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The increasing complexity of neural networks and the energy consumption associated with training and in-
ference create a need for alternative neuromorphic approaches, e.g. using optics. Current proposals and im-
plementations rely on physical non-linearities or opto-electronic conversion to realise the required non-linear
activation function. However, there are significant challenges with these approaches related to power levels,
control, energy-efficiency, and delays.

Here, we present a scheme for a neuromorphic system that relies on linear wave scattering and yet achieves
non-linear processing with a high expressivity. The key idea is to inject the input via physical parameters that
affect the scattering processes. Moreover, we show that gradients needed for training can be directly measured
in scattering experiments. We predict classification accuracies on par with results obtained by standard artificial
neural networks. Our proposal can be readily implemented with existing state-of-the-art, scalable platforms,
e.g. in optics, microwave and electrical circuits, and we propose an integrated-photonics implementation based
on racetrack resonators that achieves high connectivity with a minimal number of waveguide crossings.

I. INTRODUCTION

The rapid growth in neural network complexity has led to
an exponential increase in energy consumption and training
costs. This has created a need for more energy and cost ef-
ficient alternatives sparking the rapidly developing field of
neuromorphic computing [1] in which computations are per-
formed with physical artificial neurons.

Typically, neural networks connect neurons in consecutive
layers through linear maps and non-linear activation func-
tions. So far, the prevalent approach has been to realise the lin-
ear maps with linear physical interactions and employ physi-
cal non-linearities (or approaches like optoelectronic conver-
sion) to realise the non-linear activation function. Among
the many neuromorphic computing platforms [2–5], optical
platforms [2, 3, 6] are one of the most promising contenders
for neuromorphic computing as they efficiently allow to im-
plement the linear aspects of the neural network offering a
high degree of parallelism, high computation speeds and scal-
ability. Furthermore, linear computations can be performed
passively [7, 8] while propagation losses can be very small
making these devices potentially very energy efficient. Lin-
ear optical networks (in free space or integrated photonics)
for implementing the linear aspects of neural networks, i.e.,
matrix-vector multiplication, are already well developed and
have become the basis of commercial chips [9, 10].

On the other hand, physical non-linearities to realise the
non-linear aspects of the neural network are still hard to im-
plement, incurring substantial hardware overhead, fabrication
challenges, and other possibly demanding requirements [11–
13], such as high laser powers in an implementation with
non-linear crystals. Furthermore, non-linearities can induce
chaotic dynamics which makes it impossible to train the sys-
tem. An alternative approach bypasses these challenges by
applying the non-linearity opto-electronically [14–17]. How-
ever, proposals relying on optoelectronic conversion to realise
the non-linear activation functions may be bulky, less energy-
efficient and may suffer from delays.

Moreover, an efficient physics-based training in the pres-
ence of non-linearities is an open challenge, although
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FIG. 1. Fully non-linear neuromorphic system with linear wave
propagation. a The input to the linear, neuromorphic system is en-
coded in some of the tunable system parameters while the output is
determined through the scattering response to a probe signal. Other
controllable parameters serve as learnable parameters. b Example
for an implementation using wave propagation through a network of
coupled modes (e.g. optical resonators). Here, the detunings �j of
some of the optical modes are utilized as input x while other de-
tunings and the coupling constants Jj between modes are learnable
parameters ✓. The output is a suitable set of scattering matrix ele-
ments, Eqs. (3) and 4, which we obtain by comparing the response
to the probe field, Eq. (1). c-d Due to the linearity of these sys-
tems, we have access to the gradients w.r.t. system parameters which
are required for training. The gradients are given by the products of
scattering matrix elements, Eqs. (7) and (8).

some conceptual progress has been made, especially in the
form of equilibrium propagation [18–20] and Hamiltonian-
echo back-propagation [21]. In the presence of decay, a
back-propagation algorithm was developed [22] and imple-
mented [23] only for specific types of non-linearities. An-
other approach to physical training is to adjust parameters
based on feedback [24] or random parameter shifts [10]. How-
ever, this approach may scale unfavourably with network

NONLINEAR 
SYSTEM

typical optical neuromorphic system

nonlinearity for expressivity

y = f(x)

x



Fully Non-Linear Neuromorphic Computing with Linear Wave Scattering

Clara C. Wanjura and Florian Marquardt
Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany

(Dated: September 10, 2023)

The increasing complexity of neural networks and the energy consumption associated with training and in-
ference create a need for alternative neuromorphic approaches, e.g. using optics. Current proposals and im-
plementations rely on physical non-linearities or opto-electronic conversion to realise the required non-linear
activation function. However, there are significant challenges with these approaches related to power levels,
control, energy-efficiency, and delays.

