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New lab at Cornell - New lab at Yale

McMahon Lab PEOPLE RESEARCH PUBLICATIONS CONTACTUS

FOCUS: EXPERIMENTAL AND THEORETICAL QUANTUM,
PHOTONIC, AND NEUROMORPHIC COMPUTING

Logan Wright
Applied Physics Research Publications Contact Team
Laboratory

Research focus: Physical computation, control, and complexity; mostly with photons

The Wright Applied Physics Lab is an academic research group
focused on several topics: ‘9; e
1. Computation, and computational sensing with physical

systems, usually based on multimode waves.
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(Mathematical) neural networks



Deep learning: “just” high-dimensional curve-fitting*

<

boq
103 |

Output

. : : 10
*This intro blatantly copied from S. Dillavou .



Deep learning: “just” high-dimensional curve-fitting*

<

Boq'|
1800

Output

. : : 11
*This intro blatantly copied from S. Dillavou .



Deep learning: the ‘deep’ means multi-layer neural networks
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Deep learning: the ‘deep’ means multi-layer neural networks

Deep neural networks learn hierarchical computations 3—,‘
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Deep neural networks: training versus inference
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Deep neural networks: training versus inference

Untrained Training

Training input data

Parameters
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Deep neural networks: training versus inference
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Deep neural networks: training versus inference

Untrained Training Inference
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Deep learning is growing rapidly

Exponential growth of:
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https://www.grandviewresearch.com/ind
ustry-analysis/deep-learning-market



Deep learning is growing rapidly

Exponential growth of:

Market size
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Bernstein, L., et al. "Freely scalable and reconfigurable optical
hardware for deep learning." Scientific Reports (2021)




Deep learning is growing rapidly

Petaflop/s-days
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Good news: Neural networks are ideal for analog hardware

NEW NAYY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July.7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, write,
reproduce itself and bs con-
scious of its existence,

The embryo—the Weather,
Bureau's $2,000,000 “704"” com-
puter—learned to differentiate
between right and left after
fifty aftempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about & year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
signer of the Perceptron, con-
ducted the demonstration, He
|said ‘the machine would be the
first device to think as the hu-
lman brain. As do human be-
lings, Perceptron wil] make mis-
|takes at first, but will grow
lwiser as it gains experience, he
said, 7

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers. 21

THE MARK I PERCEPTRON




Neural network hardware uses analog physics to more
energy-efficiently perform neural network calculations

Post-synaptic neuron
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These hardware usually rely on math-physics isomorphism
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RelLU

y = ReLU(I/X)
where 1V x is a matrix-
vector product

Conductance G
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N . ‘e

Voltage

Cai et al., Nature Electronics (2020)



But achieving rigorous isomorphism involves trade-offs

Calibration Rigorous
Isomorphism

Safe parameter regimes
Fabrication tolerances
Explicit error correction

Hardware Hardware
— High barrier for novel hardware cost efficiency



A motivating question for our work:

How much isomorphism do we really need?




(Physical) neural networks



Deep neural network layers are mathematical transformations

yll+1] = f(yll, o))




Programmable physical systems give us controllable physical transformations

Time-evolve
r D |
iniial -, —— Later
conditions fo configuration
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Parameters

}7[1 + 1] = fp(i’[l]: )




Example: dynamics of coupled oscillators

dQQi . N . .
o — — —sing; + Jiql(sing; — sing; ) +e;
Input data = initial (¢t = 0) angles dt? ! ; A )
coupling between oscillators
(spring stiffness)
Parameters = .
drive (fixed torque at joint) d,

Output = Later (t = T) angles of the oscillators

Gt.ﬂ..ﬂ..ﬂ..ﬁer i rO

https://github.com/mcmahon-lab/Physics-Aware-Training



Deep physical neural networks

> =P fp = =P > => fp —>=>

Physical neural network:
Network of controllable physical transformations




Deep physical neural networks

> =P fp = =P > => fp —>=>

Physical neural network:
Network of controllable physical transformations, trained to perform physical functions



Deep physical neural networks
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Physical neural network:

Network of controllable physical transformations, trained to perform physical functions
, similar to how (artificial) neural networks are trained to perform mathematical functions



Deep physical neural networks
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Physical neural network:

Network of , trained to perform physical functions
, similar to how (artificial) neural networks are trained to perform mathematical functions

—This is a “flexible” analogy, not a strict 1:1 emulation of
any specific artificial neural network’s math!



