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Deep Learning Computing Paradigm
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What is a deep resistive network?



Computing with a Resistor Network

Circuit elements:
e voltage sources (inputs)

output
voltage

input
voltage

output = F'(input)

Reference: Scellier and Mishra. “A universal approximation theorem for nonlinear resistive networks” (2023)



Computing with a Resistor Network

variable

Circuit elements: resistor

e voltage sources (inputs)
e variable resistors (trainable weights)

output
voltage

input
voltage

output = F, conductances(inpUt>

Reference: Scellier and Mishra. “A universal approximation theorem for nonlinear resistive networks” (2023)



Computing with a Resistor Network

variable

Circuit elements: resistor

e voltage sources (inputs)
e variable resistors (trainable weights) A

e diodes (nonlinearities) tout
outpu

voltage
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input .
voltage e SZ diode

output = F, conductances(inpUt>

Reference: Scellier and Mishra. “A universal approximation theorem for nonlinear resistive networks” (2023)



Computing with a Resistor Network

Circuit elements:
e voltage sources (inputs)
e variable resistors (trainable weights)
e diodes (nonlinearities)
e VCVS (amplification)

Such electrical circuits are input
universal function approximators voltage

variable
resistor

output
voltage

output = F, conductances(mpUt)

Reference: Scellier and Mishra. “A universal approximation theorem for nonlinear resistive networks” (2023)



Deep Resistive Network

Variable Resistor

Input : j First Second
Voltage 4/\00\/7 Hidden Hidden Output
Sources ‘ | Layer Layer Voltages
e
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Reference: Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Deep Resistive Network

e input voltage sources

Variable Resistor

Input 1 j First Second

Voltage 4/\00\/7 Hidden Hidden Output
Sources ‘ | Layer Layer Voltages
e

( ) )

Input 1

e

Input 2 2§ 2& })utput 2

Reference: Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Deep Resistive Network

e input voltage sources
e output voltages

Variable Resistor

Input : T First Second
Voltage J\W\ﬁ Hidden Hidden Output
Sources ‘ Layer Layer Voltages
— ,Q, ,7 .
Input 1 2& 2& [Output |
Input 2 2§ 2& })utput 2
J

Reference: Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Deep Resistive Network

e input voltage sources
e output voltages
e crossbar arrays of variable resistors (linear trainable weights)

Variable Resistor

Input : T First Second
Voltage J\W\ﬁ Hidden Hidden Output
Sources ‘ Layer Layer Voltages

Input 1

(57| % (S o

Input 2 2§ 2& })utput 2

Reference: Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Deep Resistive Network

e input voltage sources
e output voltages
e crossbar arrays of variable resistors (linear trainable weights)
e diodes (nonlinearities)
Variable Resistor

Input [ First Second

Voltage —W\ﬁ Hidden Hidden Output

Sources ! Layer Layer Voltages

&

Input 1 2& 2& })utput |

Input 2 2§ 2& })utput 2

Reference: Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Deep Resistive Network

Properties:
e universal function approximator
e can be trained via equilibrium propagation

Variable Resistor

Input ! ! First Second
Voltage vW\r' Hidden Hidden Output
Sources ! Layer Layer Voltages

Input 1

e

Input 2 2§ 2& })utput 2

Reference: Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)

15



What is equilibrium propagation?
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Equilibrium Propagation in a Deep Resistive Network

Input ﬂé M Z# M # M [Output 1
.
References: o 2[¢ M # M # M Output 2

Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Equilibrium Propagation in a Deep Resistive Network

EP learning requires augmenting the network:
e for each pair of output nodes, add switch + voltage source + resistor

ﬂ N

w0 W/ 5 XA 7 Y| ok,
XK K XK.
e ™10 2 3 P 5 2 G

Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2(Na=d )
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)




Equilibrium Propagation in a Deep Resistive Network

Training procedure:

6T & YT & XA ok,
X X W
o IO P E P E P O,

Scellier and and Benglo “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017):
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)

19



Equilibrium Propagation in a Deep Resistive Network

Training procedure:
1. Set input voltages.

