Training deep resistive networks with equilibrium propagation

Aspen Winter Conference Computing with Physical Systems

11 January 2024

Benjamin Scellier

Research scientist at Rain Al

Acknowledgements

Jack Kendall Maxence Ernoult

Suhas Kumar

Ross Pantone

Yoshua Bengio Axel Laborieux Julie Grollier Damien Querlioz

Yann Ollivier

Siddhartha Mishra

Kalpana Manickavasagam

Vidyesh Anisetti Ananth Kandala Je

Jennifer Schwarz

Deep Learning Computing Paradigm

Deep neural network

Deep neural network

Backpropagation

Deep resistive network

What is a deep resistive network?

Circuit elements:

• voltage sources (inputs)

Circuit elements:

- voltage sources (inputs)
- variable resistors (trainable weights)

Circuit elements:

- voltage sources (inputs)
- variable resistors (trainable weights)
- diodes (nonlinearities)

Circuit elements:

- voltage sources (inputs)
- variable resistors (trainable weights)
- diodes (nonlinearities)
- VCVS (amplification)

Such electrical circuits are **universal function approximators**

• input voltage sources

- input voltage sources
- output voltages

- input voltage sources
- output voltages
- crossbar arrays of variable resistors (linear trainable weights)

- input voltage sources
- output voltages
- crossbar arrays of variable resistors (linear trainable weights)
- diodes (nonlinearities)

Properties:

- universal function approximator
- can be trained via equilibrium propagation

What is equilibrium propagation?

References:

Scellier and Bengio. "Equilibrium propagation." *Frontiers in computational neuroscience* 11 (2017): 24. Kendall et al. "Training end-to-end analog neural networks with equilibrium propagation" (2020)

EP learning requires augmenting the network:

• for each pair of output nodes, add switch + voltage source + resistor

Training procedure:

References:

Scellier and Bengio. "Equilibrium propagation." *Frontiers in computational neuroscience* 11 (2017): 24. Kendall et al. "Training end-to-end analog neural networks with equilibrium propagation" (2020)

Training procedure:

1. Set input voltages.

Training procedure:

1. Open output switches.

Training procedure:

1. Open output switches. Observe the steady state ("free state").

References:

Scellier and Bengio. "Equilibrium propagation." *Frontiers in computational neuroscience* 11 (2017): 24. Kendall et al. "Training end-to-end analog neural networks with equilibrium propagation" (2020)

Training procedure:

- 1. Open output switches: "free state"
- 2. Set desired output voltages.

Training procedure:

- 1. Open output switches: "free state"
- 2. Close output switches.

Training procedure:

References:

- 1. Open output switches: "free state"
- 2. Close output switches. Observe the new steady state ("nudged state").

Remarks:

1. applicable to any cost function C (not just the MSE)

Remarks:

- 1. applicable to any cost function C (not just the MSE)
- 2. applicable to any network topology (not just a DRN)

Remarks:

- 1. applicable to any cost function C (not just the MSE)
- 2. applicable to any network topology (not just a DRN)

2. applicable to any network topology (not just a DRN)

Sketch of the proof:

- Equilibrium propagation generally applies to systems whose steady state minimizes a functional (variational principle) [1,2]
- Nonlinear resistive networks minimize a functional called co-content [3]

<u>References</u>

[1] Scellier and Bengio. "Equilibrium propagation." Frontiers in computational neuroscience 11 (2017): 24.

[2] Scellier. "A deep learning theory for neural networks grounded in physics." PhD thesis, Université de Montréal (2021).

[3] Millar. "CXVI. Some general theorems for non-linear systems possessing resistance." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42.333 (1951): 1150-1160.

