Machine learning based on physical dynamics

Florian Marquardt Max Planck Institute for the Science of Light and Friedrich-Alexander Universität Erlangen-Nürnberg works with: Victor Lopez-Pastor (Phys. Rev. X 2023) Clara Wanjura (arXiv 2023)

DEEP LEARNING REVOLUTION

2012 IMAGENET

IMAGE RECOGNITION

2020 GPT-3

 WRITING
TEX7

-> NEUROMORPHIC COMPUTING

NEUROMORPHIC COMPUTING

(Dong et al 2019) IN COMPLEX MEDIA OPTICS

TUNEABLE INTERFEROMETER PHASE-CHANGE MATERIALS

(Feldmann et al 2019)

LEARNING TO FOLD

(Stern et al 2020)

RESISTOR

NETWORKS

(Pashine 2021)

MECHANICAL NETWORKS

(Dillavou et al 2022)

A new way to learn: Hamiltonian Echo Backpropagation

Victor Lopez-Pastor & F.M. Phys. Rev. X 13, 031020 (2023)

PHYSICAL LEARNING MACHINE

PHYSICAL LEARNING MACHINE

PHYSICAL LEARNING MACHINE

HOW TO LEARN? (FIND RIGHT & TO GET DESIRED INPUT→OUTPUT)

OPTIMIZATION-BASED RULES

GRADIENT DESCENT OF COST FUNCTION

BIOLOGY-INSPIRED LEARNING RULES

OPTIMIZATION-BASED RULES

GRADIENT DESCENT OF COST FUNCTION

"NEURONS THAT FIRE TOGETHER WIRE TOGETHER"

Training neuromorphic devices

Reservoir computing

Parameter shift method

Physical setup

Simulation $\partial f_{
m model}$

Hybrid method Wright,Onodera,..., McMahon 2022

Physical backprop. for special systemsWagner & Psaltis 1987Hughes,...,Fan 2018Guo,...,Lvovsky 2021

Equilibrium Propagation Scellier,..., Bengio 2017 Stern,...,Liu 2021

Physical backpropagation **and** Physical parameter update

PHYSICAL <u>SELF-LEARNING</u> MACHINE AUTONOMOUS, NO FEEDBACK

WE WANT: PHYSICAL BACKPROPAGATION <u>AND</u> PHYSICAL LEARNING UPDATE

GOAL: MINIMIZE (OST FUNCTION $C = (OUTPUT - TARGET)^{2}$

HERE: ARBITRARY TIME-REVERSAL-INVARIANT HAMILTONIAN

WITH TIME-REVERSAL OPERATION (!)

THE SELF-LEARNING PINBALL MACHINE

NOW: TIME-REVERSAL OPERATION

DYNAMICS CHANGED IN THE RIGHT WAY ⇒ "LEARNING"!

TIME-REVERSAL INVARIANCE $\Rightarrow \quad \Phi_{\text{ECHO}}(t) = \Phi^{*}(-t)$

Victor Lopez-Pastor & F.M. , Phys. Rev. X 13, 031020 (2023)

NEEDED: PERTURBED FORWARD EVOLUTION

ACCESSIBLE: PERTURBED BACKWARD EVOLUTION

 $\rightarrow \mathcal{G}_{ECHO}(T, O)$

 $\mathcal{G}_{\Phi}(O, -T)^{\dagger}$ GREEN'S FUNCTION

cf adjoint method RELATED DUE TO TIME-REVERSAL-INVARIANCE

SELF-LEARNING Nonlinear Wave Fields

PSALTIS ET AL (1987 ff)

NONLIN. OPTICS SELF-LEARNING

BUT: NEED TO ENGINEER FORWARD vs BACKWARD TRANSMISSION HUGHES,..., FAN (2018) GENERAL PHYSICAL BACKPROP BUT: NO PHYSICAL UPDATE

SUMMARY: HAMILTONIAN ECHO BACKPROPAGATION

V PHYSICAL BACKPROPAGATION

V PHYSICAL LEARNING UPDATE (VIA INTRINSIC DYNAMICS)

> HAMILTONIAN-INDEPENDENT (ANY TIME-REVERSAL-INVARIANT SYSTEM)