Input 1 [ é)

Desired
Output 1
o

XA 3
e QLN B P B

Desired
Output 2
o

Scellier and BengIG. lum propagation.” Frontiers in computational neuroscience 11 (2017): 24.

Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Equilibrium Propagation in a Deep Resistive Network

Training procedure:
1. Open output switches.

IO NA XA X el
28 XK XK
e "0 LN 8 N 8 PN

Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2Qq17):
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Output 2
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Equilibrium Propagation in a Deep Resistive Network

Training procedure:
1. Open output switches. Observe the steady state (“free state”).

6T & XT & XA ok,
X X W
YA G A ”E> e,

Scellier and and Benglo “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017):
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Equilibrium Propagation in a Deep Resistive Network

Training procedure:
1. Open output switches: “free state”
2. Set desired output voltages.

6% ST E NS

'vf/\(
/Oé

2 XK XK,
e 0 LN 5 PN 5 P

Scellier and and Benglo “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017):
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Equilibrium Propagation in a Deep Resistive Network

Training procedure:
1. Open output switches: “free state”
2. Close output switches.

N ED Y & Mg@zﬁil
XK XK ,
e ™0 L 7 P B M i

Scellier and and Benglo “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2Q17):
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020
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Equilibrium Propagation in a Deep Resistive Network

Training procedure:
1. Open output switches: “free state”
2. Close output switches. Observe the new steady state (“nudged state”).

6T & XT & T ok,
-
YA G A f§> e,

Scellier and and Benglo “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017):
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Equilibrium Propagation in a Deep Resistive Network

Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”

Ui

25

.,
3. For each resistor —ApN—— update the conductance g Ag= - (

2 2
free — Ynudged

)

S ESAEINAE
A \EIVAE:

Scellier and Bengio. “Equilibriu o, Frontie s« onal neurdesi 17): 24.
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Equilibrium Propagation in a Deep Resistive Network

Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”

— g n
3. For each resistor —ApN—— update the conductance g Ag = 53 (

2 2
Yfree — Ynudged

local in space

-6
- e
- €Y €D &

Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017):
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Equilibrium Propagation in a Deep Resistive Network

Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”

2

2

3. For each resistor —ApN—— update the conductance g 9= % Yfree — Ynudged

)

Theorem: weight updates approximate gradient descent on the MSE

Ag = -V MSE + O()

1O NA XA F XA Ok
. @ O
e IO LN E P E S O

Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017):
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Equilibrium Propagation in a Deep Resistive Network

Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”
o U ( 2 2

3. For each resistor update the conductance g Ag=— Vtree — Yhudeed
20 &

)

Theorem: weight updates approximate gradient descent on the MSE

Ag = -V MSE + O()

Bottom line: performs stochastic gradient descent (SGD)
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Equilibrium Propagation in a Deep Resistive Network

Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”

, — T _ (2 2
3. For each resistor ——AJN—— update the conductance g Ag = (Ufmc ~— Ynudged

2P

)

Theorem: weight updates approximate gradient descent on the cost function

Ag=-—nV4C + O(f)

Bottom line: performs stochastic gradient descent (SGD)

Remarks:
1. applicable to any cost function C (not just the MSE)
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Equilibrium Propagation in a Deep Resistive Network

Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”

, — T _ (2 2
3. For each resistor ——AJN—— update the conductance g Ag = (Ufmc ~— Ynudged

2P

)

Theorem: weight updates approximate gradient descent on the cost function

Ag=-—nV4C + O(f)

Bottom line: performs stochastic gradient descent (SGD)

Remarks:
1. applicable to any cost function C (not just the MSE)
2. applicable to any network topology (not just a DRN)
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Equilibrium Propagation in a Deep Resistive Network

Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”

)

3. For each resist ; date the conduct Ag:i(@2 —
. For each resistor —ApN—— update the conductance g 20 free — Ynudged
Theorem: weight updates approxima adient descent on the cost function
Ag = —nVgC+ Q(B)
Bottom line: performs stochastic gradient descent (SGD)
Remarks:

1. applicable to any cost function C (not just the MSE)
2. applicable to any network topology (not just a DRN)
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Equilibrium Propagation in a Deep Resistive Network

Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”

: — Ag — n (2 2
3. For each resistor W update the conductance g g = % Ufree — Ynudged
Theorem: weight updates perform gradient descent on a surrogate function
Ag = _'77Vg£,,8 e Lg=C +
Bottom line: performs stochastic gradient descent (SGD)
Remarks:

1. applicable to any cost function C (not just the MSE)
2. applicable to any network topology (not just a DRN)
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Equilibrium Propagation in a Deep Resistive Network

Sketch of the proof:

e Equilibrium propagation generally applies to systems whose steady state minimizes a functional
(variational principle) [1,2]

e Nonlinear resistive networks minimize a functional called co-content [3]

References

[1] Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.

[2] Scellier. “A deep learning theory for neural networks grounded in physics.” PhD thesis, Université de Montréal (2021).

[3] Millar. "CXVI. Some general theorems for non-linear systems possessing resistance." The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 42.333 (1951): 1150-1160.
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What is the co-content?

35



i-v curve of branch (j,k) T 1

A —®
?
(

B |

Co-content of branch (j,k) Total co-content of the circuit

Uik
Ejk; = / fjk(u)du Etotal — Z Ejk
0 gk

References
Millar. "CXVI. Some general theorems for non-linear systems possessing resistance." The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 42.333 (1951): 1150-1160.

Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020) 16



i-v curve of branch (j,k) T 1

(P

=1,(v)
A T —®
_— v
Co-content of branch (j,k) Total co-content of the circuit
Uik
Ejk; = fjk(u)du Etotal — E Ejk
0 jik

branch equation + KVL KCL

| |
5Etotal = Z 5E]k — Z fjk (S”Ujk = Zijk(&)j — (5U]<;) = Z (SUj (Z ij) =0
7,k g,k 75k J k
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Linear resistor

7:/\

Co-content of linear resistor

L 5
E=-
Y

(half the power dissipation)

Total co-content of the circuit

1 2
Eiotal = 9 Zgjkvjk
1,k
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Linear resistor

7:/\

Co-content of linear resistor

L 5
E=-
Y

(half the power dissipation)

Total co-content of the circuit

1 2
Eiotal = 5 Z 9jkVik + Ediodes
7.k
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Equilibrium Propagation Learning Rule

Learning rule

Co-content
N (9 2 1 2 |
Ag — % ('Ufree — 'Unudged) k= 9 Z gu~ + EledOS
resistor

~ =~
0,E(free) 0,E(nudged)

Reference: Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
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Equilibrium Propagation Learning Rule

Learning rule

Co-content
n 1
Ag = 5 (0,E(free) — 0,E(nudged)) E= ire%t:or 9v” + Ediodes

Reference: Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.




Equilibrium Propagation Learning Rule

Learning rule

Aw = % (0, E(free) — 0, F(nudged))

Reference: Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
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Equilibrium Propagation Learning Rule

A

©  Desired output
(O Nudged output

© Free output

Energy

Learning rule

Aw = % (0, E(free) — 0, F(nudged))

Reference: Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
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Variants of Equilibrium Propagation (EP)

A

©  Desired output
(O  Positively-perturbed output -

)
© Free output 0

L

Positively-perturbed EP
pull outputs towards
desired outputs

References:
Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
Laborieux et al. “Scaling equilibrium propagation to deep ConvNets by reducing its gradient estimator bias” (2021) 44

Scellier et al. “Energy-based learning algorithms: a comparative study” NeurlPS (2023)



Variants of Equilibrium Propagation (EP)
A

©  Desired output
(O  Positively-perturbed output >
)
Free output
) p &
@® Negatively-perturbed output
Positively-perturbed EP | Negatively-perturbed EP
pull outputs towards push outputs away from
desired outputs desired outputs
References:

Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
Laborieux et al. “Scaling equilibrium propagation to deep ConvNets by reducing its gradient estimator bias” (2021)
Scellier et al. “Energy-based learning algorithms: a comparative study” NeurlPS (2023)
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Variants of Equilibrium Propagation (EP)

©  Desired output
(O  Positively-perturbed output
© Free output
@® Negatively-perturbed output
Positively-perturbed EP | Negatively-perturbed EP Centered EP
pull outputs towards | push outputs away from | = one positive
desired outputs desired outputs perturbation
-> one negative
perturbation
References:

Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
Laborieux et al. “Scaling equilibrium propagation to deep ConvNets by reducing its gradient estimator bias” (2021)
Scellier et al. “Energy-based learning algorithms: a comparative study” NeurlPS (2023)

Energy
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® ® OO

Desired output

Variants of Equilibrium Propagation (EP)

Positively-perturbed output

Free output

Negatively-perturbed output

Performance in
practice?

Positively-perturbed EP

Negatively-perturbed EP

Centered EP

pull outputs towards
desired outputs

push outputs away from
desired outputs

one positive
perturbation
one negative
perturbation

0O

O

00

Energy
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Variants of Equilibrium Propagation (EP)

©  Desired output
(O  Positively-perturbed output =
© Free output 2
L
@® Negatively-perturbed output
Positively-perturbed EP | Negatively-perturbed EP Centered EP
Theorem: EP computes the gradient of a surrogate function that approximates the cost function
Aw = —nVyLg Lg=C+0(B)
48

Reference: Scellier et al. “Energy-based learning algorithms: a comparative study” NeurlPS (2023)



Variants of Equilibrium Propagation (EP)

©  Desired output
(O  Positively-perturbed output =
© Free output 2
L
@® Negatively-perturbed output
Positively-perturbed EP | Negatively-perturbed EP Centered EP
LP-EP =C+0(p) LN-EP =C+0(p) LC-EP =C+ O(ﬂz)
Properties of the
surrogate function LopsC Lyep2 C
(lower bound) (upper bound)
49

Reference: Scellier et al. “Energy-based learning algorithms: a comparative study” NeurlPS (2023)



Hardware Experiments

Linear resistor network [1] Nonlinear resistive network [2]

e Network of 9 nodes and 16 edges e Network of 32 (transistor-based) twin edges
e Task: classify the Iris dataset e Tasks: XOR and nonlinear regression

Caveat: use two copies of the same network
(one for the free state, one for the nudge state)

References
[1] Dillavou et al. "Demonstration of decentralized physics-driven learning." Physical Review Applied (2022)
[2] Dillavou et al. "Circuits that train themselves: decentralized, physics-driven learning." (2023)
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Equilibrium propagation

nudged state

>

+
=)

free state

o

nudging value

time

. N (2 2
Learning rule Ag = % <Ufree - Unudged)



Equilibrium propagation Frequency propagation [1]

positive negative
state state
A positive state A l

() +ﬁ (0] +ﬁ
> -}
g g
o 0 2 0
c c
D negative state [=) ‘
5 B E
c c 'ﬁ

—> —>

time time
Learning rule Ag = ( r21 vgos) state(t) = mean + amplitude * sin(wt) + O(p?)

i
77

= 5 (v + tpos) (e = o)

Reference

[1] Anisetti et al. "Frequency propagation: Multi-mechanism learning in nonlinear physical networks." (2022)



Simulations of deep resistive networks

Task: train a DRN to classify MNIST digits

Network size Number of Total Test error
(number of parameters) epochs duration rate
SPICE simulations [1] 0.16M 10 1 week 3.43%

References
[1] Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Simulations of deep resistive networks

Task: train a DRN to classify MNIST digits

Network size Number of Total Test error
(number of parameters) epochs duration rate
SPICE simulations [1] 0.16M 10 1 week 3.43%
DRN simulator [2,3] 51M 50 6 hours 1.40%
320x larger 5x more  28x shorter

The “network size” to “epoch duration” ratio is 45000 times larger

References

[1] Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
[2] “A fast algorithm to simulate nonlinear resistive networks”. To appear.

