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What are Quantum Neural Networks? , hen are QNNs > classical NNs?
Since they may process information withinan exponentially-larger space, it seems plausible

Quantum neural networks (QNNs) forman e . " that QNNs may boast some advantages over purely-classical NNs, in speed of training or
important class of algorithm in quantum machine | +&lassical NV inference, in expressive power, or other metrics. Nonetheless, no systematic conditions for
learning [1,2]. It marries two powerful tools - whenand how QNNs (practical or otherwise) can be better than classical NNs have been
quantum computing and neural networks -and developed.

has potential to improve the performance of Here, we answer this general question through the lens of information theory. Our results
learning machines [3-5]. can beviewed as arigorous means of counting parameters in (Q)NNs,and the basis foran

Parameterized Models information theory of (Q)NNs (i.e., parameterized machines trained to perform
-_— computations, possibly based on quantum physical effects).
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We can treat any artificial neural network asa :
black box with input and output data as well as :
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tunable parameters. Thus, neural networks can 1} 0 ¢ RY MemOry CapaCIty of (Q)N Ns
be defined more broadly as parameterized .
del yep W bits of W bits of
moadaeils. Quantization modifiable states modifiable parameters
- i stored g
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If we replace a classical model with a quantum one, addﬁ} RAM m-bit  input ‘:f—>} (Q)NN ’j m-bit label
for the sameinputsize d, it operates on the L number S Y

d :
vectors € C2',instead of vectors € R<.
Thus, the dimension is exponentially increased.

Quantum Training _

When traininga QNN, we can either use a classical
computer, optimizing classical parameters @, ora
quantum one that optimizes parametersstoredina
quantum state 6.

writtgn f trained  pw
m-bit parameters
numbers

The capacity of a (Q)NN can be defined analogously to the memory capacity ofaRAM:
how much information can be “written’toitand then later reliably retrieved? Inthe limit of a
random task (mapping random inputs to random output labels), learning becomes equiv-
alent to memorization,and we can apply well-known results and concepts from Shannon
theory. A (Q)NN canbe thought of most generally asaparameterized quantum channel,
whose inputs, outputs,and parameters may be classicaland/or quantumin nature.

Asimple but keyresult applyingtoall (Q)NNs follows from the pigeonhole principle: the
capacity of a (Q)NN s limited by the information which can be stored inits parameters (W)
viathe training process:

Quantum neural network: a A

parameterized quantum channel S GL(2p7 C)
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We will show that performing quantum training can
lead to advantages for QNNs.

*While we referto these continuous spaces here, it is essential later to consider that all quantities, inputs, outputs
and parameters,are only specifiable tofinite-precision.

*Of course, even the most general density matrix has more constraints thanageneral I
complexmatrix of the same size. Also, itisimportant to remember that our parameters really have finite precision,
regardless of whether theyare quantum or classicalin nature.
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Example: a Boson Sampler QNN 0 Addtwise plin A High capacity: ¢ > n
i ' (b) i B Low capacity: C' <

Asan example, we simulateda QNN based ona Gaussian Boson Sampler (a),a 30 <o Random map: Typical map: |
quantumversionof areservoircomputer [6]. We find that the capacitygrows = = incompressible compressible (' appropriate
linearly with the number of parameters, Ny, (b) and logarithmically with the £ 151 = 1004 -

. < kS C with est. R
number of measurements made oneachrun of the device, Ng (C). These can be o Clmut| & 1:Icwithmm —> —»

W (estimated) < 10_ J C with exact R
understoodanalogously to the Shannon-Hartley theorem: C' ~ Ny, log, (SN 0 . — O - . | . . | .
SOUSY Y ¢ w1083 (SNR) 0 15 30 1012 10° B Thecapacity ofa(Q)NN determines how complexthe modelsitcanlearnare. Acrucial

~ Ny, logy(Ns) Ny, Ny
This latter observation demonstrates a read-out-based capacity bottleneck. s o Classical task
The QNN can be used to perform tasks on both guantumand classical data
(d-e). The capacity of the QNN predicts how much datais required to ensure
generalization (I-g):as the amount of training data exceeds the capacity,
trainingand test errorconverge , evidenticing that the QNN fails to memorize,
and instead learnsacompressed, generalizable model of the training data.

innovation of ourapproach is that it defines capacity ininformation units (bitsand/or
) 100 Quantum task qubits). C'istherefore the maximum amount of information required to specity amodel
learned by the (Q)NN, as wellas the amount of information that must be provided in
training datainorderto ensure that the (Q)NN generalizes (i.e, thatitis notable to simply
_ memorize the training data).
10-2 1o vew Animportant conceptin the information theory of (Q)NNs is the capacity bottleneck.

10 20 30 Asadirectresult of the information processing inequality, it we view any (Q)NN asa chain

i i Ny L . L .
|— Input I hidden layer(s) __| _ output layer —| of quantum channels, the total capacity is constrained by the lowest capacity in the chain.
layer (feed-forward reservoir) @ 10 ' '
(a) quantum_feature vector 103 m/-bit m'b|t
| n R = ' CLE | Bottleneck label label
> W o - - - A i () T = B Test, C — 66, bits |
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QNN Capacity for Generative and Quantum Tasks Conclusions
QNN with auanium output 1 For capaciy measrement | For generative tasks (below),a (Q)NNis used to produce samples 1. By definingameasure of expressive power in information units -- the (Q)NN'’s
Quantum dat: \? ::szgﬁt:g::el L5 EA{Tomography ]—»pesté from an intended d|str|bu?|on. Herg, we can quantify the generative capacity -- we can understand (Q)NNs using information theory.
) l 5 - capacityastheamountof information which can be storedand then _ 2. The capacity is theamount of information needed to describe models learn-
! e retrievedfromthe histograms of samples the QNN can be trained able by the (Q)NN. Itis physically bound by the information trainable into the para-
Classical parameters:w sl : : . :
Quantum parameters:/. method toproduce. meters, W. A (Q)NN will generalize when training data provided exceeds C'
| ) .(Q)NNs with classical parameters do not have a capacity advantage over
We canapply the capacity concept to QNNSs that are tasked QNN for generative task " For capacity measurement | 3 <Q>_ g , parly | 5 .
. . . i ; classical NNs. They may still have other quantumadvantages it carefully designed.
with performing operationsthat produce quantum outputs oararoterived | . [Measurements|  S27Ples from , : | | o ,
. e . | 0)—>] ctantum chamell— > of observables |, S SPUo" Histogram P! 4. The capacity of QNNsis often limited (bottlenecked) by measurement noise *
simply by considering the amount of information that can Playa,... zu) ; ONNS with . X ) ol v advant
| S : . swith quantum parameters may have an exponential capacity advantage
be stored,and then retrieved, through the degrees of freedom f t ( l . e ﬁ\“\] ot p.” | J o P . tp ALY 2
- | . N . o i over classical NNs, but will require exponentially more data to train.
controllable withinthe density matrixdescribing the states G P ere: 1y < Lrﬁzthodg} 5 P Y
L *notable exceptions apply to generative QNNsand QNNs that act onand/or produce quantum data

the QNN canlearnto produce (above).
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