenvalues align with the free state response, and
decrease these eigenvalues. d) Training results in a physical
system whose lower eigenvalues are reduced, and eigenmodes
aligned with the trained task(s). The system responds con-
siderably more strongly to random forces, shown by the area
spanned by the trained inverse eigenvalues (blue ellipse) com-
pared to the untrained ones (red ellipse). Training makes the
physical system more conductive and lower dimensional.

are fully determined by the physical cost function E(~x; ~w)
which controls how the physical degrees of freedom ~x re-
spond to external inputs. In the absence of such inputs
the system equilibrates, locally minimizing the physical
cost function to settle into a native state ~x

0(~w) in which
forces (for mechanical networks) or currents (for flow or
electrical networks) are balanced ~r~xE(~x, ~w)|~w = 0, or,
in components, @E/@xa|~w = 0 for all a. Below we will
consider small perturbations around such native states;
that is, we discuss learning in the limit of linear response,
by assuming that the forces applied to the system as in-
puts are weak in the sense that they cause small physical
deformations. The learning approaches we discuss are

practical and e↵ective well beyond linearity [21]. How-
ever, in the linear regime we will show that learning is
dominated by characteristic network phenomenology in-
cluding reduction of the e↵ective dimension of responses,
softening of the system, and alignment of dynamics with
the learned task. Beyond linear response, other mecha-
nisms, such as multi-state learning [16, 46, 56], also be-
come relevant.
In linear response it su�ces to consider an expansion

of the physical cost function around the native state up
to the first non-vanishing, i.e., second, order:

E(~x, ~w) ⇡ E(~x0
, ~w) +

1

2
(~x� ~x

0)TH(~w)(~x� ~x
0) (1)

where the superscript T denotes the transpose, andH is a
(symmetric) physical Hessian matrix, the components of
which are Hab(~w) = @

2
E(~x, ~w)/@xa@xb|~x=~x0 . In the fol-

lowing we name this matrix the Hessian as a shorthand.
The first order term in the Taylor expansion vanishes,
since the native state ~x

0(~w) is a minimum of the phys-
ical cost function. The Hessian is a function of ~w both
explicitly, and implicitly through the dependence of ~x0

on the learning degrees of freedom ~w.
To simplify the language in the remainder of this pa-

per, we will use “force” to denote forces in the case of
a mechanical network or currents in the case of a flow
network.

A. Training physical responses at network nodes

Consider a generalized external input force ~F applied
to the physical degrees of freedom, namely tensile forces
in a mechanical network, or a set of currents in a flow
network, applied to specific nodes. This force could be
applied locally (at a subset of nodes) or globally, e.g.,
a “compression” applying forces to all the ~x toward a
certain point. These input forces will a↵ect the physical
cost function, prompting the system to equilibrate in a
new free state ~x

F which minimizes the free state physical
cost function:

E
F (~x, ~w) = E(~x, ~w)� ~F · ~x

@

@x
E

F (~x, ~w) = 0 =) @

@x
E(~x, ~w) = ~F

(2)

In the linearized approximation (1), this gives

~x
F � ~x

0 = H
�1 ~F (3)

where we used the fact that the Hessian matrix is sym-
metric. In other words, the system responds by shifting
the native state by the inverse Hessian applied to the
input force.
Thus, deformations around the native state with small

Hessian eigenvalues are “soft” – they exhibit a larger re-
sponse to applied forces. Note also that the entries of
the inverse Hessian depend globally on all the learning

15

trained by minimizing a cross entropy cost function that
is more appropriate for discrete classification [24]. In
essence, the modified learning rule is the same as Eq. 10
for specimens that are not classified correctly, while the
output force vanishes for specimens that are classified
correctly.

The results are shown in Fig. 7c (averaged over 10 re-
alizations of networks and choices of training sets). As
before, learning generally succeeds, significantly reducing
the cross entropy error for both the training set (full line)
and test set (dashed line). In terms of classification accu-
racy, the trained networks reach 100% training accuracy
and 95% test accuracy. More importantly, the e↵ects of
learning on the physical network itself are again similar
to the previous cases. The lowest Hessian eigenvalues
are significantly lowered by learning, reducing the phys-
ical dimension and increasing the e↵ective conductance
of the system. We conclude that, in the linear response
regime, the e↵ects of learning on physical systems are
generic and do not depend on the desired function.

Appendix B: Eigensystem dynamics for learning in
general linear physical networks

In this section we derive in more detail the main re-
sults for learning in linear physical networks. We show
that when these networks learn to perform tasks char-
acterized by weak input forces (compared to the desired
output and initial curvature of the energy function), cer-
tain eigenvalues of the physical Hessian are decreased and
associated eigenmodes align with the learned task. As-
sume a linear physical system whose energy is given by
Eq. 1. We also assume for convenience that the native
state is at the origin ~x

0 = 0. To discuss a generic linear
system, we consider a family of possible physical Hessian
at the native state, given by

Hab =
1

2

X

i

�i(wi)[LaiRib +R
T
aiL

T
ib] ⌘

X

i

H
i
ab.

(B1)
This Hessian can be understood as follows. There

exists a set of learning degrees of freedom wi, each of
which is potentially subject to a non-linear transforma-
tion �i(wi). These learning degrees of freedom are trans-
ported into the components of the physical Hessian Hab

by means of a left matrix Lai and a right matrix Rib,
which determine how the di↵erent physical degrees of
freedom xa interact through the learning parameters. For
this to be a sensible physical Hessian, note that we must
require that it is symmetric and positive definite. The
symmetry requirement is always satisfied by the sum of
the two terms in Eq. B1, but one should be more care-
ful about the Hessian being positive definite (with only
positive eigenvalues). Also note that the matrices L,R

describe the ‘geometry’ of the network and are fixed dur-
ing learning; only the learning degrees of freedom wi are

modified. The specific physical networks discussed in the
main text are given by special choices for the L,R ma-
trices and a linear relation �i(wi) = wi.
For the flow and mechanical systems described in the

main text, the left and right matrices are the same
R = L

T = �, equal to the incidence matrix (Eq. 16).
That is not the case for the node network (Eq. 13). We
chose a smart representation of the learning degrees of
freedom in a square matrix, with which the left and right
matrices appear the same, Hab(wab) =

1
2

P
ij [�aiwij�jb+

�biwij�ja], a choice which greatly simplifies calculations.
However, if we had represented the learning degrees of
freedom as a vector wi, the Hessian for the node network
would have di↵erent left and right matrices, correspond-
ing to the way in which every element of the vector wi

should be placed in the correct component of Hab.
We previously discussed how such a network can learn

a task in the context of weak input forces. For a given
linear constraint the network must satisfy, a learning step
is performed by clamping with a particular output force
(Eq. 34)

~F
O = �(~A ~A

T)H�1 ~F +B ~A ⇡ B ~A, (B2)

where we assumed the input force ~F is weak, or con-
versely that the physical Hessian H is initially sti↵ (with
low inverse eigenvalues) compared to the desired output
scale given by B > 0. As discussed in the main text,
this is a typical case for training realistic physical net-
works where the input and output sectors are generally
not correlated. We make the weak input assumption so
that the output force remains essentially fixed through-
out training (see explanation in main text). We now
use the inherent coordinate system of the Hessian, spec-
ified by a matrix v with rows that are eigenvectors so
that H = v

T⇤v to rotate the input and output force
vectors into these natural coordinates, fa ⌘ vabFb and
f
O
a ⌘ vabF

O
b ⇡ BvabA

O
b ⌘ Baa.