Here, we present a scheme for a neuromorphic system that relies on linear wave scattering and yet achieves
non-linear processing with a high expressivity. The key idea is to inject the input via physical parameters that
affect the scattering processes. Moreover, we show that gradients needed for training can be directly measured
in scattering experiments. We predict classification accuracies on par with results obtained by standard artificial
neural networks. Our proposal can be readily implemented with existing state-of-the-art, scalable platforms,
e.g. in optics, microwave and electrical circuits, and we propose an integrated-photonics implementation based
on racetrack resonators that achieves high connectivity with a minimal number of waveguide crossings.

I. INTRODUCTION

The rapid growth in neural network complexity has led to
an exponential increase in energy consumption and training
costs. This has created a need for more energy and cost ef-
ficient alternatives sparking the rapidly developing field of
neuromorphic computing [1] in which computations are per-
formed with physical artificial neurons.

Typically, neural networks connect neurons in consecutive
layers through linear maps and non-linear activation func-
tions. So far, the prevalent approach has been to realise the lin-
ear maps with linear physical interactions and employ physi-
cal non-linearities (or approaches like optoelectronic conver-
sion) to realise the non-linear activation function. Among
the many neuromorphic computing platforms [2–5], optical
platforms [2, 3, 6] are one of the most promising contenders
for neuromorphic computing as they efficiently allow to im-
plement the linear aspects of the neural network offering a
high degree of parallelism, high computation speeds and scal-
ability. Furthermore, linear computations can be performed
passively [7, 8] while propagation losses can be very small
making these devices potentially very energy efficient. Lin-
ear optical networks (in free space or integrated photonics)
for implementing the linear aspects of neural networks, i.e.,
matrix-vector multiplication, are already well developed and
have become the basis of commercial chips [9, 10].

On the other hand, physical non-linearities to realise the
non-linear aspects of the neural network are still hard to im-
plement, incurring substantial hardware overhead, fabrication
challenges, and other possibly demanding requirements [11–
13], such as high laser powers in an implementation with
non-linear crystals. Furthermore, non-linearities can induce
chaotic dynamics which makes it impossible to train the sys-
tem. An alternative approach bypasses these challenges by
applying the non-linearity opto-electronically [14–17]. How-
ever, proposals relying on optoelectronic conversion to realise
the non-linear activation functions may be bulky, less energy-
efficient and may suffer from delays.

Moreover, an efficient physics-based training in the pres-
ence of non-linearities is an open challenge, although

a b

c d

probe

trainable parameters

response
OUTPUT

system
parameters

INPUT

probe
response

system
parameters

INPUT

OUTPUTLINEAR
SYSTEM

x
x

y

y

FIG. 1. Fully non-linear neuromorphic system with linear wave
propagation. a The input to the linear, neuromorphic system is en-
coded in some of the tunable system parameters while the output is
determined through the scattering response to a probe signal. Other
controllable parameters serve as learnable parameters. b Example
for an implementation using wave propagation through a network of
coupled modes (e.g. optical resonators). Here, the detunings �j of
some of the optical modes are utilized as input x while other de-
tunings and the coupling constants Jj between modes are learnable
parameters ✓. The output is a suitable set of scattering matrix ele-
ments, Eqs. (3) and 4, which we obtain by comparing the response
to the probe field, Eq. (1). c-d Due to the linearity of these sys-
tems, we have access to the gradients w.r.t. system parameters which
are required for training. The gradients are given by the products of
scattering matrix elements, Eqs. (7) and (8).

some conceptual progress has been made, especially in the
form of equilibrium propagation [18–20] and Hamiltonian-
echo back-propagation [21]. In the presence of decay, a
back-propagation algorithm was developed [22] and imple-
mented [23] only for specific types of non-linearities. An-
other approach to physical training is to adjust parameters
based on feedback [24] or random parameter shifts [10]. How-
ever, this approach may scale unfavourably with network

NONLINEAR 
SYSTEM

typical optical neuromorphic system

nonlinearity for expressivity

y = f(x)

x

optical nonlinearities (but: power levels) 
optoelectronics (but: delays, power)



Fully Non-Linear Neuromorphic Computing with Linear Wave Scattering

Clara C. Wanjura and Florian Marquardt
Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany

(Dated: September 10, 2023)

The increasing complexity of neural networks and the energy consumption associated with training and in-
ference create a need for alternative neuromorphic approaches, e.g. using optics. Current proposals and im-
plementations rely on physical non-linearities or opto-electronic conversion to realise the required non-linear
activation function. However, there are significant challenges with these approaches related to power levels,
control, energy-efficiency, and delays.

