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(Mathematical) neural networks



Deep learning: “just” high-dimensional curve-fitting*
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Deep learning: the ‘deep’ means multi-layer neural networks
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Deep learning: the ‘deep’ means multi-layer neural networks
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Deep neural networks: training versus inference
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Deep learning is growing rapidly
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https://www.grandviewresearch.com/ind
ustry-analysis/deep-learning-market



Deep learning is growing rapidly
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Exponential growth of:

 

 Market size

 Parameters

 Computing power required

 

 
Bernstein, L., et al. "Freely scalable and reconfigurable optical 
hardware for deep learning." Scientific Reports (2021)



Deep learning is growing rapidly
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Exponential growth of:

 

 Market size

 Parameters

 Compute 

 

https://openai.com/blog/ai-and-compute/

Petaflop/s-days

Year

This is WAY faster than 

Moore’s law!



Good news: Neural networks are ideal for analog hardware 

21



Neural network hardware uses analog physics to more 
energy-efficiently perform neural network calculations

22T. Wang, S.-Y. Ma, LGW et al. Nature Comm (2022)

Lightmatter Mars chip from Hot Chips 32 
G.W. Burr et al. Advances in Physics: X (2017)

J.M Shainline et al. Phys. Rev. Applied  (2017)



These hardware usually rely on math-physics isomorphism

റ𝑦 = ReLU(𝑊 Ԧ𝑥)
where 𝑊 Ԧ𝑥 is a matrix-

vector product

റ𝑦Ԧ𝑥

𝑊

ReLU

Cai et al., Nature Electronics  (2020)

Ԧ𝑥 →



But achieving rigorous isomorphism involves trade-offs

Calibration

Safe parameter regimes

Fabrication tolerances

Explicit error correction

→ High barrier for novel hardware

Rigorous 
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But achieving rigorous isomorphism involves trade-offs

Calibration

Safe parameter regimes

Fabrication tolerances

Explicit error correction

→ High barrier for novel hardware

Rigorous 

isomorphism

Hardware 

efficiency

Hardware 

cost

A motivating question for our work:

How much isomorphism do we really need?

25



(Physical) neural networks



Deep neural network layers are controlled mathematical transformations

റ𝑦 𝑙 + 1 = 𝑓( റ𝑦 𝑙 , റ𝜃𝑙)

𝑓

റ𝜃𝑙

27



Programmable physical systems give us controllable physical transformations

റ𝑦 𝑙 + 1 = 𝑓𝑝( റ𝑦 𝑙 , റ𝜃𝑙)
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Initial 
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Parameters
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Example: dynamics of coupled oscillators

29https://github.com/mcmahon-lab/Physics-Aware-Training

  
  

  
  

  
 

  
 

  
 

  
 

Input data  =  initial (𝑡 = 0) angles

Parameters  =

coupling between oscillators 

(spring stiffness) 

drive (fixed torque at joint)

Output   =  Later (𝑡 = 𝑇) angles of the oscillators



Deep physical neural networks

𝑓𝑝

റ𝜃𝑙
റ𝜃𝑙+1റ𝜃𝑙−1

𝑓𝑝 𝑓𝑝

Physical neural network: 
Network of controllable physical transformations, trained to perform physical functions 

like an (artificial) neural network is trained to perform mathematical functions 
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Deep physical neural networks

𝑓𝑝

റ𝜃𝑙
റ𝜃𝑙+1റ𝜃𝑙−1

𝑓𝑝 𝑓𝑝

Physical neural network: 
Network of controllable physical transformations, trained to perform physical functions 

, similar to how (artificial) neural networks are trained to perform mathematical functions 

→This is a “flexible” analogy, not a strict 1:1 emulation of 

any specific artificial neural network’s math! 33



Why on earth should this work?

34



Why on earth should this work?

DNNs model real-world physics well 

because they have similar structure

 Nonlinear, hierarchical, high-

 dimensional, noisy, analog, 

local, sparse,…

Neural ODEs – DNNs as evolving 

nonlinear dynamical systems

Physical reservoir computing 

35H.W. Lin et al., Journal of Statistical Physics (2017)

Illustration: Olena Shmahalo/Quanta Magazine; Thomas Donoghue
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Why on earth should this work?