Why on earth should this work?




Why on earth should this work?

DNNs model real-world physics well
because they have similar structure

Nonlinear, hierarchical, high-
dimensional, noisy, analog,
local, sparse,...

L w  gwepaly w oy

lllustration: Olena Shmahalo/Quanta Magazine; Thomas Donoghue

H.W. Lin et al., Journal of Statistical Physics (2017)



Why on earth should this work?

Neural ordinary differential equations

R.T.Q. Chen et al., NeurlPS (2018)

hii 1 =h + f(hy, 6;)

dh(t)
= f(h(t).t.0
- 2 = f(h(1),1,0)
Residual Network ODE Network
5 5
4 ’
3
2
DZ !
i/
0—5 0 5 5
Input/Hidden/Output

Input/Hidden/Output



Why on earth should this work?

reservoir

-

physical systems

-
-
-
-
-
-
-
-

chip? octopus?

liquid?
\

Physical reservoir computing

K. Nakajima, Japanese Journal of Applied Physics (2020)



Random features — echo state, liquid state, “extreme learning”

Untrained random neural network “Random”
tanh feature
\ vector
Trained linear digital output layer,
O R
X o—r i =g ')/
Fast + stable training O O
O
O

f ()

1
1

M. Lukosevicius. "A practical guide to applying echo state
networks." Neural networks: Tricks of the trade. (2012).




Physical reservoir computing

Untrained physical transformations

Trained linear digital output layer,

Fast + stable training

K. Nakajima, Japanese Journal of Applied Physics (2020)

Physically
computed
feature
vector

/e
e
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A marvelous range of things provide USEFUL physical features!

A bucket of water Octopus arms Nano-oscillators (spintronic)
' ' Spin torque
— 7 Torrejon et al.
Ferromagnet m "Neuromorphic
Normal computing with
G R Ferromagnet nanoscale spintronic
soft rabotic arm oscillators." Nature
: ) § _ Current (2017)
Fernando and Sojakka. "Pattern recognition ~ Nakajima, "Muscular-hydrostat computers: Physical —
in a bucket." European Conference on reservoir computing for octopus-inspired soft
L bucke Ir cor | . 10-500 nm
Artificial Life (2003). robots." Brain Evolution by Design (2017)
Nonlinear analog electronics (memristors) Optoelectronic loops and networks Quantum nonlinear oscillators

c
Input Internal state Output  Target Input Internal state Output
u(t

u(t) y Yiar
eights ot
0

— 5 & — Dynamics of quantum
ol 1A rd-pme- N B oscillators
Preprocessing | gain ~@ i Postprocessing ) R

i i i i H ki
L] ‘ L A A
Output ;’/\( t)

Appeltant et al. "Information processing using a y .
single dynamical node as complex Markovic & Grollier,
system." Nature Communications (2011) Appl. Phys. Lett (2020)

And many more... n

Moon, et al. "Temporal data classification and forecasting
using a memristor-based reservoir computing
system." Nature Electronics (2019)



Many such features are computed physically with VASTLY more
energy-efficiency than is possible with digital electronics

DMD Multiply scattering

J USt O ne exam p I e binary amplitude modulator medium

Random matrix-vector
features at: ~100 analog
Peta-operations/s
~10 aJ/op

106 more efficient than N

GPU* Telescope ;\Laser See poster
by Fei Xia, ENS

A. Saade et al. International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2016

*for random matrix-vector operations, see supplementary section 3 of arXiv:2104.13386



Physical reservoir

\.Deep learning computing
S0 ~

Circa 2018-2020... A
fp \.. <




**Many others were thinking about this same basic thing
too, albeit in different contexts, see especially:

- guantum circuit learning / variational quantum
algorithms (e.g., Fujii, Coles,...)