Here, we present a scheme for a neuromorphic system that relies on linear wave scattering and yet achieves
non-linear processing with a high expressivity. The key idea is to inject the input via physical parameters that
affect the scattering processes. Moreover, we show that gradients needed for training can be directly measured
in scattering experiments. We predict classification accuracies on par with results obtained by standard artificial
neural networks. Our proposal can be readily implemented with existing state-of-the-art, scalable platforms,
e.g. in optics, microwave and electrical circuits, and we propose an integrated-photonics implementation based
on racetrack resonators that achieves high connectivity with a minimal number of waveguide crossings.

I. INTRODUCTION

The rapid growth in neural network complexity has led to
an exponential increase in energy consumption and training
costs. This has created a need for more energy and cost ef-
ficient alternatives sparking the rapidly developing field of
neuromorphic computing [1] in which computations are per-
formed with physical artificial neurons.

Typically, neural networks connect neurons in consecutive
layers through linear maps and non-linear activation func-
tions. So far, the prevalent approach has been to realise the lin-
ear maps with linear physical interactions and employ physi-
cal non-linearities (or approaches like optoelectronic conver-
sion) to realise the non-linear activation function. Among
the many neuromorphic computing platforms [2–5], optical
platforms [2, 3, 6] are one of the most promising contenders
for neuromorphic computing as they efficiently allow to im-
plement the linear aspects of the neural network offering a
high degree of parallelism, high computation speeds and scal-
ability. Furthermore, linear computations can be performed
passively [7, 8] while propagation losses can be very small
making these devices potentially very energy efficient. Lin-
ear optical networks (in free space or integrated photonics)
for implementing the linear aspects of neural networks, i.e.,
matrix-vector multiplication, are already well developed and
have become the basis of commercial chips [9, 10].

On the other hand, physical non-linearities to realise the
non-linear aspects of the neural network are still hard to im-
plement, incurring substantial hardware overhead, fabrication
challenges, and other possibly demanding requirements [11–
13], such as high laser powers in an implementation with
non-linear crystals. Furthermore, non-linearities can induce
chaotic dynamics which makes it impossible to train the sys-
tem. An alternative approach bypasses these challenges by
applying the non-linearity opto-electronically [14–17]. How-
ever, proposals relying on optoelectronic conversion to realise
the non-linear activation functions may be bulky, less energy-
efficient and may suffer from delays.

Moreover, an efficient physics-based training in the pres-
ence of non-linearities is an open challenge, although

a b

c d

probe

trainable parameters

response
OUTPUT

system
parameters

INPUT

probe
response

system
parameters

INPUT

OUTPUTLINEAR
SYSTEM

x
x

y

y

FIG. 1. Fully non-linear neuromorphic system with linear wave
propagation. a The input to the linear, neuromorphic system is en-
coded in some of the tunable system parameters while the output is
determined through the scattering response to a probe signal. Other
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propagation. a The input to the linear, neuromorphic system is en-
coded in some of the tunable system parameters while the output is
determined through the scattering response to a probe signal. Other
controllable parameters serve as learnable parameters. b Example
for an implementation using wave propagation through a network of
coupled modes (e.g. optical resonators). Here, the detunings �j of
some of the optical modes are utilized as input x while other de-
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parameters ✓. The output is a suitable set of scattering matrix ele-
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tems, we have access to the gradients w.r.t. system parameters which
are required for training. The gradients are given by the products of
scattering matrix elements, Eqs. (7) and (8).
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plementations rely on physical non-linearities or opto-electronic conversion to realise the required non-linear
activation function. However, there are significant challenges with these approaches related to power levels,
control, energy-efficiency, and delays.

