
Training deep resistive networks
with equilibrium propagation

Aspen Winter Conference
Computing with Physical Systems

11 January 2024

Benjamin Scellier

Research scientist at Rain AI



Acknowledgements

Yoshua Bengio

Jack Kendall

Ross Pantone

Kalpana
Manickavasagam

Axel Laborieux

Maxence Ernoult

Julie Grollier Damien Querlioz

Yann Ollivier Siddhartha
Mishra

Suhas Kumar

Vidyesh Anisetti Ananth Kandala Jennifer Schwarz



3

Deep Learning Computing Paradigm
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Deep resistive network

Equilibrium propagation
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What is a deep resistive network?
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input
voltage

output
voltage

Circuit elements:
● voltage sources (inputs)

Reference: Scellier and Mishra. “A universal approximation theorem for nonlinear resistive networks” (2023)

Computing with a Resistor Network
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Circuit elements:
● voltage sources (inputs)
● variable resistors (trainable weights)

variable
resistor

input
voltage

output
voltage

Reference: Scellier and Mishra. “A universal approximation theorem for nonlinear resistive networks” (2023)

Computing with a Resistor Network
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Circuit elements:
● voltage sources (inputs)
● variable resistors (trainable weights)
● diodes (nonlinearities)

diode

variable
resistor

input
voltage

output
voltage

Reference: Scellier and Mishra. “A universal approximation theorem for nonlinear resistive networks” (2023)

Computing with a Resistor Network
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Circuit elements:
● voltage sources (inputs)
● variable resistors (trainable weights)
● diodes (nonlinearities)
● VCVS (amplification) VCVS

diode

variable
resistor

input
voltage

output
voltage

Such electrical circuits are
universal function approximators

Reference: Scellier and Mishra. “A universal approximation theorem for nonlinear resistive networks” (2023)

Computing with a Resistor Network
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Deep Resistive Network

Reference: Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Deep Resistive Network

Reference: Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)

● input voltage sources
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Deep Resistive Network

Reference: Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)

● input voltage sources
● output voltages
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Deep Resistive Network

Reference: Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)

● input voltage sources
● output voltages
● crossbar arrays of variable resistors (linear trainable weights)
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Deep Resistive Network

Reference: Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)

● input voltage sources
● output voltages
● crossbar arrays of variable resistors (linear trainable weights)
● diodes (nonlinearities)



15Reference: Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)

Properties:
● universal function approximator
● can be trained via equilibrium propagation

Deep Resistive Network



16

What is equilibrium propagation?
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Equilibrium Propagation in a Deep Resistive Network

References:
Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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EP learning requires augmenting the network:
● for each pair of output nodes, add switch + voltage source + resistor

Equilibrium Propagation in a Deep Resistive Network



Training procedure:
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Equilibrium Propagation in a Deep Resistive Network

References:
Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Training procedure:
1. Set input voltages.
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Equilibrium Propagation in a Deep Resistive Network



References:
Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)

Training procedure:
1. Open output switches.
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Equilibrium Propagation in a Deep Resistive Network



Training procedure:
1. Open output switches. Observe the steady state (“free state”).
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Equilibrium Propagation in a Deep Resistive Network

References:
Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Training procedure:
1. Open output switches: “free state”
2. Set desired output voltages.
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Equilibrium Propagation in a Deep Resistive Network



References:
Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)

Training procedure:
1. Open output switches: “free state”
2. Close output switches.
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Equilibrium Propagation in a Deep Resistive Network



Training procedure:
1. Open output switches: “free state”
2. Close output switches. Observe the new steady state (“nudged state”).
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Equilibrium Propagation in a Deep Resistive Network

References:
Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
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Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”

3. For each resistor update the conductance g

Equilibrium Propagation in a Deep Resistive Network



Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”

3. For each resistor update the conductance g
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local in space

Equilibrium Propagation in a Deep Resistive Network

References:
Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)



28

References:
Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)

Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”

3. For each resistor update the conductance g

Theorem: weight updates approximate gradient descent on the MSE

Equilibrium Propagation in a Deep Resistive Network
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Theorem: weight updates approximate gradient descent on the MSE
      

Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”

3. For each resistor update the conductance g

Bottom line: local learning rule performs stochastic gradient descent (SGD)

Equilibrium Propagation in a Deep Resistive Network
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Theorem: weight updates approximate gradient descent on the cost function
      

Bottom line: local learning rule performs stochastic gradient descent (SGD)

Remarks:
1. applicable to any cost function C (not just the MSE)

Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”

3. For each resistor update the conductance g

Equilibrium Propagation in a Deep Resistive Network
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Theorem: weight updates approximate gradient descent on the cost function
      

Bottom line: local learning rule performs stochastic gradient descent (SGD)

Remarks:
1. applicable to any cost function C (not just the MSE)
2. applicable to any network topology (not just a DRN)

Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”

3. For each resistor update the conductance g

Equilibrium Propagation in a Deep Resistive Network
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Theorem: weight updates approximate gradient descent on the cost function

Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”