Our derivation of the physical learning dynamics in
Eq. 11 is valid for any HessianH, so we can write (setting
the learning rate ↵ = 1)

�wi ⇡ �~F
T
H

�1 @H

@wi
H

�1 ~F
O

⇡ �B ~f
T⇤�1

v
@H

@wi
v
T⇤�1

~a

= �B

2
~f
T⇤�1

v[�0
i[LR+R

T
L
T]i]vT⇤�1

~a

⌘ �B

X

cd

fc

�c
M

i
cd
ad

�d

(B3)

where we defined a set of square symmetric matrices,
M

i
ab ⌘=

P
cd vac

@Hcd
@wi

v
T
db, one for each learning degree of

freedom.
The change in each Hessian component Hab is given

by Eq. 19, where we assume, as before, that the change
in the native state ~x0 due to learning is small. Therefore

Assume weak input forces and linearize the
output constraints: c = ⃗A (⃗xF − ⃗x0) − B

One step of our training protocol then gives the edge weight changes:

5

Using (2) and (7) for E
F and E

C in F , the Taylor
expansion of the physical cost function in (1), and the
linearized approximations for x

F and x
C in (3) and (6)

gives

@

@w
F = ⌘

�1 @

@w
[EC(~xC ; ~w)� E

F (~xF ; ~w)]

⇡ ~F
T
H

�1(
@

@w
H)H�1 ~F

O ⇡

⇡ B ~F
T
H

�1(
@

@w
H)H�1 ~A

(10)

where we kept only the term that survives the ⌘ ! 0
limit in the second line, and used the fact that H and
H

�1 are symmetric matrices. Note that the approxima-
tion in the second line, that the output force is approx-
imately constant in each learning step, is valid as long
as the free state response remains weak (and C is rel-
atively high). This will be true in the early stages of
training because the network structure is not adapted to
the task, but at the end of training this approximation
fails because the network will respond strongly in the de-
sired manner. But the output force also approaches zero
in this limit, and so learning concludes successfully. In
other words, the approximation above describes the crit-
ical stages of learning, and when it fails the network has
already learned the task.

Learning now proceeds by following this derivative of
the contrastive function with a learning rate ↵

� ~w = �↵
@

@w
F . (11)

This learning rule has two key properties. First, learning
is local. Every learning degree of freedom is modified
according to the local di↵erence between the free and
clamped values of the physical cost, spatially localized at
that edge of the network [20, 21]. Second, the rule for
modifying ~w is proportional to the alignment of the input
force ~F and the desired response ~A in an inner product
determined by the symmetric matrix H

�1r~wHH
�1. We

will see later how this property causes a realignment of
the inherent physical coordinate system.

Next, we must choose a model for the physical Hessian
and its dependence on the learning degrees of freedom.
The general form of the Hessian we consider is

Hab(~w) =
1

2

X

i

[Lai�i(wi)Rib +R
T
ai�i(wi)L

T
ib] ⌘

X

i

h
i
ab

�wi ⇡ �↵B�
0
i

2

X

ab

(H�1 ~F)Ta [LaiRib +R
T
aiL

T
ib](H

�1 ~A)b ,

(12)
where Lai, Ria are left and right matrices selecting the
physical degrees of freedom that participate in interac-
tion i, and �i(wi) a (possibly nonlinear) edge-wise func-
tion relating a ‘bare’ learning degree of freedom wi with
the physical Hessian. �

0
i is the partial derivative of the

transformation @w�i|wi , particular to that interaction i.

This form of the Hessian is inspired by linear physical
system of interest like Ising models, as well as flow and
mechanical networks, where it is possible for distinct lin-
ear combinations of physical degrees of freedom to gen-
erate interactions. The nonlinearity can, for example,
represent a reparameterization of the conductance in a
flow network in terms of resistance. The second line in
Eq. 12 is derived in detail in Appendix B.
Note that the physical Hessian must be real-valued,

symmetric and positive definite. The symmetry is guar-
anteed by definition and real values are also easily guar-
anteed, but one should be careful that the choices of ma-
trices L,R and the functions �i(wi) result in positive
definiteness. This form of the Hessian supports a gen-
eral construction of linear physical models, with possible
nonlinear transformation of the learning degrees of free-
dom. In particular, Eq. 12 supports physical networks of
interest, as we discuss next.
To illustrate, consider a model where ~x are physical

variables at N nodes, while the Nw = 1
2N(N � 1) learn-

ing parameters are at edges linking each pair of nodes.
In this fully connected case, the learning parameters are
naturally represented as a matrix W with entries Wab,
where a, b = 1 · · ·N (Fig. 2a). The energy (physical cost)
function for such a node network is a function of the node
variables:

E(~x;W) =
1

2
~xH(W)~x. (13)

The Hessian of this energy is Hab(Wab) =
1
2

P
ij [�aiwij�jb + �biwij�ja] = 1

2 [Wab + W
T
ab], and

is thus linear in the learning degrees of freedom. Learn-
ing is the process of modifying the edge weights to
amplify desired responses around rest, while suppressing
unwanted responses to inputs. For this model the
learning rule for a given edge weight Wab is

�Wab ⇡ �↵B

2
(W�1 ~F)a(W

�1 ~A)b + transpose (14)

Here, we used the fact that the a, b and b, a entries of
the matrix @WabW equal 1, while all the other entries
are 0. So in the second line we are multiplying the a

th

component of the vector W�1 ~F by the b
th component of

W
�1 ~A and adding the transpose.
To show that the physically realizable learning rule

Eq. 14 converges, we first tested it on a relatively easy
task. We initialized networks with N = 20 nodes with
energy functions of the form (13) and weights Wij drawn
randomly from a standard Gaussian N (0, 1). To ensure a
positive definite Hessian, we explicitly symmetrized the
weights and added a term proportional to the identity
�ab, Hab = 1

2 (Wab + W
T
ab) + 3

p
2N�ab. The resulting

random Hessians initially have eigenvalues in the range
⇠ (10, 27). We then defined a random learning task by
picking an input force with each component drawn from
a standard Gaussian, and a linear output constraint c(~x�
~x
0) = ~A

T (~x � ~x
0) � B with the entries of ~A and B also

drawn from standard Gaussians (see Appendix A). The

The physical Hessian depends explicitly and implicitly on .
So, defining :

H(⃗w , ⃗x0(⃗w)) ⃗w
H̃ab = ∂2E(⃗x, ⃗w)/∂xa∂xb

7

FIG. 2. Training physical networks. a) We train several types
of physical networks in the linear response regime, in partic-
ular fully connected linear networks (where physical degrees
of freedom are node values), Flow networks and mechanical
spring networks (where physical responses are naturally rep-
resented as di↵erence over edges). b) Training these systems
on single tasks, we generally find that local learning rules
succeed, reducing the mean squared error by many orders of
magnitude (geometric mean over 50 realizations of networks
trained with single tasks).

H̃(~w, ~x) = @
2
E(~x, ~w)/@xa@xb|~w. Evaluating H̃ at the

native state ~x = ~x
0(~w), which minimizes the physical

cost function, gives the Hessian H(~w) in (1).

In terms of H̃ the change in the Hessian can now be
written as

�H = � ~w · dH̃
d~w

�����
~x=~x0

=
X

i

�wi

"
@H̃

@wi
+

X

a

@H̃

@xa

@x
0
a

@wi

#

~x=~x0

(18)
In the right hand expression the sum on i in the second
term gives rwx

0
a · � ~w, which is the change in the native

state variable x
0
a driven by learning.

For the linear systems of interest, with Hessians given
by Eq. 12, H̃ is by construction independent of ~x, and
~x
0 is independent of ~w. In these cases the second term

in (19) vanishes and can be dropped. Such physical sys-
tems are in fact common: electrical resistor networks, as
in Ref. [29] always remain in the linear regime. Flow net-
works remain linear in the low Reynolds number regime,
while initially unstrained spring networks are also lin-
ear over a reasonable range of strain when learning is
performed on spring sti↵nesses. In such systems the na-
tive state ~x

0 does not depend on the learning degrees of
freedom and stays fixed throughout the learning process.
With this approximation we can compute the change in
each component of the physical Hessian (see Appendix B
for details).