Here, we present a scheme for a neuromorphic system that relies on linear wave scattering and yet achieves
non-linear processing with a high expressivity. The key idea is to inject the input via physical parameters that
affect the scattering processes. Moreover, we show that gradients needed for training can be directly measured
in scattering experiments. We predict classification accuracies on par with results obtained by standard artificial
neural networks. Our proposal can be readily implemented with existing state-of-the-art, scalable platforms,
e.g. in optics, microwave and electrical circuits, and we propose an integrated-photonics implementation based
on racetrack resonators that achieves high connectivity with a minimal number of waveguide crossings.

I. INTRODUCTION

The rapid growth in neural network complexity has led to
an exponential increase in energy consumption and training
costs. This has created a need for more energy and cost ef-
ficient alternatives sparking the rapidly developing field of
neuromorphic computing [1] in which computations are per-
formed with physical artificial neurons.

Typically, neural networks connect neurons in consecutive
layers through linear maps and non-linear activation func-
tions. So far, the prevalent approach has been to realise the lin-
ear maps with linear physical interactions and employ physi-
cal non-linearities (or approaches like optoelectronic conver-
sion) to realise the non-linear activation function. Among
the many neuromorphic computing platforms [2–5], optical
platforms [2, 3, 6] are one of the most promising contenders
for neuromorphic computing as they efficiently allow to im-
plement the linear aspects of the neural network offering a
high degree of parallelism, high computation speeds and scal-
ability. Furthermore, linear computations can be performed
passively [7, 8] while propagation losses can be very small
making these devices potentially very energy efficient. Lin-
ear optical networks (in free space or integrated photonics)
for implementing the linear aspects of neural networks, i.e.,
matrix-vector multiplication, are already well developed and
have become the basis of commercial chips [9, 10].

On the other hand, physical non-linearities to realise the
non-linear aspects of the neural network are still hard to im-
plement, incurring substantial hardware overhead, fabrication
challenges, and other possibly demanding requirements [11–
13], such as high laser powers in an implementation with
non-linear crystals. Furthermore, non-linearities can induce
chaotic dynamics which makes it impossible to train the sys-
tem. An alternative approach bypasses these challenges by
applying the non-linearity opto-electronically [14–17]. How-
ever, proposals relying on optoelectronic conversion to realise
the non-linear activation functions may be bulky, less energy-
efficient and may suffer from delays.

Moreover, an efficient physics-based training in the pres-
ence of non-linearities is an open challenge, although
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FIG. 1. Fully non-linear neuromorphic system with linear wave
propagation. a The input to the linear, neuromorphic system is en-
coded in some of the tunable system parameters while the output is
determined through the scattering response to a probe signal. Other
controllable parameters serve as learnable parameters. b Example
for an implementation using wave propagation through a network of
coupled modes (e.g. optical resonators). Here, the detunings �j of
some of the optical modes are utilized as input x while other de-
tunings and the coupling constants Jj between modes are learnable
parameters ✓. The output is a suitable set of scattering matrix ele-
ments, Eqs. (3) and 4, which we obtain by comparing the response
to the probe field, Eq. (1). c-d Due to the linearity of these sys-
tems, we have access to the gradients w.r.t. system parameters which
are required for training. The gradients are given by the products of
scattering matrix elements, Eqs. (7) and (8).

some conceptual progress has been made, especially in the
form of equilibrium propagation [18–20] and Hamiltonian-
echo back-propagation [21]. In the presence of decay, a
back-propagation algorithm was developed [22] and imple-
mented [23] only for specific types of non-linearities. An-
other approach to physical training is to adjust parameters
based on feedback [24] or random parameter shifts [10]. How-
ever, this approach may scale unfavourably with network



Training

Gradient descent on cost function

δθ = −
∂C
∂θ

θ

C



Training

δθ = −
∂C
∂θ

Challenge: obtain gradients efficiently 
for a physical system! 
 
Backpropagation on a model (but: model?) 
Hamiltonian Echo Backpropagation (time-reversal) 
Equilibrium propagation (relaxation system)

Gradient descent on cost function



Training

Here: Gradients from simple scattering matrix 
measurements! 

Fully Non-Linear Neuromorphic Computing with Linear Wave Scattering

Clara C. Wanjura and Florian Marquardt
Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany

(Dated: September 10, 2023)

The increasing complexity of neural networks and the energy consumption associated with training and in-
ference create a need for alternative neuromorphic approaches, e.g. using optics. Current proposals and im-
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an exponential increase in energy consumption and training
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ficient alternatives sparking the rapidly developing field of
neuromorphic computing [1] in which computations are per-
formed with physical artificial neurons.