3. For each resistor update the conductance g

Bottom line: local learning rule performs stochastic gradient descent (SGD)

Remarks:
1. applicable to any cost function C (not just the MSE)
2. applicable to any network topology (not just a DRN)

Equilibrium Propagation in a Deep Resistive Network



Bottom line: local learning rule performs stochastic gradient descent (SGD)

Remarks:
1. applicable to any cost function C (not just the MSE)
2. applicable to any network topology (not just a DRN)
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Theorem: weight updates perform gradient descent on a surrogate function
    where

Training procedure:
1. Open output switches: “free state”
2. Close output switches: “nudged state”

3. For each resistor update the conductance g

Equilibrium Propagation in a Deep Resistive Network
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Sketch of the proof:

● Equilibrium propagation generally applies to systems whose steady state minimizes a functional 
(variational principle) [1,2]

● Nonlinear resistive networks minimize a functional called co-content [3]

References
[1] Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
[2] Scellier. “A deep learning theory for neural networks grounded in physics.” PhD thesis, Université de Montréal (2021).
[3] Millar. "CXVI. Some general theorems for non-linear systems possessing resistance." The London, Edinburgh, and Dublin 
Philosophical Magazine and Journal of Science 42.333 (1951): 1150-1160.

Equilibrium Propagation in a Deep Resistive Network
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What is the co-content?
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References
Millar. "CXVI. Some general theorems for non-linear systems possessing resistance." The London, Edinburgh, and Dublin 
Philosophical Magazine and Journal of Science 42.333 (1951): 1150-1160.
Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)

Co-content of branch (j,k)

i = fjk(v)

i-v curve of branch (j,k)

Total co-content of the circuit
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Total co-content of the circuitTotal co-content of the circuit

branch equation + KVL KCL

Co-content of branch (j,k)

i-v curve of branch (j,k)

i = fjk(v)
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Total co-content of the circuitCo-content of linear resistor

Linear resistor

(half the power dissipation)
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Total co-content of the circuitCo-content of linear resistor

Linear resistor

(half the power dissipation)
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Co-content

Equilibrium Propagation Learning Rule

Reference: Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.

Learning rule



41

Learning rule Co-content

Reference: Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.

Equilibrium Propagation Learning Rule
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Learning rule

Reference: Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.

Equilibrium Propagation Learning Rule
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Desired output

Free output

Nudged output

Learning rule

Reference: Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.

Equilibrium Propagation Learning Rule



44

Desired output

Positively-perturbed output

Free output

E
ne

rg
y

Positively-perturbed EP

pull outputs towards 
desired outputs

Variants of Equilibrium Propagation (EP)

References:
Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
Laborieux et al. “Scaling equilibrium propagation to deep ConvNets by reducing its gradient estimator bias” (2021)
Scellier et al. “Energy-based learning algorithms: a comparative study” NeurIPS (2023)
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Variants of Equilibrium Propagation (EP)

Desired output

Positively-perturbed output

Free output

Negatively-perturbed output

E
ne

rg
y

Positively-perturbed EP Negatively-perturbed EP

pull outputs towards 
desired outputs

push outputs away from 
desired outputs

References:
Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
Laborieux et al. “Scaling equilibrium propagation to deep ConvNets by reducing its gradient estimator bias” (2021)
Scellier et al. “Energy-based learning algorithms: a comparative study” NeurIPS (2023)
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Desired output

Positively-perturbed output

Free output

Negatively-perturbed output

E
ne

rg
y

Variants of Equilibrium Propagation (EP)

Positively-perturbed EP Negatively-perturbed EP Centered EP

pull outputs towards 
desired outputs

push outputs away from 
desired outputs

➔ one positive 
perturbation

➔ one negative 
perturbation

References:
Scellier and Bengio. “Equilibrium propagation.” Frontiers in computational neuroscience 11 (2017): 24.
Laborieux et al. “Scaling equilibrium propagation to deep ConvNets by reducing its gradient estimator bias” (2021)
Scellier et al. “Energy-based learning algorithms: a comparative study” NeurIPS (2023)
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Desired output

Positively-perturbed output

Free output

Negatively-perturbed output

E
ne

rg
y

Variants of Equilibrium Propagation (EP)

Positively-perturbed EP Negatively-perturbed EP Centered EP

pull outputs towards 
desired outputs

push outputs away from 
desired outputs

➔ one positive 
perturbation

➔ one negative 
perturbation

Performance in 
practice?