What is the co-content?

i-v curve of branch (j,k)

Co-content of branch (j,k) $E_{jk} = \int_0^{v_{jk}} f_{jk}(u) du$ Total co-content of the circuit

$$E_{\text{total}} = \sum_{j,k} E_{jk}$$

References

Millar. "CXVI. Some general theorems for non-linear systems possessing resistance." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42.333 (1951): 1150-1160. Kendall et al. "Training end-to-end analog neural networks with equilibrium propagation" (2020)

Co-content of linear resistor

$$E = \frac{1}{2}gv^2$$

(half the power dissipation)

Total co-content of the circuit

$$E_{\text{total}} = \frac{1}{2} \sum_{j,k} g_{jk} v_{jk}^2$$

Co-content of linear resistor

$$E = \frac{1}{2}gv^2$$

(half the power dissipation)

Total co-content of the circuit $E_{\text{total}} = \frac{1}{2} \sum_{j,k} g_{jk} v_{jk}^2 + E_{\text{diodes}}$

<u>Reference</u>: Scellier and Bengio. "Equilibrium propagation." *Frontiers in computational neuroscience* 11 (2017): 24.

Learning rule Co-content

$$\Delta g = \frac{\eta}{\beta} \left(\partial_g E(\text{free}) - \partial_g E(\text{nudged}) \right) \qquad E = \frac{1}{2} \sum_{\text{resistor}} gv^2 + E_{\text{diodes}}$$

Reference: Scellier and Bengio. "Equilibrium propagation." Frontiers in computational neuroscience 11 (2017): 24.

Learning rule

$$\Delta w = \frac{\eta}{\beta} \left(\partial_w E(\text{free}) - \partial_w E(\text{nudged}) \right)$$

<u>Reference:</u> Scellier and Bengio. "Equilibrium propagation." *Frontiers in computational neuroscience* 11 (2017): 24.

Learning rule

$$\Delta w = \frac{\eta}{\beta} \left(\partial_w E(\text{free}) - \partial_w E(\text{nudged}) \right)$$

References:

Scellier and Bengio. "Equilibrium propagation." *Frontiers in computational neuroscience* 11 (2017): 24. Laborieux et al. "Scaling equilibrium propagation to deep ConvNets by reducing its gradient estimator bias" (2021) Scellier et al. "Energy-based learning algorithms: a comparative study" NeurIPS (2023)

References:

Scellier and Bengio. "Equilibrium propagation." *Frontiers in computational neuroscience* 11 (2017): 24. Laborieux et al. "Scaling equilibrium propagation to deep ConvNets by reducing its gradient estimator bias" (2021) Scellier et al. "Energy-based learning algorithms: a comparative study" NeurIPS (2023)

- Desired output
- Positively-perturbed output
- Free output
- Negatively-perturbed output

Positively-perturbed EP	Negatively-perturbed EP		Centered EP
pull outputs towards desired outputs	push outputs away from desired outputs	\rightarrow	one positive perturbation one negative perturbation

References:

Scellier and Bengio. "Equilibrium propagation." *Frontiers in computational neuroscience* 11 (2017): 24. Laborieux et al. "Scaling equilibrium propagation to deep ConvNets by reducing its gradient estimator bias" (2021) Scellier et al. "Energy-based learning algorithms: a comparative study" NeurIPS (2023) Energy

- Desired output
- Positively-perturbed output
- Free output
- Negatively-perturbed output

Positively-perturbed EP	Negatively-perturbed EP		Centered EP
pull outputs towards desired outputs	push outputs away from desired outputs	\rightarrow \rightarrow	one positive perturbation one negative perturbation

Performance in practice?

Energy

Hardware Experiments

Linear resistor network [1]

- Network of 9 nodes and 16 edges
- Task: classify the Iris dataset

Nonlinear resistive network [2]

- Network of 32 (transistor-based) twin edges
- Tasks: XOR and nonlinear regression

Caveat: use two copies of the same network

(one for the free state, one for the nudge state)

References

[1] Dillavou et al. "Demonstration of decentralized physics-driven learning." Physical Review Applied (2022)[2] Dillavou et al. "Circuits that train themselves: decentralized, physics-driven learning." (2023)

Equilibrium propagation

Learning rule $\Delta g = \frac{\eta}{2\beta} \left(v_{\text{free}}^2 - v_{\text{nudged}}^2 \right)$