Typically, neural networks connect neurons in consecutive
layers through linear maps and non-linear activation func-
tions. So far, the prevalent approach has been to realise the lin-
ear maps with linear physical interactions and employ physi-
cal non-linearities (or approaches like optoelectronic conver-
sion) to realise the non-linear activation function. Among
the many neuromorphic computing platforms [2–5], optical
platforms [2, 3, 6] are one of the most promising contenders
for neuromorphic computing as they efficiently allow to im-
plement the linear aspects of the neural network offering a
high degree of parallelism, high computation speeds and scal-
ability. Furthermore, linear computations can be performed
passively [7, 8] while propagation losses can be very small
making these devices potentially very energy efficient. Lin-
ear optical networks (in free space or integrated photonics)
for implementing the linear aspects of neural networks, i.e.,
matrix-vector multiplication, are already well developed and
have become the basis of commercial chips [9, 10].

On the other hand, physical non-linearities to realise the
non-linear aspects of the neural network are still hard to im-
plement, incurring substantial hardware overhead, fabrication
challenges, and other possibly demanding requirements [11–
13], such as high laser powers in an implementation with
non-linear crystals. Furthermore, non-linearities can induce
chaotic dynamics which makes it impossible to train the sys-
tem. An alternative approach bypasses these challenges by
applying the non-linearity opto-electronically [14–17]. How-
ever, proposals relying on optoelectronic conversion to realise
the non-linear activation functions may be bulky, less energy-
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propagation. a The input to the linear, neuromorphic system is en-
coded in some of the tunable system parameters while the output is
determined through the scattering response to a probe signal. Other
controllable parameters serve as learnable parameters. b Example
for an implementation using wave propagation through a network of
coupled modes (e.g. optical resonators). Here, the detunings �j of
some of the optical modes are utilized as input x while other de-
tunings and the coupling constants Jj between modes are learnable
parameters ✓. The output is a suitable set of scattering matrix ele-
ments, Eqs. (3) and 4, which we obtain by comparing the response
to the probe field, Eq. (1). c-d Due to the linearity of these sys-
tems, we have access to the gradients w.r.t. system parameters which
are required for training. The gradients are given by the products of
scattering matrix elements, Eqs. (7) and (8).

some conceptual progress has been made, especially in the
form of equilibrium propagation [18–20] and Hamiltonian-
echo back-propagation [21]. In the presence of decay, a
back-propagation algorithm was developed [22] and imple-
mented [23] only for specific types of non-linearities. An-
other approach to physical training is to adjust parameters
based on feedback [24] or random parameter shifts [10]. How-
ever, this approach may scale unfavourably with network
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FIG. 2. Digit recognition using a scattering neuromorphic system with layered structure. a Scattering network used for digit recognition
consisting of two or three fully connected layers with N1 = 128, N3 = 10 and either without hidden layer or with N2 2 {20, 30, 64}. We
consider equal decay rates , set the intrinsic decay to zero 0 = 0 and start from J/ = 2 with random disorder on top. The input consisting
of 64 greyscale pixel values is encoded in the detuning of the first layer to which we initially add a trainable offset which is initialised according
to Eq. (14). A vector of pixel values serves as input in which we detune the background to xj = 5 and make the foreground, the numerals,
resonant xj = 0. The inset illustrates the non-linear effect of the first layer showing real and imaginary part of [G1(0)]j,j , Eq. (11). The
response to a probe signal at the third layer constitutes the output vector. The index of the maximal response constitutes the class. b Evolution
of the test accuracy during training for different architectures: without hidden layer, or with N2 = {20, 30, 64}. Here, an iteration over
one mini-batch corresponds to evaluating 200 randomly chosen images while the shown test accuracy is evaluated on the entire test set.
Increasing the size of the hidden layer improves both the convergence speed and the best accuracy. c The confusion matrix of the trained
model with N2 = 64 after 28, 000 iterations. The overall test accuracy amounts to 94.66%. d Convergence for individual input pictures. The
scattering matrix element with the largest imaginary part indicates the class. In most cases, the training rapidly converges towards the correct
classification results. Digits of similar appearance, however, are frequently mistaken for the other, such as the digit 4 and 9, and only converge
relatively late during training. For the training run shown here, we used Adam optimisation.

and G0 = 0 so that in the last layer, we have

aL = GL(!)aL,probe. (12)

At the last layer, the matrix GL(!) is equal to the system’s

Green’s function G(!) = GL(!), Eq. (3).