- “In materio computing” (e.g., Van der Wiel..)

- wave computing (e.g., Fan, Fleury, Marquardt...)

Circa 2018-2020...




Physical neural networks combine the key ingredients of deep
learning with the physics-first opportunism of reservoir computing

e O e O ® o ® O
Deep Y Y gl Y gl V. AT oY
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What would be the pay-off if it works? There is plenty of room at

the bottom!

(for hardware innovation)
Automated physics-first computing!

(Potentially!) HUGE speed up + R, ~ T N
.. - F ) . ;

energy-efficiency boosts for DNN- )= I\ ' gl

like calculations '

N

%

~ - .
Learn complex physical functions /x,m’); g/
(e.g., “smart” sensing,
micromachines)




An example physical neural network




Classifying images with coupled nonlinear oscillators

d? ¢ . Al . .
" — = —sing; + Jii(sing; — sing; ) +e;
Input data = initial (¢ = 0) angles dt2 ; I\
coupling between oscillators
(spring stiffness)
Parameters = |
drive (fixed torque at joint) q,

Output = Later (t = T) angles of the oscillators

Gt.ﬂ..ﬂ..ﬂ..ﬁer i rO

https://github.com/mcmahon-lab/Physics-Aware-Training



Physical neural network architecture

49-D image
segment

Read-out
oscillator
amplitudes

49-D image
segment

49-D image
segment
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= =0 S SO oscillator
3% Qa leomg index
=0 e 3
10 - = e g
16 total S O
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20 1
10-D
0 10 20 output

Input 784-dimensional image

Augmentation Physical input-output transformation
oscillator amplitudes (with physical trainable parameters)




Physical neural network architecture

Phase space of first 100 oscillators Evolution of "class oscillators"
in large oscillator network in large oscillator network

T-shirt
Trouser
Pullover
Dress
Coat
Sandal
- Shirt Read-out
Sneaker D oscillator
Bag index
Ankle boot

—
\/

NOOUU <

Input 784-dimensional image

Augmentation Physical input-output tfransformation
oscillator amplitudes (with physical trainable parameters)




Classifying fashion images with an oscillator-PNN
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Can everything be a neural network?




Yes! (but not always a good one)

Electronics

- A4
oooo
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Diverse PNNs for handwritten digit image classification

Mechanics Electronics Optics
- . - NJLI - 4 channel x 2 layer SHG
- N SN W
Input e —dh—— i — r.---I"-'1..J-|., 3’ 1 1 1 s Mo
image / . oo .
T Classification = = = ,,,pJ'L.J-L SWA e SN
Physical input-output via argmax 3 - - B M o
transformation /—-J‘**'L-J-L
= — — \
Average of 7 PNNs Digital linear input layer
B2 100~ 1001 1001
g T L U
g 904
o 951
O
= 801
L 40+ 87% test accuracy 93% test accuracy 97% test accuracy
O
901
:~§ 207 N 70
e 0
U 1 I 1 1 1 I 1 I 1 1 I I I 1 I I 1
0 5 10 15 0 10 20 30 40 50 0 10 20 30 40 50 60
Epoch Epoch Epoch

Wright*, Onodera*, Stein et al., Nature (2022)



Deep neural networks: training versus inference
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Physics-aware training: Backpropagation through f,

r - ” N\ r
Compute inference with the physical system
- = - = ->=> >

fp fP fP

Wright*, Onodera* et al., Nature (2022)
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Physics-aware training: Backpropagation through f,

r

Compute inference with the physical system
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Estimate gradients using a model (digital/math)

fmodel
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Wright*, Onodera* et al., Nature (2022)
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Training PNNs beyond physics-aware training
Forward-forward (layer-by-layer) Direct feedback alignment