�Hab ⇡ �↵B

X

i,cd

[
@h

i
ab

@wi
][v

@h
i

@wi
v
T]cd

fc

�c

ad

�d
, (19)

where Hab =
P

c v
T
ac�cvcb is a diagonalization of the

Hessian, with �a, vab the eigenvalues and eigenmodes of
the physical Hessian Hab. Here fa =

P
b vabFb, aa =P

b vabAb are projections of the input and output vec-

tors on each of the eigenmodes, and fc
�c
,
ad
�d

are these same
projections, where each component is scaled by the asso-
ciated inverse eigenvalue.
We see that regardless of the choice of model for the

physical Hessian Hab, the change in the Hessian due
to learning is given by a sum over symmetric matrices,
which yields a symmetric modification, as required. How-
ever, note that this learning rule does not guarantee that
the Hessian remains positive definite. Violation of posi-
tive semi-definiteness in this learning rule is a signature
of the failure of the linear approximation. For example,
if the learning rule tries to push a parameter into an un-
physical regime, the change simply will not happen. We
are focusing on learning in the linear regime where these
sorts of processes do not happen.
We wrote above the modification of the Hessian given a

single task, i.e., input force - output constraint pair. Each
additional task that the network is trained for contributes
such a modification, and therefore the total change in the
Hessian due to a learning step consisting of r = 1 · · ·nT

tasks is

�Hab =
X

r

�H
(r)
ab (20)

Now that we know how learning modifies the physical
Hessian, we can track its evolution and predict the im-
portant features of the system in the neighborhood of the
native state. To do so, we first discuss how the eigenspace
of the Hessian changes in response to learning. Using first
order perturbation theory, we can compute the changes
in the eigenvalues �n and eigenmodes ~vn of the Hessian
(n = 1 · · ·N) due to each task. To do this, we need to
compute sums of the form

Mab
mn ⌘

X

i,cdef

vac[
@h

i
cd

@wi
]vTdb · vme[

@h
i
ef

@wi
]vTfn (21)

In Appendix B we show how our choice of the Hessian
model (Eq. 12), the fact that there are many interactions,
coupled with some assumptions of their form, results in
simplification of the sum in Eq. 21. We can approximate
the sums Mab

mn, such that are only finite when indices
are chosen identical in pairs, i.e. Mmn

mn ⌘ Xmn > 0,
Mnn

mm ⌘ Ymn � 0, which are all non-negative factors.
With this in mind, we can estimate the change in the Hes-
sian eigenvalues and eigenvectors using first order pertur-

Use: chain rules, randomness of initial network, weak forces

Result

1. Let and be eigenvectors and eignvalues of the Hessian at any step

2. Let and be projections of the input force and the

(linearized) output constraint vector onto the eigenvectors

3. Use (perturbation theory

⃗vb λb
fb = ⃗F ⋅ ⃗vb ab = ⃗A ⋅ ⃗vb

Linearized task: c = ⃗A (⃗xF − ⃗x0) − B

Change in Eigenvalues: δλn ≈ − αB∑
m

Ynm
fmam

λ2

Change in Eigenvectors: δ ⃗vn ≈ αB ∑
m≠n

Xmn (fman + fnam)
λmλn (λm − λn)

⃗vm

X and Y are tensors that
depend on the L and R
matrices defining the
structure of the network

15

trained by minimizing a cross entropy cost function that
is more appropriate for discrete classification [24]. In
essence, the modified learning rule is the same as Eq. 10
for specimens that are not classified correctly, while the
output force vanishes for specimens that are classified
correctly.

The results are shown in Fig. 7c (averaged over 10 re-
alizations of networks and choices of training sets). As
before, learning generally succeeds, significantly reducing
the cross entropy error for both the training set (full line)
and test set (dashed line). In terms of classification accu-
racy, the trained networks reach 100% training accuracy
and 95% test accuracy. More importantly, the e↵ects of
learning on the physical network itself are again similar
to the previous cases. The lowest Hessian eigenvalues
are significantly lowered by learning, reducing the phys-
ical dimension and increasing the e↵ective conductance
of the system. We conclude that, in the linear response
regime, the e↵ects of learning on physical systems are
generic and do not depend on the desired function.

Appendix B: Eigensystem dynamics for learning in
general linear physical networks

In this section we derive in more detail the main re-
sults for learning in linear physical networks. We show
that when these networks learn to perform tasks char-
acterized by weak input forces (compared to the desired
output and initial curvature of the energy function), cer-
tain eigenvalues of the physical Hessian are decreased and
associated eigenmodes align with the learned task. As-
sume a linear physical system whose energy is given by
Eq. 1. We also assume for convenience that the native
state is at the origin ~x

0 = 0. To discuss a generic linear
system, we consider a family of possible physical Hessian
at the native state, given by

Hab =
1

2

X

i

�i(wi)[LaiRib +R
T
aiL

T
ib] ⌘

X

i

H
i
ab.

(B1)
This Hessian can be understood as follows. There

exists a set of learning degrees of freedom wi, each of
which is potentially subject to a non-linear transforma-
tion �i(wi). These learning degrees of freedom are trans-
ported into the components of the physical Hessian Hab

by means of a left matrix Lai and a right matrix Rib,
which determine how the di↵erent physical degrees of
freedom xa interact through the learning parameters. For
this to be a sensible physical Hessian, note that we must
require that it is symmetric and positive definite. The
symmetry requirement is always satisfied by the sum of
the two terms in Eq. B1, but one should be more care-
ful about the Hessian being positive definite (with only
positive eigenvalues). Also note that the matrices L,R

describe the ‘geometry’ of the network and are fixed dur-
ing learning; only the learning degrees of freedom wi are

modified. The specific physical networks discussed in the
main text are given by special choices for the L,R ma-
trices and a linear relation �i(wi) = wi.
For the flow and mechanical systems described in the

main text, the left and right matrices are the same
R = L

T = �, equal to the incidence matrix (Eq. 16).
That is not the case for the node network (Eq. 13). We
chose a smart representation of the learning degrees of
freedom in a square matrix, with which the left and right
matrices appear the same, Hab(wab) =

1
2

P
ij [�aiwij�jb+

�biwij�ja], a choice which greatly simplifies calculations.
However, if we had represented the learning degrees of
freedom as a vector wi, the Hessian for the node network
would have di↵erent left and right matrices, correspond-
ing to the way in which every element of the vector wi

should be placed in the correct component of Hab.
We previously discussed how such a network can learn

a task in the context of weak input forces. For a given
linear constraint the network must satisfy, a learning step
is performed by clamping with a particular output force
(Eq. 34)

~F
O = �(~A ~A

T)H�1 ~F +B ~A ⇡ B ~A, (B2)

where we assumed the input force ~F is weak, or con-
versely that the physical Hessian H is initially sti↵ (with
low inverse eigenvalues) compared to the desired output
scale given by B > 0. As discussed in the main text,
this is a typical case for training realistic physical net-
works where the input and output sectors are generally
not correlated. We make the weak input assumption so
that the output force remains essentially fixed through-
out training (see explanation in main text). We now
use the inherent coordinate system of the Hessian, spec-
ified by a matrix v with rows that are eigenvectors so
that H = v

T⇤v to rotate the input and output force
vectors into these natural coordinates, fa ⌘ vabFb and
f
O
a ⌘ vabF

O
b ⇡ BvabA

O
b ⌘ Baa.

Our derivation of the physical learning dynamics in
Eq. 11 is valid for any HessianH, so we can write (setting
the learning rate ↵ = 1)

�wi ⇡ �~F
T
H

�1 @H

@wi
H

�1 ~F
O

⇡ �B ~f
T⇤�1

v
@H

@wi
v
T⇤�1

~a

= �B

2
~f
T⇤�1

v[�0
i[LR+R

T
L
T]i]vT⇤�1

~a

⌘ �B

X

cd

fc

�c
M

i
cd
ad

�d

(B3)

where we defined a set of square symmetric matrices,
M

i
ab ⌘=

P
cd vac

@Hcd
@wi

v
T
db, one for each learning degree of

freedom.
The change in each Hessian component Hab is given

by Eq. 19, where we assume, as before, that the change
in the native state ~x0 due to learning is small. Therefore

The changes in the eigenspace are larger for smaller eigenvalues, and larger
for eigenvalues aligned with the input forces and the output constraints.