DNNs model real-world physics well 

because they have similar structure

 Nonlinear, hierarchical, high-

 dimensional, noisy, analog, 

local, sparse,…

Neural ordinary differential equations

Physical reservoir computing 

37K. Nakajima, Japanese Journal of Applied Physics (2020)



Random features – echo state, liquid state, “extreme learning”

Untrained random neural network

Trained linear digital output layer, 𝑊out 

Fast + stable training

റ𝑦 = 𝑊out𝑓( Ԧ𝑥)

tanh

M. Lukoševičius. "A practical guide to applying echo state 
networks." Neural networks: Tricks of the trade. (2012). 

𝑓( Ԧ𝑥)

Ԧ𝑥

𝑊out

റ𝑦

“Random”

feature 

vector
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𝑓𝑝( Ԧ𝑥)

റ𝑦 = 𝑊out𝑓p( Ԧ𝑥)

Physical reservoir computing

Untrained physical transformations

Trained linear digital output layer, 𝑊out 

Fast + stable training 

K. Nakajima, Japanese Journal of Applied Physics (2020)

Physically 

computed 

feature 

vector

റ𝑦
Ԧ𝑥

𝑊out

റ𝑦

39



A marvelous range of things provide USEFUL physical features!

40

Physical systems are well-suited 

to deep neural network 

calculations

Nonlinear analog electronics (memristors) Optoelectronic loops and networks

A bucket of water Nano-oscillators (spintronic)

Moon, et al. "Temporal data classification and forecasting 

using a memristor-based reservoir computing 
system." Nature Electronics (2019)

Appeltant et al. "Information processing using a 

single dynamical node as complex 
system." Nature Communications  (2011)

And many more…

Octopus arms

Torrejon et al. 

"Neuromorphic 

computing with 

nanoscale spintronic 

oscillators." Nature 
(2017)

Fernando and Sojakka. "Pattern recognition 

in a bucket." European Conference on 

Artificial Life (2003).

Nakajima, "Muscular-hydrostat computers: Physical 

reservoir computing for octopus-inspired soft 
robots." Brain Evolution by Design (2017)

Marković & Grollier, 
Appl. Phys. Lett (2020)

Quantum nonlinear oscillators



Many such features are computed physically with VASTLY more 
energy-efficiency than is possible with digital electronics

41

Random matrix-vector 

features at:  ~100 analog 

Peta-operations/s

~10 aJ/op

106 more efficient than 

GPU*

*for random matrix-vector operations, see supplementary section 3 of arXiv:2104.13386 

A. Saade et al. International Conference on Acoustics, 

Speech and Signal Processing (ICASSP). IEEE, 2016 

See poster

by Fei Xia, ENS 

Just one example:
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Deep learning
Physical reservoir 

computing

Circa 2018-2020…



43

PNNs
Circa 2018-2020…

**Many others were thinking about this same basic thing 

too, albeit in different contexts, see especially:

- quantum circuit learning / variational quantum 

algorithms (e.g., Fujii, Coles,…)

- “In materio computing” (e.g., Van der Wiel..)

- wave computing (e.g., Fan, Fleury, Marquardt…)



Physical neural networks combine the key ingredients of deep 
learning with the physics-first opportunism of reservoir computing

44

ParametersInput Output

Deep

neural 

networks

Physical 

reservoir 

computing

Physical 

neural
networks



What would be the pay-off if it works? 

• Automated physics-first computing!

• (Potentially!) HUGE speed up + 

energy-efficiency boosts for DNN-

like calculations

• Learn complex physical functions 

(e.g., “smart” sensing, 

micromachines)

45

There is plenty of room at 
the bottom! 

(for hardware innovation)



An example physical neural network

46



Classifying images with coupled nonlinear oscillators

47https://github.com/mcmahon-lab/Physics-Aware-Training

  
  

  
  

  
 

  
 

  
 

  
 

Output   =  Later (𝑡 = 𝑇) angles of the oscillators

Input data  =  initial (𝑡 = 0) angles

Parameters  =

coupling between oscillators 

(spring stiffness) 

drive (fixed torque at joint)



Physical neural network architecture

48



Physical neural network architecture

49



Classifying fashion images with an oscillator-PNN

50



Can everything be a neural network?