[3] Code will be available at https://github.com/rain-neuromorphics/energy-based-learning
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Simulations of deep resistive networks

Main idea:
e assumption: the circuit elements are ideal

Voltage Source Linear Resistor Diode VCVS
Vo v v Vout
SE—— E—— —
9
e T P Vout 4
Vout = Avin
i=gqv

Vg v v v Din

Reference: “A fast algorithm to simulate nonlinear resistive networks”. To appear.



Simulations of deep resistive networks

Main idea:
e assumption: the circuit elements are ideal
e the math considerably simplifies

Equation of a node voltage

gAJU])
V. = max
W Z 9kj o

(%) Uk /\N\’/T
vg = \M

Reference: “A fast algorithm to simulate nonlinear resistive networks”. To appear.
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Simulator for energy-based algorithms

Three key abstractions

Energy function
deep resistive network (DRN)

Energy minimizer

(in the space of network configurations)
e Dblock coordinate descent

Learning algorithm
(in the weight space)

e equilibrium propagation (positive, negative, centered, ...)

ink: Code will be available at https://github.com/rain-neuromorphics/eneragy-based-learning



https://github.com/rain-neuromorphics/energy-based-learning

Simulator for energy-based algorithms

Three key abstractions

Energy function

deep resistive network (DRN)
deep Hopfield network (DHN)

Energy minimizer

(in the space of network configurations)
e Dblock coordinate descent
e gradient descent

coupled learning

Learning algorithm
(in the weight space)

equilibrium propagation (positive, negative, centered, ...)
contrastive (Hebbian) learning

truncated backpropagation (baseline)
recurrent backpropagation (baseline)

ink: Code will be available at https://github.com/rain-neuromorphics/eneragy-based-learning



https://github.com/rain-neuromorphics/energy-based-learning

Scellier and Bengio [1]

MNIST

Ernoult et al. [2]

MNIST
Convolutional HN

References

—

Laborieux et al. [3]

CIFAR-10
3 days on a single GPU

—

-

Simulations of Hopfield networks

Laborieux and Zenke [4]

ImageNet 32*
* downsampled to 32x32 pixels

6 days on 4 GPUs

Scellier et al. [5]

CIFAR-100

3 hours on a single GPU
13.5 faster than [3]

[1] Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
[2] Ernoult et al. "Updates of equilibrium prop match gradients of backprop through time." NeurlPS (2019).
[3] Laborieux et al. “Scaling equilibrium propagation to deep ConvNets.” Frontiers in neuroscience (2021).
[4] Laborieux and Zenke. "Holomorphic equilibrium propagation." NeurlPS (2022).
[5] Scellier et al. “Energy-based learning algorithms: a comparative study.” NeurlPS (2023)
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Hardware experiments of Hopfield networks

nature electronics

Article https://doi.org/10.1038/541928-022-00869-w

Activity-difference training of deep neural
networks using memristor crossbars

Received: 10 March 2022 Su-in Yi', Jack D. Kendall?, R. Stanley Williams®' & Suhas Kumar ®?

Accepted: 13 October 2022

e 64 x 64 memristor crossbar array

e Task: classify Braille words
e demonstrate 10,000x improvement (over GPUs)

in energy efficiency for training

Caveat: use additional (SRAM) memory
to store the free and nudged states

Reference: Yi et al. "Activity-difference training of deep neural networks using memristor crossbars." Nature Electronics (2023) 60



Summary

Training deep resistive networks (DRNs) with equilibrium propagation (EP):
1.  DRNs are universal function approximators
2. EP performs gradient descent on a cost function
3. DRN simulator is 45,000x faster than SPICE simulations
4. Small-scale experiments demonstrate 10,000x energy efficiency gains over GPUs
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