The emergence of low eigenmodes aligned with the task 9

FIG. 3. Hessian changes during learning. a) Hessian inverse
eigenvalues change during training of fully connected linear
networks (N = 20) for a single task. The top inverse eigen-
value tends to significantly increase, showing that learning
creates a soft mode. b) The lowest (blue) eigenmode of the
Hessian significantly aligns with the input force force and out-
put vector defined by the task. (c-f) Similar results are found
for flow and mechanical networks (N = 40), except that the
higher eigenmodes do not align with the task. Results aver-
aged over 150 realization of networks and tasks.

tween nodes is more complicated than in the previous
case. However, the results are still simplified because the
left and right matrices are identical:

��
�1
n ⇡ 4↵B

�2
n

Ne

N2
[
2fnan
�2
n

+
X

m 6=n

fmam

�2
m

]

�~vn ⇡ 4↵B
Ne

N2

X

m 6=n

fman + fnam

�m�n(�m � �n)
�~vm

�⇢n ⇡ 4↵B
Ne

N2

X

m 6=n

(fman + fnam)2

�m�n(�m � �n)

(27)

where Ne is the total number of edges (resistors or
springs) in the network. The eigenvector and alignment
dynamics behave similarly to the previous case, with the
alignment of the lower modes increasing during learning.
The eigenvalue dynamics are slightly di↵erent; a second
term appears in the eigenvalue dynamics which is shared
for all eigenvalues. This term tends to decrease all eigen-
values by the same amount if the eigenvectors (specif-
ically the lower ones) tend to align with the task, and
increase all of them otherwise. We therefore expect that
in this case, contrary to the previous one, the alignment
of the lower eigenvectors will cause all the eigenvalues to
be decreased during learning by similar amounts. How-
ever, as in Eq. 24, the change in inverse eigenvalues is
most pronounced in for the lowest modes that align with
the task.

We verify these considerations for flow and mechanical
networks with N = 40 nodes in Fig. 3c-f. The bottom

eigenvalue is e↵ectively reduced by learning and the asso-
ciated eigenmode aligns significantly with the input force
(results averaged over 150 realizations).

B. E↵ective conductance and dimension

The properties of a physical system are often char-
acterized by its responses to generic forces (e.g., finite
temperature fluctuations), quantified below by an e↵ec-

tive inverse-sti↵ness/conductance ḡ. Suppose we com-
pute the responses to M random forces {~FR

m} sampled
from some distribution and indexed by m. In each case
we have the free state response (~xR � ~x

0)m = H
�1 ~FR

m .
The e↵ective conductance is the average amplitude of
these responses:

ḡ = M
�1

X

m

|~xR
m � ~x

0|
|~FR

m |
(28)

Suppose the random forces are drawn component-by-
component independently from a Gaussian distribution
and normalized to amplitude |~FR

m |2 = 1. Define the ran-

dom force projections ~f
R ⌘ v ~F

R. As the eigenmodes are
uncorrelated with the random forces, the components of
~f
R are inner products between random vectors on the

unit sphere. In high dimension N , these are approx-
imately drawn from a normal distribution N (0, N�1).
The response of the system to the random input force is

H
�1 ~F

R =
X

b

v
T
ab
f
R
b

�b
! |H�1 ~F

R|2 =
X

a

(
f
R
a

�a
)2 (29)

where we used the fact that v
T
v is the identity. The

second line in (29) equals the sum squared of the com-

ponents of ~f
R scaled by the inverse square of the eigen-

values. Thus its expectation value is a scaled sum of
the variances of the components of ~f

R, each of which
equals 1/N . We therefore find that the expected value
of |H�1 ~FR|2 is a sum over the square inverse eigenvalues
and the e↵ective conductance is simply

ḡ =

sX

a

�
�2
a . (30)

As is well known, the e↵ective conductance ḡ is domi-
nated by the lower eigenvalues. We saw that successful
learning lowers the lowest eigenvalues, suggesting that
trained systems have an increased e↵ective conductance.
Therefore, trained systems will be ‘softer’ than random
systems, exhibiting larger responses on average to ran-
dom applied forces. Note that the increased e↵ective con-
ductance is unrelated to the specific details of the learned
task; such physical systems trained for di↵erent types of
tasks (regression, classification) are expected to become
softer/more conductive (see Appendix A). Fig. 4a shows

Example: linear networks

1. One eigenvalue becomes small

2. The associated eigenvector aligns

increasingly with both the input
force and the task

8

bation theory:

��n = ~v
T
n �H~vn

⇡ �↵B

X

m

Ynm
fmam

�2
m

(22)

��
�1
n = ��

�2
n ��n ⇡

⇡ ↵B

�2
n

X

m

Ynm
fmam

�2
m

(23)

�~vn =
X

m 6=n

~v
T
m �H ~vn

�n � �m
~vm

⇡ ↵B

X

m 6=n

Xmn(fman + fnam)

�m�n(�m � �n)
~vm (24)

Note that the second order correction to the eigenval-

ues is ��
(2)
n ⇠ ↵

2
P

m 6=n(�n � �m)�1 [57], and is thus
negligible compared to the first order term (⇠ ↵) in the
limit of slow learning rate ↵ ⌧ 1, except when two eigen-
values nearly cross. At that point an e↵ective “repulsion”
prevents eigenvalue crossing.

Two key points about the inverse eigenvalue cor-
rections are: (1) Changes occur predominantly in the
smaller eigenvalues because of the �

�2
n scaling. (2) We

may define the alignment of an eigenmode with the task
by taking the product of its projections on the input
and desired output vectors ⇢n ⌘ fnan. Since all of
the factors Ynm are non-negative, if eigenmodes are pos-
itively aligned, specifically at the lower eigenvalues, then
the eigenvalues are pushed down by learning (or inverse
eigenvalues pushed up). The lower an eigenvalue is, the
more important it is in determining the direction of these
eigenvalue dynamics.

The eigenvector dynamics in Eq. 24 describe the rota-
tion of the coordinate system of the physical Hessian.
Each eigenvector changes by incorporating corrections
proportional to all other eigenvectors, with contributions
scaling based on their eigenvalues and projections on the
input and desired output vectors. Note that these dy-
namics keep all eigenvectors normalized and orthogonal
to each other. Eigenvectors associated with low eigenval-
ues tend to change more, and also more strongly a↵ect
the change in other eigenvectors, because of the depen-
dence on the inverse eigenvalues �

�1
m ,�

�1
n . Also, we can

show that these eigenvector dynamics imply the align-
ment of lower eigenvectors with the learned task. To see
this, we compute the average change in the alignment of
mode n due to learning (see Appendix B for details):

�⇢n ⇡ ↵B

X

m 6=n

Xmn(fman + fnam)2

�m�n(�m � �n)
(25)

In this expression, the sign of every member of the
sum depends only on the sign of the di↵erence in eigen-
values �m��n, as all other expression are positive. This
means, e.g. that the alignment of the lowest eigenmode
⇢1 is becomes more positive - the lowest mode aligns with

the task. Recalling Eqs. 22-24, this stronger alignment
will result in a more dominant e↵ect of this mode on
the eigensystem dynamics. In contrast, the modes as-
sociated with top eigenvalues are expected to misalign
with the learned task, making them overall less impor-
tant for the learning dynamics. It is notable that as
these dynamics are symmetric with respect to the input
force fn and the desired output vector an. Since these
vectors are random with respect to the initial eigenvec-
tors, we expect that the alignment of both of them with
the lowest eigenmode, will increase during learning, i.e.
h�f2

1 i ⇠ h�a21i > 0. In another words, the lowest mode
tends to rotate into the plane spanned by the input force
and the output vector. We also note that a fully trained
system no longer changes its eigenvalues or eigenvectors
because, while the input force ~F remains constant over
training, the output force ~F

O = �r~xC diminishes and
vanishes together with the learning cost function. There-
fore, the approximations above are valid during most of
the learning process, but not close to its conclusion.
Above we discussed the eigensystem dynamics for quite

general Hessian models satisfying Eq. 12. We can use
these results for the special cases of networks of interest
to us. For the fully connected linear network given by
Eq. 13, the dynamics are considerably simplified and we
can write closed form expressions:

��
�1
n ⇡ ↵B

fnan

�4
n

= ↵B
⇢n

�4
n

�~vn ⇡ ↵B

X

m 6=n

fman + fnam

�m�n(�m � �n)
�~vm

�⇢n ⇡ ↵B

X

m 6=n

(fman + fnam)2

�m�n(�m � �n)

(26)

These expressions clearly show the dynamics we de-
scribed - aligned eigenmodes have their eigenvalues re-
duced (inverse eigenvalues increased), and low eigen-
modes become more aligned with the task. Meanwhile,
eigenmodes with higher eigenvalues decrease their align-
ment over training, and we expect their associated eigen-
values to be further increased by learning. These con-
siderations are verified in Fig. 3a, where we simulate
the Hessian dynamics of fully connected linear networks
with physical cost function (13) during learning of one
task. We see that the top inverse eigenvalue (bot-
tom eigenvalue) is significantly increased, while the bot-
tom inverse eigenvalue decreases in networks, here with
N = 20 nodes, averaged over 150 realizations of net-
works and tasks. Moreover, by calculating the alignment
of the eigenmodes ⇢n, we find that the bottom eigen-
mode aligns with the task and top eigenmodes mis-align
with it (Fig. 3b). Note that while we plot results aver-
aged over realizations, the described scenario plays out
in each individual learning simulation.
For random di↵erence networks (e.g., flow and elas-

tic nets) of Eq. 16, it is easiest to report the average
eigenvalue dynamics as the geometry of interaction be-

eigenvalues

alignment: δ(fnan)

eigenvectors

The network becomes what it learns

The network becomes soft and low dimensional
10

FIG. 4. Training increases the e↵ective conductance and re-
duces response dimension in physical networks. a) E↵ective
conductance is increased during training in all systems consid-
ered, suggesting that trained systems are softer, with stronger
responses to random forces. b) The physical response dimen-
sion is decreased in all systems during learning, so that the
response of these systems to random forces is concentrated
in low-dimensional manifolds. Results averaged over 150 net-
works and tasks.

how the e↵ective conductance of the di↵erent physical
networks studied rises during learning of a single task.
These results are normalized so that the e↵ective conduc-
tance at the beginning of learning is ḡ(t = 0) = 1, and
averaged over 150 di↵erent realizations of the network
and training task. Here, the orange curves correspond to
flow networks, the green ones correspond to mechanical
networks, and the blue curves correspond to the fully-
connected networks.

We can also directly study the dimension of the space
of responses to random forces. While the system has N

physical degrees of freedom, typical responses are cou-
pled, lowering the e↵ective dimensionality, as has been
observed in, e.g., proteins [35] and neural circuits [52].
This e↵ective dimension can be extracted by measuring
how widely the responses are spread over the di↵erent
eigenmodes of the Hessian. To define a measure of this
spread, we again consider the response ~xR

m�~x
0 to random

forces ~F
R
m . Let pam ⌘

P
b vab(~x

R
m�~x

0)b be the projection
of the responses onto the Hessian eigenvectors. Then the
associated participation ratio is

Dm ⌘
⇥P

a p
2
am

⇤2
P

a p
4
am

(31)

If a response ~xR
m�~x

0 is parallel to an eigenmode ~va, it is
orthogonal to the others, so Dm = 1. On the other hand,
if all eigenmodes participate in a given response with the
same amplitude, i.e. pam = ±const, then Dm = N . Thus
Dm captures the e↵ective number of eigenmodes partic-
ipating in the response to ~F

R
m . Therefore it is natural to

define the e↵ective dimension of the response as

De↵ =
h
P

a p
2
ami2

h
P

a p
4
ami (32)

where the angle brackets denote an expectation value in
the ensemble of random forces. In other words, we are
defining the e↵ective dimension as the ratio of the square
of the second moment and the fourth moment of the pro-
jections of the response space onto the eigenmodes. Note
that this is similar to, but not the same as, another clas-
sic measure of response spread: the participation ratio
(PR) dimension [58–60]. The latter measure simply takes
the expectation value of (31) in the ensemble of random
forces, rather than separately taking expectation values
in the numerator and denominator.
Our e↵ective dimension has a simple and intuitive ex-

pression in terms of the spectrum of eigenvalues of the
Hessian (details in Appendix C):

De↵ =
(
P

a �
�2
a)2

3
P

a �
�4
a

(33)

If one eigenvalue is particularly small, it will dominate,
and lead to an e↵ective dimension of 1/3. As we showed
above, learning reduces the low eigenvalues of the phys-
ical Hessian, suggesting that learning reduces the physi-
cal response dimension for learned tasks. In fig. 4b, we
compute this e↵ective dimension during learning for dif-
ferent physical systems (averaged over 150 networks and
tasks). We find that the physical dimension decreases
during learning as the system adapts to accommodate
the learned task. There are other ways to estimate the
dimension of the physical response – in Appendix C we
discuss some of them and show that for alternative defini-
tions, the physical dimension is still reduced by learning.

IV. TRAINING FOR MULTIPLE TASKS

Above we saw how learning, in the small input force
regime, changes the Hessian and its eigenspace to accom-
modate a learned task, aligning an eigenmode with the
task induced coordinate system, lowering the associated
eigenvalue, and creating a softer mode in the physical
cost landscape. In this section we extend this reason-
ing to physical learning of multiple tasks in the same
system, whereby the Hessian changes by averaging over
single task modifications, as in Eq. 20. We thus expect
the Hessian eigenvectors to align with the di↵erent tasks.
Since these tasks are in general independent from one an-
other, training is expected to result in aligning more than
one of the Hessian eigenmodes. To verify this reasoning,
we train fully connected node networks with N = 20
nodes and flow networks with N = 40 nodes to simulta-
neously satisfy five randomly sampled tasks (Fig 5abde,
all results averaged over 300 realizations). In all cases,
the tasks were learned well, resulting in vanishing error.
We see in Fig. 5a that several inverse eigenvalues are

significantly raised in these networks. In the node net-
works, 3 inverse eigenvalues are raised, and we also ob-
serve that 3 eigenmodes align (by dot product) with the
tasks (Fig. 5b), having positive alignment values ⇢n. In

Test the dimensionality by applying an
ensemble of M Gaussian random forces

 and measuring the response{FR
m}

Effective
conductance:

9

FIG. 3. Hessian changes during learning. a) Hessian inverse
eigenvalues change during training of fully connected linear
networks (N = 20) for a single task. The top inverse eigen-
value tends to significantly increase, showing that learning
creates a soft mode. b) The lowest (blue) eigenmode of the
Hessian significantly aligns with the input force force and out-
put vector defined by the task. (c-f) Similar results are found
for flow and mechanical networks (N = 40), except that the
higher eigenmodes do not align with the task. Results aver-
aged over 150 realization of networks and tasks.

tween nodes is more complicated than in the previous
case. However, the results are still simplified because the
left and right matrices are identical:

��
�1
n ⇡ 4↵B

�2
n

Ne

N2
[
2fnan
�2
n

+
X

m 6=n

fmam

�2
m

]

�~vn ⇡ 4↵B
Ne

N2

X

m 6=n

fman + fnam

�m�n(�m � �n)
�~vm

�⇢n ⇡ 4↵B
Ne

N2

X

m 6=n

(fman + fnam)2

�m�n(�m � �n)

(27)

where Ne is the total number of edges (resistors or
springs) in the network. The eigenvector and alignment
dynamics behave similarly to the previous case, with the
alignment of the lower modes increasing during learning.
The eigenvalue dynamics are slightly di↵erent; a second
term appears in the eigenvalue dynamics which is shared
for all eigenvalues. This term tends to decrease all eigen-
values by the same amount if the eigenvectors (specif-
ically the lower ones) tend to align with the task, and
increase all of them otherwise. We therefore expect that
in this case, contrary to the previous one, the alignment
of the lower eigenvectors will cause all the eigenvalues to
be decreased during learning by similar amounts. How-
ever, as in Eq. 24, the change in inverse eigenvalues is
most pronounced in for the lowest modes that align with
the task.