51



Yes! (but not always a good one)

52



Diverse PNNs for handwritten digit image classification

53

87% test accuracy 93% test accuracy 97% test accuracy

Wright*, Onodera*, Stein et al., Nature (2022)



Deep neural networks: training versus inference
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Physics-aware training: Backpropagation through 𝑓𝑝 

𝑓𝑝

റ𝜃𝑙
റ𝜃𝑙+1റ𝜃𝑙−1

𝑓𝑝
𝑓𝑝

Wright*, Onodera* et al., Nature (2022)

Compute inference with the physical system
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Physics-aware training: Backpropagation through 𝑓𝑝 

𝑓𝑝

റ𝜃𝑙
റ𝜃𝑙+1റ𝜃𝑙−1

𝑓𝑝
𝑓𝑝

𝑓model 𝑓model 𝑓model

Wright*, Onodera* et al., Nature (2022)

Compute inference with the physical system

Estimate gradients using a model (digital/math)

56



Training PNNs beyond physics-aware training 

Forward-forward (layer-by-layer) Direct feedback alignment

“Physical adjoint”

Momeni et al., Science (2023)

Hinton, NeurIPS (2023) Nakajima et al., Nat. Comm (2022)

Lillicrap et al., Nat. Comm (2016)

Pai et al., Science (2023)

Lopez-Pastor and Marquardt, PRX (2023)

Scellier & Bengio, Frontiers in Comp. Neuro (2017)

Dillavou, Stern, Liu & Durian, Phys Rev Applied (2022)

Laydevant, Ernoult, Querlioz & Grollier, CVF (2021)

Equilibrium propagation / coupled learning

57



What can we do with PNNs?

58
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PNNs for deep learning acceleration

M.G. Anderson, S.-Y Ma, T. Wang, L.G. Wright, and P.L. McMahon. Optical Transformers. arXiv:2302.10360. 

TLDR:
Optics has 
fundamental scaling 
advantage – prospect 
for 100,000x efficiency 
gain for future 
Transformer models!

Maxwell 

Anderson

Peter McMahon Tianyu Wang

61
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𝑓𝑝
ADC

Digital

computer

Physical input

“Smart sensor”

Digital output



PNNs for smart sensing

T. Wang*, M. M. Sohoni*, L. G. Wright, …, P. L. McMahon. “Image sensing with multilayer, nonlinear 
optical neural networks” Nature Photonics (2023)

Mandar SohoniPeter McMahon Tianyu Wang

See Mandar and Tianyu’s 

poster(s)! 

TLDR:
Optical neural 
network pre-
processing allows 
faster, more efficient 
machine vision
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Digital input

64

𝑓𝑝

Physical output

“Physical neural network generator”

DAC
Digital

computer

Self-assembly

Self-organization 

(e.g., mode-locking)

Synthetic 

development
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Physical input Physical output

“Physical neural network machine”
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PNNs for learning photonic devices

T. Onodera*, M.M. Stein* et al., arXiv soon….

Peter McMahon

Recall Hiro’s talk yesterday, 

See his poster! 

Tatsuhiro 

Onodera 

Martin Stein

𝐸in(𝑥) 𝐸out(𝑥) 𝑛(𝑥, 𝑧)

66



67

Some parting thoughts



Software is already “physics-informed”

68S. Hooker "The hardware lottery." Communications of the ACM (2021)

R. A. Brooks in “Intelligence without 

reason” (1991)

In this paper we also make the 

converse claim; that the state of 

computer architecture has been a 

strong influence on our models of 

thought.



Software is already “physics-informed”, but not quite purposefully

69S. Hooker "The hardware lottery." Communications of the ACM (2021)

R. A. Brooks in “Intelligence without 

reason” (1991)

In this paper we also make the 

converse claim; that the state of 

computer architecture has been a 

strong influence on our models of 

thought.



Hardware physics constrains communal optimization of algorithms

70

Jeremie Laydevant*

Type equation here.