<u>Reference</u>

[1] Anisetti et al. "Frequency propagation: Multi-mechanism learning in nonlinear physical networks." (2022)

Task: train a DRN to classify MNIST digits

	Network size (number of parameters)	Number of epochs	Total duration	Test error rate
SPICE simulations [1]	0.16M	10	1 week	3.43%

References

Task: train a DRN to classify MNIST digits

	Network size (number of parameters)	Number of epochs	Total duration	Test error rate
SPICE simulations [1]	0.16M	10	1 week	3.43%
DRN simulator [2,3]	51M	50	6 hours	1.40%
	320x larger	5x more	28x shorter	

The "network size" to "epoch duration" ratio is 45000 times larger

References

[1] Kendall et al. "Training end-to-end analog neural networks with equilibrium propagation" (2020)

[2] "A fast algorithm to simulate nonlinear resistive networks". To appear.

[3] Code will be available at https://github.com/rain-neuromorphics/energy-based-learning

Main idea:

• assumption: the circuit elements are ideal

<u>Reference</u>: "A fast algorithm to simulate nonlinear resistive networks". To appear.

Main idea:

- assumption: the circuit elements are ideal
- the math considerably simplifies

<u>Reference</u>: "A fast algorithm to simulate nonlinear resistive networks". To appear.

Simulator for energy-based algorithms

Three key abstractions

Energy function

. . .

• deep resistive network (DRN)

• • • •

(in the space of network configurations)

• block coordinate descent

• ...

Learning algorithm

(in the weight space)

• equilibrium propagation (positive, negative, centered, ...)

Link: Code will be available at https://github.com/rain-neuromorphics/energy-based-learning

Simulator for energy-based algorithms

Three key abstractions

Energy function

- deep resistive network (DRN)
- deep Hopfield network (DHN)

• ...

Energy minimizer

(in the space of network configurations)

- block coordinate descent
- gradient descent
- ..

Learning algorithm

(in the weight space)

- equilibrium propagation (positive, negative, centered, ...)
- contrastive (Hebbian) learning
- coupled learning
- ...
- truncated backpropagation (baseline)
- recurrent backpropagation (baseline)

Simulations of Hopfield networks

<u>References</u>

- [1] Scellier and Bengio. "Equilibrium propagation." Frontiers in computational neuroscience 11 (2017): 24.
- [2] Ernoult et al. "Updates of equilibrium prop match gradients of backprop through time." NeurIPS (2019).
- [3] Laborieux et al. "Scaling equilibrium propagation to deep ConvNets." Frontiers in neuroscience (2021).
- [4] Laborieux and Zenke. "Holomorphic equilibrium propagation." NeurIPS (2022).
- [5] Scellier et al. "Energy-based learning algorithms: a comparative study." NeurIPS (2023)

Hardware experiments of Hopfield networks

nature electronics

Article	https://doi.org/10.1038/s41928-022-00869-w
Activity-difference trainin	ng of deep neural
networks using memristo	or crossbars

teceived: 10 March 2022	Su-in Yi¹, Jack D. Kendall², R. Stanley Williams ©¹ & Suhas Kumar © ³ 🖂
Accepted: 13 October 2022	

- 64 × 64 memristor crossbar array
- Task: classify Braille words
- demonstrate **10,000x improvement** (over GPUs) in energy efficiency for training

Caveat: use additional (SRAM) memory to store the free and nudged states

Summary

Training deep resistive networks (DRNs) with equilibrium propagation (EP):

- 1. DRNs are universal function approximators
- 2. EP performs gradient descent on a cost function
- 3. DRN simulator is 45,000x faster than SPICE simulations
- 4. Small-scale experiments demonstrate 10,000x energy efficiency gains over GPUs

Thanks to all my collaborators!

Jack Kendall Maxence Ernoult

Suhas Kumar Ross Pantone

Yoshua Bengio Axel Laborieux Julie Grollier Damien Querlioz

Yann Ollivier

Siddhartha Mishra

Kalpana Manickavasagam

Vidyesh Anisetti Ananth Kandala Je

Jennifer Schwarz

Thank you!