Augmented DFA for PNN \

‘ ‘ ‘ e w/o sequential error prop
o . 8 A\ N VA e® = [B0e®] © g(a®)
2N s 5 AN Parallel random projection with S
F " Output 1 Output 2 alternative nonlinearity, g(a) s -
— /Lﬂ\/\ P -t o A 1 ty, g(a - Physically implementable
data é E Goodness { " ‘ 2 ‘ 1) L A= (lr A
o 4 4 oW oW oW - eWBO® o  g(a®)
Random matrix Noniinear
operation operation

Momeni et al., Science (2023)
Hinton, NeurlPS (2023)

Equilibrium propagation / coupled learning ) | .
O onion  campmatnon: Physical adjoint”

Impose Inputs Impose Inputs

Nakajima et al., Nat. Comm (2022)
Lillicrap et al., Nat. Comm (2016)

Measure adjoint signa
Monitor powers

VO=F(VIR) VO = (1 =) VO04nV?

v o v
W w 5 -l 2 "
Measure Impose F -
4 l/ [E— L
<t Qutputs <+ Outputs j/ L E i Send error signal back

FTEEEees

$5333333
LSS L

Update Both Networks

adjoint reference error
l-_> 7’ AY;
G~ -

SR I 1AVE] > T AVE),
—48R  otherwise.
Analyzer Genera tor

Scellier & Bengio, Frontiers in Comp. Neuro (2017) _ S
Pai et al., Science (2023)

Dillavou, Stern, Liu & Durian, Phys Rev Applied (2022)
Laydevant, Ernoult, Querlioz & Grollier, CVF (2021) Lopez-Pastor and Marquardt, PRX (2023)
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What can we do with PNNs?
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Digital input Digital output

“Deep learning accelerator”
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PNNSs for deep learning acceleration

Peter McMahon
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Total Multiply-Accumulate Operations (MACs) per Inference

Maxwell
Anderson

Tianyu Wang

TLDR:
Optics has
fundamental scaling
advantage — prospect
for 100,000x efficiency
gain for future
Transformer models!
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“Smart sensor’




PNNs for smart sensing

See Mandar and Tianyu’s

i 4
, ¢ b
I
- e

pOSter(S)! Peter McMahon  Tianyu Wang Mandar Sohoni

_ Digital neural network

I l ' TLDR:
"The speed limit is 50." Optical neural

Image sensing

a0)
via direct imaging ﬁ(%

Large sensor array netwo rk p re-
’ processing allows
Image sensing via L.
optical-neural-network encoding E faste I, more efficient

Small sensor array ~ ' 1he speed limit is 50."

machine vision

T. Wang*, M. M. Sohoni*, L. G. Wright, ..., P. L. McMahon. “Image sensing with multilayer, nonlinear
optical neural networks” Nature Photonics (2023)



Self-assembly

r N _
' Synthetic
—>=> development
Jo
\ J Self-organization
(e.g., mode-locking)
Digital input Physical output

“Physical neural network generator”



Chemical or microfluidic
processors

Functional
materials

o -

Microbots
‘ . y

Analog
controllers

Physical input Physical output

“Physical neural network machine”



PNNSs for learning photonic devices
=) Ein(x) Eout(x) n(x, Z)

0.2 - Free space diffraction - 5
. — <& e [ 5 - 0.1
0.0 { ~————————] |

-0.1 - I - - 0.1

-~

'}

=T - 0.0

x (mm)
X (mm)

-0.2 - 1 - - —0.2

0.2

0.2

(o]

- 1x2 splitter
Peter McMahon Tatsuhiro Martin Stein 0L | - 0.1

Onodera 00 | =]

-0.2

x (mm)
X (mm)

Recall Hiro’s talk yesterday,
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T. Onodera*, M.M. Stein* et al., arXiv soon....







Software is already “physics-informed”

/‘/’\F/‘F/*FF/“W“F/‘F—F/”\(‘F/“
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In this paper we also make the
converse claim; that the state of
computer architecture has been a
strong influence on our models of

thought.