Transformers ≈ max
{algorithms}

("AI goodness")

*Channeling decades of ideas in neuromorphic computing and 

theoretical neuroscience…



Hardware physics constrains communal optimization of algorithms

71

Jeremie Laydevant*

Type equation here.

max
{algorithms}

("AI goodness")

subject to: GPU

*Channeling decades of ideas in neuromorphic computing and 

theoretical neuroscience…

Transformers ≈ 



Towards purposeful physics-constrained software-hardware

72

Type equation here.

max
{algorithms}

("AI goodness")

subject to: physics alone

???   ≈ 

Laydevant*, Wright*, Wang & McMahon “The 
hardware is the software”, Neuron (2023) 



Towards purposeful physics-constrained software-hardware

73

Type equation here.

max
{algorithms}

("AI goodness")

subject to: physics alone

???   ≈ 

Laydevant*, Wright*, Wang & McMahon “The 
hardware is the software”, Neuron (2023) 

(Also features laser-based aliens…lighfeforms)
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Contributions

75https://github.com/mcmahon-lab/Physics-Aware-Training 

First demonstrations of backprop to train arbitrary physical 

systems in situ

→ Scales to high-dimensional parameter spaces

→ Trained PNN models inherently mitigate device 

imperfections, simulation-reality gap, and noise.

First demonstrations of PNNs: DNN-like calculations with 

networks of trained physical data transformations.

Potential for:

→ Many orders-of-magnitude better speed/efficiency

→ Learning approach to physical functionalities

L.G. Wright*, T. Onodera*, M.M. Stein, T. Wang, D.T.  Schachter, Z. Hu, P.L. McMahon, 
Deep physical neural networks trained with backpropagation, Nature 601, 549-555 (2022)

Physics-aware training

lgwrightlab.com / mcmahon.aep.cornell.edu

(Deep) physical neural networks
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The hardware IS the software

• In the brain, information processing is emergent from physical 
substrate

• Computing hardware we develop should be the same! 

• BUT: hardware physics != physics of biology (on Earth)

• Q1: What would alien intelligences look like with different 
“hardware physics”? (e.g., lasers)

• Q2: There may be “universal principles of intelligence” that should 
be common to all intelligent physical systems – What are these?

77

Jeremie Laydevant

Peter McMahon

Tianyu Wang

Laydevant*, Wright*, Wang & McMahon “The hardware is the software”, Neuron (2023) 



The hardware IS the software

• In the brain, information processing is emergent from physical 
substrate

• Computers we develop should be the same! “Physics-first”

• BUT: hardware physics != physics of biology (on Earth)

• Q1: What would alien intelligences look like with different 
“hardware physics”? (e.g., lasers)

• Q2: There may be “universal principles of intelligence” that should 
be common to all intelligent physical systems – What are these?

78

Jeremie Laydevant

Peter McMahon

Tianyu Wang

Laydevant*, Wright*, Wang & McMahon “The hardware is the software”, Neuron (2023) 

Physics

Software



The hardware IS the software

• In the brain, information processing is emergent from physical 
substrate

• Computers we develop should be the same! “Physics-first”

• BUT: hardware physics != physics of biology (on Earth)

• Q1: What would alien intelligences look like with different 
“hardware physics”? (e.g., lasers)

• Q2: There may be “universal principles of intelligence” that should 
be common to all intelligent physical systems – What are these?

79

Jeremie Laydevant

Peter McMahon

Tianyu Wang

Laydevant*, Wright*, Wang & McMahon “The hardware is the software”, Neuron (2023) 



• In the brain, information processing is emergent from physical substrate: 

Form is function

• Computing hardware we develop should be the same! 

• BUT: hardware physics != physics of biology (on Earth)

• Alien neuromorphics: What would the brains and bodies of alien 

intelligences look like if their biology had early on incorporated “alien” 

elements like laser radiation, semiconductor electronics, etc.?

• Universal neuromorphics: What are the “universal principles of intelligence” 

– physical features we’d expect of all intelligent physical systems?

80

Jeremie Laydevant

Peter McMahon

Tianyu Wang

Laydevant*, Wright*, Wang & McMahon “The hardware is the software”, Neuron (2023) 

A new(ish) set of questions for neuromorphic computing



• In the brain, information processing is emergent from physical substrate: 

Form is function

• Computing hardware we develop should be the same! 

• BUT: hardware physics != physics of biology (on Earth)

• Alien neuromorphics: What would the brains and bodies of alien 

intelligences look like if their biology had early on incorporated “alien” 

elements like laser radiation, semiconductor electronics, etc.?

• Universal neuromorphics: What are the “universal principles of intelligence” 

– physical features we’d expect of all intelligent physical systems?

81

Jeremie Laydevant

Peter McMahon

Tianyu Wang

Laydevant*, Wright*, Wang & McMahon “The hardware is the software”, Neuron (2023) 

A new(ish) set of questions for neuromorphic computing
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