We verify these considerations for flow and mechanical
networks with N = 40 nodes in Fig. 3c-f. The bottom

eigenvalue is e↵ectively reduced by learning and the asso-
ciated eigenmode aligns significantly with the input force
(results averaged over 150 realizations).

B. E↵ective conductance and dimension

The properties of a physical system are often char-
acterized by its responses to generic forces (e.g., finite
temperature fluctuations), quantified below by an e↵ec-

tive inverse-sti↵ness/conductance ḡ. Suppose we com-
pute the responses to M random forces {~FR

m} sampled
from some distribution and indexed by m. In each case
we have the free state response (~xR � ~x

0)m = H
�1 ~FR

m .
The e↵ective conductance is the average amplitude of
these responses:

ḡ = M
�1

X

m

|~xR
m � ~x

0|
|~FR

m |
(28)

Suppose the random forces are drawn component-by-
component independently from a Gaussian distribution
and normalized to amplitude |~FR

m |2 = 1. Define the ran-

dom force projections ~f
R ⌘ v ~F

R. As the eigenmodes are
uncorrelated with the random forces, the components of
~f
R are inner products between random vectors on the

unit sphere. In high dimension N , these are approx-
imately drawn from a normal distribution N (0, N�1).
The response of the system to the random input force is

H
�1 ~F

R =
X

b

v
T
ab
f
R
b

�b
! |H�1 ~F

R|2 =
X

a

(
f
R
a

�a
)2 (29)

where we used the fact that v
T
v is the identity. The

second line in (29) equals the sum squared of the com-

ponents of ~f
R scaled by the inverse square of the eigen-

values. Thus its expectation value is a scaled sum of
the variances of the components of ~f

R, each of which
equals 1/N . We therefore find that the expected value
of |H�1 ~FR|2 is a sum over the square inverse eigenvalues
and the e↵ective conductance is simply

ḡ =

sX

a

�
�2
a . (30)

As is well known, the e↵ective conductance ḡ is domi-
nated by the lower eigenvalues. We saw that successful
learning lowers the lowest eigenvalues, suggesting that
trained systems have an increased e↵ective conductance.
Therefore, trained systems will be ‘softer’ than random
systems, exhibiting larger responses on average to ran-
dom applied forces. Note that the increased e↵ective con-
ductance is unrelated to the specific details of the learned
task; such physical systems trained for di↵erent types of
tasks (regression, classification) are expected to become
softer/more conductive (see Appendix A). Fig. 4a shows

10

FIG. 4. Training increases the e↵ective conductance and re-
duces response dimension in physical networks. a) E↵ective
conductance is increased during training in all systems consid-
ered, suggesting that trained systems are softer, with stronger
responses to random forces. b) The physical response dimen-
sion is decreased in all systems during learning, so that the
response of these systems to random forces is concentrated
in low-dimensional manifolds. Results averaged over 150 net-
works and tasks.

how the e↵ective conductance of the di↵erent physical
networks studied rises during learning of a single task.
These results are normalized so that the e↵ective conduc-
tance at the beginning of learning is ḡ(t = 0) = 1, and
averaged over 150 di↵erent realizations of the network
and training task. Here, the orange curves correspond to
flow networks, the green ones correspond to mechanical
networks, and the blue curves correspond to the fully-
connected networks.

We can also directly study the dimension of the space
of responses to random forces. While the system has N

physical degrees of freedom, typical responses are cou-
pled, lowering the e↵ective dimensionality, as has been
observed in, e.g., proteins [35] and neural circuits [52].
This e↵ective dimension can be extracted by measuring
how widely the responses are spread over the di↵erent
eigenmodes of the Hessian. To define a measure of this
spread, we again consider the response ~xR

m�~x
0 to random

forces ~F
R
m . Let pam ⌘

P
b vab(~x

R
m�~x

0)b be the projection
of the responses onto the Hessian eigenvectors. Then the
associated participation ratio is

Dm ⌘
⇥P

a p
2
am

⇤2
P

a p
4
am

(31)

If a response ~xR
m�~x

0 is parallel to an eigenmode ~va, it is
orthogonal to the others, so Dm = 1. On the other hand,
if all eigenmodes participate in a given response with the
same amplitude, i.e. pam = ±const, then Dm = N . Thus
Dm captures the e↵ective number of eigenmodes partic-
ipating in the response to ~F

R
m . Therefore it is natural to

define the e↵ective dimension of the response as

De↵ =
h
P

a p
2
ami2

h
P

a p
4
ami (32)

where the angle brackets denote an expectation value in
the ensemble of random forces. In other words, we are
defining the e↵ective dimension as the ratio of the square
of the second moment and the fourth moment of the pro-
jections of the response space onto the eigenmodes. Note
that this is similar to, but not the same as, another clas-
sic measure of response spread: the participation ratio
(PR) dimension [58–60]. The latter measure simply takes
the expectation value of (31) in the ensemble of random
forces, rather than separately taking expectation values
in the numerator and denominator.
Our e↵ective dimension has a simple and intuitive ex-

pression in terms of the spectrum of eigenvalues of the
Hessian (details in Appendix C):

De↵ =
(
P

a �
�2
a)2

3
P

a �
�4
a

(33)

If one eigenvalue is particularly small, it will dominate,
and lead to an e↵ective dimension of 1/3. As we showed
above, learning reduces the low eigenvalues of the phys-
ical Hessian, suggesting that learning reduces the physi-
cal response dimension for learned tasks. In fig. 4b, we
compute this e↵ective dimension during learning for dif-
ferent physical systems (averaged over 150 networks and
tasks). We find that the physical dimension decreases
during learning as the system adapts to accommodate
the learned task. There are other ways to estimate the
dimension of the physical response – in Appendix C we
discuss some of them and show that for alternative defini-
tions, the physical dimension is still reduced by learning.

IV. TRAINING FOR MULTIPLE TASKS

Above we saw how learning, in the small input force
regime, changes the Hessian and its eigenspace to accom-
modate a learned task, aligning an eigenmode with the
task induced coordinate system, lowering the associated
eigenvalue, and creating a softer mode in the physical
cost landscape. In this section we extend this reason-
ing to physical learning of multiple tasks in the same
system, whereby the Hessian changes by averaging over
single task modifications, as in Eq. 20. We thus expect
the Hessian eigenvectors to align with the di↵erent tasks.
Since these tasks are in general independent from one an-
other, training is expected to result in aligning more than
one of the Hessian eigenmodes. To verify this reasoning,
we train fully connected node networks with N = 20
nodes and flow networks with N = 40 nodes to simulta-
neously satisfy five randomly sampled tasks (Fig 5abde,
all results averaged over 300 realizations). In all cases,
the tasks were learned well, resulting in vanishing error.
We see in Fig. 5a that several inverse eigenvalues are

significantly raised in these networks. In the node net-
works, 3 inverse eigenvalues are raised, and we also ob-
serve that 3 eigenmodes align (by dot product) with the
tasks (Fig. 5b), having positive alignment values ⇢n. In

Effective
dimension:

With = projection of responses to random forces onto the eigenvalues pam ≡ ⃗va ⋅ (⃗xR
m − ⃗x0)

Example: linear networks

9

FIG. 3. Hessian changes during learning. a) Hessian inverse
eigenvalues change during training of fully connected linear
networks (N = 20) for a single task. The top inverse eigen-
value tends to significantly increase, showing that learning
creates a soft mode. b) The lowest (blue) eigenmode of the
Hessian significantly aligns with the input force force and out-
put vector defined by the task. (c-f) Similar results are found
for flow and mechanical networks (N = 40), except that the
higher eigenmodes do not align with the task. Results aver-
aged over 150 realization of networks and tasks.

tween nodes is more complicated than in the previous
case. However, the results are still simplified because the
left and right matrices are identical:

��
�1
n ⇡ 4↵B

�2
n

Ne

N2
[
2fnan
�2
n

+
X

m 6=n

fmam

�2
m

]

�~vn ⇡ 4↵B
Ne

N2

X

m 6=n

fman + fnam

�m�n(�m � �n)
�~vm

�⇢n ⇡ 4↵B
Ne

N2

X

m 6=n

(fman + fnam)2

�m�n(�m � �n)

(27)

where Ne is the total number of edges (resistors or
springs) in the network. The eigenvector and alignment
dynamics behave similarly to the previous case, with the
alignment of the lower modes increasing during learning.
The eigenvalue dynamics are slightly di↵erent; a second
term appears in the eigenvalue dynamics which is shared
for all eigenvalues. This term tends to decrease all eigen-
values by the same amount if the eigenvectors (specif-
ically the lower ones) tend to align with the task, and
increase all of them otherwise. We therefore expect that
in this case, contrary to the previous one, the alignment
of the lower eigenvectors will cause all the eigenvalues to
be decreased during learning by similar amounts. How-
ever, as in Eq. 24, the change in inverse eigenvalues is
most pronounced in for the lowest modes that align with
the task.