Positively-perturbed EP Negatively-perturbed EP Centered EP

Theorem: EP computes the gradient of a surrogate function that approximates the cost function
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Variants of Equilibrium Propagation (EP)

E
ne

rg
y

Desired output

Positively-perturbed output

Free output

Negatively-perturbed output

Reference: Scellier et al. “Energy-based learning algorithms: a comparative study” NeurIPS (2023)



Positively-perturbed EP Negatively-perturbed EP Centered EP

Properties of the 
surrogate function

LP-EP = C + O(𝛃)

LP-EP ≤ C
(lower bound)

LN-EP = C + O(𝛃)

LN-EP ≥ C
(upper bound)

LC-EP = C + O(𝛃2)
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Variants of Equilibrium Propagation (EP)

E
ne

rg
y

Desired output

Positively-perturbed output

Free output

Negatively-perturbed output

Reference: Scellier et al. “Energy-based learning algorithms: a comparative study” NeurIPS (2023)
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Hardware Experiments

Caveat: use two copies of the same network
(one for the free state, one for the nudge state)

References
[1] Dillavou et al. "Demonstration of decentralized physics-driven learning." Physical Review Applied (2022)
[2] Dillavou et al. "Circuits that train themselves: decentralized, physics-driven learning." (2023)

● Network of 9 nodes and 16 edges
● Task: classify the Iris dataset

Linear resistor network [1]

● Network of 32 (transistor-based) twin edges
● Tasks: XOR and nonlinear regression

Nonlinear resistive network [2]



Equilibrium propagation

Learning rule

nu
dg

in
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va
lu

e

time

nudged state

free state

+𝛃

0



state(t) = mean + amplitude * sin(ωt) + O(𝛃2)

positive state

nu
dg

in
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va
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e

time

negative state

+𝛃

0

-𝛃

Reference
[1] Anisetti et al. "Frequency propagation: Multi-mechanism learning in nonlinear physical networks." (2022)

Equilibrium propagation

Learning rule

+𝛃
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in
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lu
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time
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positive
state

negative
state

Frequency propagation [1]



Network size
(number of parameters)

Number of 
epochs

Total
duration

Test error 
rate

SPICE simulations [1] 0.16M 10 1 week 3.43%

53

Simulations of deep resistive networks

Task: train a DRN to classify MNIST digits

References
[1] Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)



Network size
(number of parameters)

Number of 
epochs

Total
duration

Test error 
rate

SPICE simulations [1] 0.16M 10 1 week 3.43%

DRN simulator [2,3] 51M 50 6 hours 1.40%

54

References
[1] Kendall et al. “Training end-to-end analog neural networks with equilibrium propagation” (2020)
[2] “A fast algorithm to simulate nonlinear resistive networks”. To appear.
[3] Code will be available at https://github.com/rain-neuromorphics/energy-based-learning

Simulations of deep resistive networks

Task: train a DRN to classify MNIST digits

The “network size” to “epoch duration” ratio is 45000 times larger

           320x larger                5x more     28x shorter

https://github.com/rain-neuromorphics/energy-based-learning


Reference: “A fast algorithm to simulate nonlinear resistive networks”. To appear.

Simulations of deep resistive networks
Main idea:

● assumption: the circuit elements are ideal



Main idea:
● assumption: the circuit elements are ideal
● the math considerably simplifies

56

Equation of a node voltage

Reference: “A fast algorithm to simulate nonlinear resistive networks”. To appear.

Simulations of deep resistive networks



Energy function
● deep resistive network (DRN)
● …

Energy minimizer
(in the space of network configurations)

● block coordinate descent
● …

Learning algorithm
(in the weight space)

● equilibrium propagation (positive, negative, centered, …)
● …

Link: Code will be available at https://github.com/rain-neuromorphics/energy-based-learning

Simulator for energy-based algorithms 
Three key abstractions

https://github.com/rain-neuromorphics/energy-based-learning


Energy function
● deep resistive network (DRN)
● deep Hopfield network (DHN)
● …

Energy minimizer
(in the space of network configurations)

● block coordinate descent
● gradient descent
● …

Learning algorithm
(in the weight space)

● equilibrium propagation (positive, negative, centered, …)
● contrastive (Hebbian) learning
● coupled learning
● …
● truncated backpropagation (baseline)
● recurrent backpropagation (baseline)

Link: Code will be available at https://github.com/rain-neuromorphics/energy-based-learning

Simulator for energy-based algorithms 
Three key abstractions

https://github.com/rain-neuromorphics/energy-based-learning
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Ernoult et al. [2]

MNIST
Convolutional HN

Laborieux et al. [3]

CIFAR-10
3 days on a single GPU

Laborieux and Zenke [4]

ImageNet 32*
* downsampled to 32x32 pixels

6 days on 4 GPUs

Scellier et al. [5]

CIFAR-100
3 hours on a single GPU

13.5 faster than [3]

Simulations of Hopfield networks
Scellier and Bengio [1]

MNIST
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Hardware experiments of Hopfield networks

● 64 × 64 memristor crossbar array
● Task: classify Braille words
● demonstrate 10,000x improvement (over GPUs) 

in energy efficiency for training

Caveat: use additional (SRAM) memory 
to store the free and nudged states



Training deep resistive networks (DRNs) with equilibrium propagation (EP):
1. DRNs are universal function approximators
2. EP performs gradient descent on a cost function
3. DRN simulator is 45,000x faster than SPICE simulations
4. Small-scale experiments demonstrate 10,000x energy efficiency gains over GPUs

61

Summary
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