✓ NO ACCESS TO INTERNALS OF "NONLINEAR CORE" = PHYSICAL SYSTEM NEEDED

V AGNOSTIC OF PHYSICS PLATFORM

Victor Lopez-Pastor & F.M. , Phys. Rev. X 13, 031020 (2023)

FIRST NUMERICAL EXAMPLES

LEARNING XOR

 $\begin{aligned} & COUPLED NONLINEAR WAVES \\ & i \dot{\Psi} = \frac{\beta}{2} \Delta \Psi + (\chi \theta + g |\Psi|^2) \Psi \\ & \kappa ERR \end{aligned}$ $i \dot{\Theta} = i \Omega \pi_{\theta} + \chi |\Psi|^2 \end{aligned}$

FORWARD

TIME

REVERSAL

OPERATION

+ ERROR SIGNAL

TIME

BACKWARD

IMAGE CLASSIFICATION

Victor Lopez-Pastor & F.M. , Phys. Rev. X 13, 031020 (2023)

POSSIBLE EXPERIMENTAL PLATFORMS

REQUIREMENTS & CHALLENGES

→ NONLINEAR → LOW LOSS (→ RE-AMPLIFICATION)

→ TIME-REVERSAL OPERATION & "DECAY STEP" → NOISE, NONIDEALITY IN THESE OPERATIONS (→CALIBRATION, ROBUSTNESS)

-> LONG-TERM STORAGE OF LEARMING FIELD (-> READOUT)

NONLINEAR OPTICS EXAMPLE: INTEGRATED PHOTONICS WAVEGUIDES & NONLINEAR RESONATORS

RESONATORS (ENHANCED NONLINEARITY) WAVEGUIDES & BEAM SPLITTERS (LINEAR)

BUILD ON OPTICAL NEURAL NETWORKS: WAGNER & PSALTIS (1987 F.), SKINNER ET AL (1995), SHEN,..., ENGLUND, SOLJACIC (2017), HUGHES,..., FAN (2018), GUO,..., LVOVSKY (2019), FELDMAN,..., PERNICE (2019), ... REVIEW: WETZSTEIN ET AL (2020)

Victor Lopez-Pastor & F.M., Phys. Rev. X 13, 031020 (2023)

Nonlinear neuromorphic system from linear wave scattering

Clara Wanjura & F.M. arXiv 2308.16181

typical optical neuromorphic system

nonlinearity for expressivity

$$y = f(x)$$

typical optical neuromorphic system

nonlinearity for expressivity

optical nonlinearities (but: power levels) optoelectronics (but: delays, power)

 $y = S(\omega)a_{\text{probe}}$

Scattering Matrix

Training

Gradient descent on cost function

Training

Gradient descent on cost function

$$\delta\theta = -\frac{\partial C}{\partial \theta}$$

Challenge: obtain gradients efficiently for a physical system!

Backpropagation on a model (but: model?) Hamiltonian Echo Backpropagation (time-reversal) Equilibrium propagation (relaxation system)

Training

Here: Gradients from simple scattering matrix measurements! $\partial S_{r,p}$. 1

C. Wanjura, F. Marquardt arXiv: 2308.16181

Simple tight-binding model

Simple tight-binding model Training on handwritten digits

Better accuracy than purely linear neural network

Possible optical implementation

racetrack resonators

Possible optical implementation

Fully nonlinear neuromorphic learning machine based on linear wave scattering ...should work in many platforms simple training, simple inference C. Wanjura, F. Marquardt arXiv: 2308.16181 similar ideas & free-space experiments: M. Yildirim, N. U. Dinc, I. Oguz, D. Psaltis, and C. Moser, arXiv:2307.08533

F. Xia, K. Kim, Y. Eliezer, L. Shaughnessy, S. Gigan, and H. Cao, arXiv:2307.08558

Physical self-learning machines as new tools for machine learning

Hamiltonian Echo Backpropagation General physical training procedure Victor Lopez-Pastor & F.M. Phys. Rev. X 13, 031020

Nonlinear neuromorphic system via linear waves Suitable for any linear platform Clara Wanjura & F.M. arXiv 2308.16181