Employing input-output boundary conditions [33],
aL,res = aL,probe +

p
(L)aL, we obtain the scattering

matrix for the response at the last layer

Sout(!, x, ✓) = 1 +

p
(L)

"

(L)
tot

2
+ i(�

(L) � !) + J
(L�1)†G(L�1)

J
(L�1)

#�1 p
(L) (13)

The structure of Eqs. (13) and (11) is reminiscent of a gen-
eralised continued fraction, with the difference that scalar co-
efficients are replaced by matrices. We explore this analogy
further in the SI where we also show that for scalar input and
output, the scattering matrix (13) can approximate arbitrary
analytic functions. Furthermore, the recursive structure de-
fined by Eqs. (11) and (12) mimics that of a standard artifi-
cial neural network in which the weight matrix is replaced by
the coupling matrix and the matrix inverse serves as activa-
tion function. However, in contrast to the standard activation
function, which is applied element-wise for each neuron, the
matrix inversion acts on the entire layer. To gain intuition for
the effect of taking the matrix inverse, we plot a diagonal en-
try of [G1(0)]j,j/ = [

1
2 + i�

(1)
j

/
(1)
j

]
�1 in Fig. 2 a. The

real part follows a Lorentzian whereas the imaginary part is

reminiscent of a tapered sigmoid function.
The recursive structure of the scattering matrix (13) bears

some resemblance to the variational quantum circuits of the
quantum machine learning literature [34, 35] in which the sub-
sequent application of discrete unitary operators allows to re-
alise non-linear operations. In contrast, here, we consider the
steady state scattering response which allows waves to propa-
gate back and forth giving rise to yet more complicated non-
linear maps (3).

B. Test case: digit recognition

To benchmark our model, we simulate and train a network
with three layers, see Fig. 2 a, on handwritten digit classifica-
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cial neural network in which the weight matrix is replaced by
the coupling matrix and the matrix inverse serves as activa-
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sequent application of discrete unitary operators allows to re-
alise non-linear operations. In contrast, here, we consider the
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FIG. 3. Implementation with racetrack resonators. a Neuron modes are represented by racetrack resonators and racetrack resonators (light
blue) of different layers in the neural network are crossed employing techniques to reduce the cross-talk between them. They are then coupled
via microring resonators (dark blue)—the coupler modes. Changing the detuning of the coupler modes changes the effective coupling strength
J between any two racetrack resonators that cross. This is illustrated in the ersatz image on the right. b The advantage of this design is that
the system can be scaled up while requiring only a minimal number of waveguide crossing and the neuron modes can still be accessed with
waveguides from outside. c Three possibilities to measure gradients: following the expression for the gradient in terms of scattering matrix
elements, one can either measure the response at the racetrack resonators and use Eq. (8) or directly at the microring resonators and use Eq. (7)
to update parameters. Alternative to coupling to waveguides to each resonator, optical grating tap monitors can be utilised which light up
according to the output signal at that resonator which can be recorded by a camera [16, 37]. In commercial implementations, grating tap
monitors can be complemented by integrated photodetectors for a faster readout. To be sensitive to a specific quadrature (4), the light coupled
to the grating tap monitor can be combined with light from a local oscillator (not shown) to perform a homodyne measurement. d Scale of the
relevant frequencies in an optical implementation. e Distribution of neuron modes and coupler mode detunings after training.

(iii) The choice of R depends on the complexity of the train-
ing set. For the digit recognition task, R = 2 was sufficient,
but more complicated datasets can require larger R. We ex-
plore this question in the SI, where we show for scalar func-
tions that R determines the approximation order and utilise
our system to fit scalar functions. To fit quickly oscillating
functions or functions with other sharp features, we require
larger R.

Here, we only considered injecting the input at the first
layer. However, it could be interesting to explore in the future
whether spreading the (replicated) input over different layers
holds an advantage, since this would allow to make subse-
quent layers more ‘non-linear’.

(iv) The intrinsic decay rate determines the sharpest fea-
ture that can be resolved, or, equivalently, a larger rate 

smoothens the output functions. It is straightforward to see
from Eq. (7) that the derivative of the output w.r.t. a com-
ponent of the input scales with . In the context of one-
dimensional function fitting this is straightforward to picture
and we provide some examples in the SI. However, the net-
work does not lose its use since the larger decay rate can be
compensated for by rescaling the range of the input according

to . For instance, for the digit recognition training, we set
the image background to �/ = 5 and made the pixels stor-
ing the number resonant �/ = 0 which is still possible in
lossy systems.