We verify these considerations for flow and mechanical
networks with N = 40 nodes in Fig. 3c-f. The bottom

eigenvalue is e↵ectively reduced by learning and the asso-
ciated eigenmode aligns significantly with the input force
(results averaged over 150 realizations).

B. E↵ective conductance and dimension

The properties of a physical system are often char-
acterized by its responses to generic forces (e.g., finite
temperature fluctuations), quantified below by an e↵ec-

tive inverse-sti↵ness/conductance ḡ. Suppose we com-
pute the responses to M random forces {~FR

m} sampled
from some distribution and indexed by m. In each case
we have the free state response (~xR � ~x

0)m = H
�1 ~FR

m .
The e↵ective conductance is the average amplitude of
these responses:

ḡ = M
�1

X

m

|~xR
m � ~x

0|
|~FR

m |
(28)

Suppose the random forces are drawn component-by-
component independently from a Gaussian distribution
and normalized to amplitude |~FR

m |2 = 1. Define the ran-

dom force projections ~f
R ⌘ v ~F

R. As the eigenmodes are
uncorrelated with the random forces, the components of
~f
R are inner products between random vectors on the

unit sphere. In high dimension N , these are approx-
imately drawn from a normal distribution N (0, N�1).
The response of the system to the random input force is

H
�1 ~F

R =
X

b

v
T
ab
f
R
b

�b
! |H�1 ~F

R|2 =
X

a

(
f
R
a

�a
)2 (29)

where we used the fact that v
T
v is the identity. The

second line in (29) equals the sum squared of the com-

ponents of ~f
R scaled by the inverse square of the eigen-

values. Thus its expectation value is a scaled sum of
the variances of the components of ~f

R, each of which
equals 1/N . We therefore find that the expected value
of |H�1 ~FR|2 is a sum over the square inverse eigenvalues
and the e↵ective conductance is simply

ḡ =

sX

a

�
�2
a . (30)

As is well known, the e↵ective conductance ḡ is domi-
nated by the lower eigenvalues. We saw that successful
learning lowers the lowest eigenvalues, suggesting that
trained systems have an increased e↵ective conductance.
Therefore, trained systems will be ‘softer’ than random
systems, exhibiting larger responses on average to ran-
dom applied forces. Note that the increased e↵ective con-
ductance is unrelated to the specific details of the learned
task; such physical systems trained for di↵erent types of
tasks (regression, classification) are expected to become
softer/more conductive (see Appendix A). Fig. 4a shows

10

FIG. 4. Training increases the e↵ective conductance and re-
duces response dimension in physical networks. a) E↵ective
conductance is increased during training in all systems consid-
ered, suggesting that trained systems are softer, with stronger
responses to random forces. b) The physical response dimen-
sion is decreased in all systems during learning, so that the
response of these systems to random forces is concentrated
in low-dimensional manifolds. Results averaged over 150 net-
works and tasks.

how the e↵ective conductance of the di↵erent physical
networks studied rises during learning of a single task.
These results are normalized so that the e↵ective conduc-
tance at the beginning of learning is ḡ(t = 0) = 1, and
averaged over 150 di↵erent realizations of the network
and training task. Here, the orange curves correspond to
flow networks, the green ones correspond to mechanical
networks, and the blue curves correspond to the fully-
connected networks.

We can also directly study the dimension of the space
of responses to random forces. While the system has N

physical degrees of freedom, typical responses are cou-
pled, lowering the e↵ective dimensionality, as has been
observed in, e.g., proteins [35] and neural circuits [52].
This e↵ective dimension can be extracted by measuring
how widely the responses are spread over the di↵erent
eigenmodes of the Hessian. To define a measure of this
spread, we again consider the response ~xR

m�~x
0 to random

forces ~F
R
m . Let pam ⌘

P
b vab(~x

R
m�~x

0)b be the projection
of the responses onto the Hessian eigenvectors. Then the
associated participation ratio is

Dm ⌘
⇥P

a p
2
am

⇤2
P

a p
4
am

(31)

If a response ~xR
m�~x

0 is parallel to an eigenmode ~va, it is
orthogonal to the others, so Dm = 1. On the other hand,
if all eigenmodes participate in a given response with the
same amplitude, i.e. pam = ±const, then Dm = N . Thus
Dm captures the e↵ective number of eigenmodes partic-
ipating in the response to ~F

R
m . Therefore it is natural to

define the e↵ective dimension of the response as

De↵ =
h
P

a p
2
ami2

h
P

a p
4
ami (32)

where the angle brackets denote an expectation value in
the ensemble of random forces. In other words, we are
defining the e↵ective dimension as the ratio of the square
of the second moment and the fourth moment of the pro-
jections of the response space onto the eigenmodes. Note
that this is similar to, but not the same as, another clas-
sic measure of response spread: the participation ratio
(PR) dimension [58–60]. The latter measure simply takes
the expectation value of (31) in the ensemble of random
forces, rather than separately taking expectation values
in the numerator and denominator.
Our e↵ective dimension has a simple and intuitive ex-

pression in terms of the spectrum of eigenvalues of the
Hessian (details in Appendix C):

De↵ =
(
P

a �
�2
a)2

3
P

a �
�4
a

(33)

If one eigenvalue is particularly small, it will dominate,
and lead to an e↵ective dimension of 1/3. As we showed
above, learning reduces the low eigenvalues of the phys-
ical Hessian, suggesting that learning reduces the physi-
cal response dimension for learned tasks. In fig. 4b, we
compute this e↵ective dimension during learning for dif-
ferent physical systems (averaged over 150 networks and
tasks). We find that the physical dimension decreases
during learning as the system adapts to accommodate
the learned task. There are other ways to estimate the
dimension of the physical response – in Appendix C we
discuss some of them and show that for alternative defini-
tions, the physical dimension is still reduced by learning.

IV. TRAINING FOR MULTIPLE TASKS

Above we saw how learning, in the small input force
regime, changes the Hessian and its eigenspace to accom-
modate a learned task, aligning an eigenmode with the
task induced coordinate system, lowering the associated
eigenvalue, and creating a softer mode in the physical
cost landscape. In this section we extend this reason-
ing to physical learning of multiple tasks in the same
system, whereby the Hessian changes by averaging over
single task modifications, as in Eq. 20. We thus expect
the Hessian eigenvectors to align with the di↵erent tasks.
Since these tasks are in general independent from one an-
other, training is expected to result in aligning more than
one of the Hessian eigenmodes. To verify this reasoning,
we train fully connected node networks with N = 20
nodes and flow networks with N = 40 nodes to simulta-
neously satisfy five randomly sampled tasks (Fig 5abde,
all results averaged over 300 realizations). In all cases,
the tasks were learned well, resulting in vanishing error.
We see in Fig. 5a that several inverse eigenvalues are

significantly raised in these networks. In the node net-
works, 3 inverse eigenvalues are raised, and we also ob-
serve that 3 eigenmodes align (by dot product) with the
tasks (Fig. 5b), having positive alignment values ⇢n. In