R. A. Brooks in “Intelligence without
reason” (1991)

Datasheets for Datasets + Q&A with Scott Aaronson
Digital Agriculture « Speculative Taint Tracking

S. Hooker "The hardware lottery." Communications of the ACM (2021)



Software is already “physics-informed”, but not quite purposefully

I T N AT A TS
w’\w“ ¢l o’h \& o'/'—\“k“‘h "o"‘s \odb

F/\F/—

In this paper we also make the
converse claim; that the state of
computer architecture has been a
strong influence on our models of

thought.

R. A. Brooks in “Intelligence without
reason” (1991)

Datasheets for Datasets + Q&A with Scott Aaronson
Digital Agriculture « Speculative Taint Tracking o

S. Hooker "The hardware lottery." Communications of the ACM (2021) H



Hardware physics constrains communal optimization of algorithms

Transformers ~ . . max ("Al goodness")
{algorithms}

Jeremie Laydevant* *Channeling decades of ideas in neuromorphic computing and
theoretical neuroscience...



Hardware physics constrains communal optimization of algorithms

Transformers ~ . . max ("Al goodness")
{algorithms}

subject to: GPU

Jeremie Laydevant* *Channeling decades of ideas in neuromorphic computing and
theoretical neuroscience...



Towards purposeful physics-constrained software-hardware

277 =~ max (Al goodness")
T {algorithms}

subject to: physics alone

/

Laydevant™®, Wright™*, Wang & McMahon “The
hardware is the software”, Neuron (2023)




Towards purposeful physics-constrained software-hardware

P77 ~ max
T {algorithms}

("Al goodness")

subject to: physics alone

(Also features laser-based aliens...lighfeforms)

/

Laydevant™®, Wright*, Wang & McMahon “The
hardware is the software”, Neuron (2023)
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Contributions

(Deep) physical neural networks
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Parameters

First demonstrations of PNNs: DNN-like calculations with
networks of trained physical data transformations.

Potential for:
— Many orders-of-magnitude better speed/efficiency
— Learning approach to physical functionalities

Physics-aware training

(1) Send input
and parameters (2) Perform forward inference  Target
it l iAi Physical system

+ Calculate error vector

(5) Update parameters
]
, |J_‘_I_|_|—‘ Error

First demonstrations of backprop to train arbitrary physical
systems in situ

Differentiable digital model
Estimated
\_lJ_LI—r gradient -« afmodel

(4) Backpropagate error vector

— Scales to high-dimensional parameter spaces
— Trained PNN models inherently mitigate device
imperfections, simulation-reality gap, and noise.

L.G. Wright*, T. Onodera®, M.M. Stein, T. Wang, D.T. Schachter, Z. Hu, P.L. McMahon,
Deep physical neural networks trained with backpropagation, Nature 601, 549-555 (2022)

https://github.com/mcmahon-lab/Physics-Aware-Training

lgwrightlab.com / mcmahon.aep.cornell.edu







The hardware IS the software

* Inthe brain, information processing is emergent from physical
substrate

Peter McMahon
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The hardware IS the software
* Inthe brain, information processing is emergent from physical
substrate

« Computers we develop should be the same! “Physics-first”

Physics
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The hardware IS the software
* Inthe brain, information processing is emergent from physical
substrate

« Computers we develop should be the same! “Physics-first”

« BUT: hardware physics != physics of biology (on Earth)

Peter McMahon

Laydevant*, Wright*, Wang & McMahon “The hardware is the software”, Neuron (2023)



« Alien neuromorhics: What would the brains and bodies of alien Peter McMahon
intelligences look like if their biology had early on incorporated “alien”
elements like laser radiation, semiconductor electronics, etc.?

Laydevant*, Wright*, Wang & McMahon “The hardware is the software”, Neuron (2023) H



A new(ish) set of

T ————

guestions for neuromorphic computing

4

« Alien neuromorphics: What would the brains and bodies of alien Peter McMahon
intelligences look like if their biology had early on incorporated “alien”
elements like laser radiation, semiconductor electronics, etc.?

« Universal neuromorphics: \What are the “universal principles of intelligence”
— physical features we'd expect of all intelligent physical systems?

Laydevant*, Wright*, Wang & McMahon “The hardware is the software”, Neuron (2023)
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