IV. PROPOSED OPTICAL IMPLEMENTATION

A. Racetrack resonator architecture

The experimental realisation of our proposed system has
two main requirements: (i) a sufficiently large number of
system parameters (not necessarily all) needs to be tunable;
(ii) a large number of modes needs to be sufficiently densely
connected. A simple geometry could consist of localised
resonators (neuron modes) connected by waveguides (cou-
plings). However, we find a more promising geometry in
terms of tunability and spatial layout.

Here we propose an integrated-photonics design based on
racetrack resonators as neuron modes that are coupled via mi-
croring resonators which realise an effective coupling between

racetrack resonators
tuneable

couplers/
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(iii) The choice of R depends on the complexity of the train-
ing set. For the digit recognition task, R = 2 was sufficient,
but more complicated datasets can require larger R. We ex-
plore this question in the SI, where we show for scalar func-
tions that R determines the approximation order and utilise
our system to fit scalar functions. To fit quickly oscillating
functions or functions with other sharp features, we require
larger R.

Here, we only considered injecting the input at the first
layer. However, it could be interesting to explore in the future
whether spreading the (replicated) input over different layers
holds an advantage, since this would allow to make subse-
quent layers more ‘non-linear’.

(iv) The intrinsic decay rate determines the sharpest fea-
ture that can be resolved, or, equivalently, a larger rate 

smoothens the output functions. It is straightforward to see
from Eq. (7) that the derivative of the output w.r.t. a com-
ponent of the input scales with . In the context of one-
dimensional function fitting this is straightforward to picture
and we provide some examples in the SI. However, the net-
work does not lose its use since the larger decay rate can be
compensated for by rescaling the range of the input according

to . For instance, for the digit recognition training, we set
the image background to �/ = 5 and made the pixels stor-
ing the number resonant �/ = 0 which is still possible in
lossy systems.

IV. PROPOSED OPTICAL IMPLEMENTATION

A. Racetrack resonator architecture

The experimental realisation of our proposed system has
two main requirements: (i) a sufficiently large number of
system parameters (not necessarily all) needs to be tunable;
(ii) a large number of modes needs to be sufficiently densely
connected. A simple geometry could consist of localised
resonators (neuron modes) connected by waveguides (cou-
plings). However, we find a more promising geometry in
terms of tunability and spatial layout.

Here we propose an integrated-photonics design based on
racetrack resonators as neuron modes that are coupled via mi-
croring resonators which realise an effective coupling between

read off gradients needed 
for training: 

grating tap monitors



effective
coupling   

decay

bare
coupling  

coupler
detuning

initial
disorder
couplers

disorder
neurons

FSR
neurons

FSR
couplers

2GHz 10GHz 20GHz 100GHz 10THz<1THz

coupler
modes

neuron
modes

coupler
modes
neuron
modes

neuron
mode

a

b

c

d

e

neuron
modes
layer 1

input

output

neuron
modes
layer 2

neuron
modes
layer 3

grating tap
monitors

-20

-10

0

10

20

0 0.1 0 0.1 0 0.1 0 0.1 0 0.1

neuron
modes

layer 2layer 1 layer 3

coupler
modes

neuron
modes

coupler
modes

neuron
modes

layer 2
layer3

layer 1
layer2

Fully nonlinear neuromorphic 
learning machine based on linear wave 

scattering

C. Wanjura, F. Marquardt arXiv: 2308.16181 

…should work in many platforms 
simple training, simple inference

similar ideas & free-space experiments:

 
M. Yildirim, N. U. Dinc, I. Oguz, D. Psaltis,  
and C. Moser, arXiv:2307.08533 

 
F. Xia, K. Kim, Y. Eliezer, L. Shaughnessy, S. Gigan, 
and H. Cao, arXiv:2307.08558  



Physical self-learning machines as new 
tools for machine learning

Victor Lopez-Pastor & F.M. 

Phys. Rev. X 13, 031020


Clara Wanjura & F.M.  arXiv 2308.16181 

Hamiltonian Echo Backpropagation


Nonlinear neuromorphic system 
via linear waves


General physical training procedure


Suitable for any linear platform