Dominated by the

lowest eigenvalues

The effects of training multiple tasks 11

FIG. 5. Hessian changes for systems learning several tasks.
a) Hessian inverse eigenvalues for a fully connected linear net-
work trained for 5 independent tasks, with a few of the top
inverse eigenvalues being modified significantly. b) Alignment
of eigenvectors to the 5 tasks shows that⇠ 3 of the eigenmodes
align with the tasks. c) Varying the number of simultaneous
learned tasks, we observe an increase in the number of lifted
inverse eigenvalues, scaling as a power law. d-f) Similar re-
sults obtained for flow networks learning several tasks. Re-
sults are averaged over 300 realizations of networks and tasks.

flow networks we see that all inverse eigenvalues increase,
with larger e↵ects at the bottom of the spectrum, namely
for the lowest eigenvalues or largest inverse eigenvalues
(Fig. 5c). Furthermore, the eigenmodes associated with
the top 5 tend to align with the input forces (Fig. 5d).
It is evident from these simulations that the number of
raised inverse eigenvalues (and associated aligning vec-
tors) may be smaller than the number of tasks. To test
this, we trained these types of networks simultaneously
for varying numbers of tasks in the range 1 � 10. For
these simulations, we measured the number of raised in-
verse eigenvalues, defined as the number of eigenvalues
which were raised by at least 10% compared to their ini-
tial value. Given this definition, we find that the number
of raised inverse eigenvalues scales as a power law in the
number of tasks for both types of networks, but with dif-
ferent exponents. While it is clear the number of modes
‘used’ by the system for learning increases when more
tasks are learned, this increase is definition dependent,
and we leave more precise study and quantification of
this e↵ect to future study.

It is well-known that a system cannot be trained to
perform too many tasks simultaneously; physical and
computational learning models have a capacity MC for
trained tasks. Trying to learn beyond capacity results
in failure, where the system cannot successfully perform
all of the desired tasks [7]. The capacity of simple learn-
ing models typically scales at best with the number of
learning degrees of freedom (see Appendix D, where we

FIG. 6. Training physical networks for multiple tasks. a)
Training error remains low up until a capacity of tasks is
reached. b) Inverse eigenvalues of a network trained far be-
yond capacity tend to decrease. c) E↵ective conductance as
a function of the number of tasks - systems trained beyond
capacity become less conductive (sti↵er), as opposed to sys-
tems successfully trained below capacity. d) Physical response
dimension remains low regardless of the number of learned
tasks. Results averaged over 400 realizations of networks and
tasks.

argue our physical networks have a capacity that scales
linearly with the number of learning degrees of freedom).
This has been established for flow networks, where the
number of output nodes that can be trained to respond
to a single input is sublinear [55] in the total number of
nodes, but can be raised to linear scaling [61] by avoid-
ing frustration by tuning outputs in order of increasing
distance from the source. We observe this finite capac-
ity when training our models for multiple tasks (Fig 6a).
Thus, we studied the physical e↵ects of training beyond
capacity.
Consider again the learning cost function for a lin-

earized task c
(r) ⇡ ~A

T
r (~x

F
r � ~x

0)�Br. Training for such
a task yields output nudging forces as in Eq. 6. We can
write down the average change in an eigenvalue as in
Eq. 22, but retain the second term of the output force
that we previously neglected, which we will see comes to
dominate. The total change in the eigenvalues is then
computed as the sum of the changes due to the entire set
of nT tasks.

��
(r)
n = ↵[�B +

X

c

f
(r)
c a

(r)
c

�c
]
X

d

Ydn
f
(r)
d a

(r)
d

�
2
d

��n = n
�1
T

X

r

��
(r)
n

(34)

Here, r is a sum on tasks, and the first line is the same as
Eq. 22 except we have now kept both terms in the square
brackets.
To ask how the eigenvalues change for a typical set of

11

FIG. 5. Hessian changes for systems learning several tasks.
a) Hessian inverse eigenvalues for a fully connected linear net-
work trained for 5 independent tasks, with a few of the top
inverse eigenvalues being modified significantly. b) Alignment
of eigenvectors to the 5 tasks shows that⇠ 3 of the eigenmodes
align with the tasks. c) Varying the number of simultaneous
learned tasks, we observe an increase in the number of lifted
inverse eigenvalues, scaling as a power law. d-f) Similar re-
sults obtained for flow networks learning several tasks. Re-
sults are averaged over 300 realizations of networks and tasks.

flow networks we see that all inverse eigenvalues increase,
with larger e↵ects at the bottom of the spectrum, namely
for the lowest eigenvalues or largest inverse eigenvalues
(Fig. 5c). Furthermore, the eigenmodes associated with
the top 5 tend to align with the input forces (Fig. 5d).
It is evident from these simulations that the number of
raised inverse eigenvalues (and associated aligning vec-
tors) may be smaller than the number of tasks. To test
this, we trained these types of networks simultaneously
for varying numbers of tasks in the range 1 � 10. For
these simulations, we measured the number of raised in-
verse eigenvalues, defined as the number of eigenvalues
which were raised by at least 10% compared to their ini-
tial value. Given this definition, we find that the number
of raised inverse eigenvalues scales as a power law in the
number of tasks for both types of networks, but with dif-
ferent exponents. While it is clear the number of modes
‘used’ by the system for learning increases when more
tasks are learned, this increase is definition dependent,
and we leave more precise study and quantification of
this e↵ect to future study.

It is well-known that a system cannot be trained to
perform too many tasks simultaneously; physical and
computational learning models have a capacity MC for
trained tasks. Trying to learn beyond capacity results
in failure, where the system cannot successfully perform
all of the desired tasks [7]. The capacity of simple learn-
ing models typically scales at best with the number of
learning degrees of freedom (see Appendix D, where we

FIG. 6. Training physical networks for multiple tasks. a)
Training error remains low up until a capacity of tasks is
reached. b) Inverse eigenvalues of a network trained far be-
yond capacity tend to decrease. c) E↵ective conductance as
a function of the number of tasks - systems trained beyond
capacity become less conductive (sti↵er), as opposed to sys-
tems successfully trained below capacity. d) Physical response
dimension remains low regardless of the number of learned
tasks. Results averaged over 400 realizations of networks and
tasks.

argue our physical networks have a capacity that scales
linearly with the number of learning degrees of freedom).
This has been established for flow networks, where the
number of output nodes that can be trained to respond
to a single input is sublinear [55] in the total number of
nodes, but can be raised to linear scaling [61] by avoid-
ing frustration by tuning outputs in order of increasing
distance from the source. We observe this finite capac-
ity when training our models for multiple tasks (Fig 6a).
Thus, we studied the physical e↵ects of training beyond
capacity.
Consider again the learning cost function for a lin-

earized task c
(r) ⇡ ~A

T
r (~x

F
r � ~x

0)�Br. Training for such
a task yields output nudging forces as in Eq. 6. We can
write down the average change in an eigenvalue as in
Eq. 22, but retain the second term of the output force
that we previously neglected, which we will see comes to
dominate. The total change in the eigenvalues is then
computed as the sum of the changes due to the entire set
of nT tasks.

��
(r)
n = ↵[�B +

X

c

f
(r)
c a

(r)
c

�c
]
X

d

Ydn
f
(r)
d a

(r)
d

�
2
d

��n = n
�1
T

X

r

��
(r)
n

(34)

Here, r is a sum on tasks, and the first line is the same as
Eq. 22 except we have now kept both terms in the square
brackets.
To ask how the eigenvalues change for a typical set of

5 tasks

Empirical results

1. Multiple eigenvalues

become soft, but not
necessarily as many as
the number of tasks

2. Beyond the network
learning capacity, the
error grows, and the
network becomes stiff
but the effective
dimension remains low

Training beyond capacity

Becoming what you learn

1.Network weights reorganizes with learning

2.The response becomes low dimensional

3. The responsive modes become soft and aligned with the input forces

and the task

4.Beyond capacity the network remains low dimensional but becomes

stiff
Comment 1: Can we discover what a physical network in nature has been trained for by
seeing how it responds to random inputs? In fact, this is one of the basic techniques of
neuroscience — apply random inputs and analyze circuit responses

Comment 2: Can we construct model networks that contain more features of real neural
circuits — heterogeneity of units, asymmetric connections, dynamics, neurogenesis & death

