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 The capacity of a (Q)NN can be defined analogously to the memory capacity of a RAM : 

how much information can be `written' to it and then later reliably retrieved? In the limit of a 

random task (mapping random inputs to random output labels),  learning becomes equiv-

alent to memorization, and we can apply well-known results and concepts from  Shannon 

theory.  A (Q)NN can be thought of most generally as a parameterized quantum channel, 

whose inputs, outputs, and parameters may be classical and/or quantum in nature. 

A simple but key result applying to all (Q)NNs follows from the pigeonhole principle: the 

capacity of a (Q)NN is limited by the information which can be stored in its parameters (         )  

via the training  process: 

 The capacity of a (Q)NN determines how complex the models it can learn are. A crucial 

innovation of our approach is that it defines capacity in information units (bits and/or 

qubits).         is therefore the maximum amount of information required to specify a model 

learned by the (Q)NN, as well as the amount of information that must be provided in

training data in order to ensure that the (Q)NN generalizes (i.e., that it is not able to simply

memorize the training data).

An important concept in the information theory of (Q)NNs is the capacity bottleneck.

As a direct result of the information processing inequality,  if we view any (Q)NN as a chain  

of quantum channels, the total capacity is constrained by the lowest capacity in the chain.

Example: a Boson Sampler QNN
As an example, we simulated a QNN based on a Gaussian Boson Sampler (a), a 

quantum version of a reservoir computer [6]. We find that the capacity grows 

linearly with the number of parameters,           , (b) and logarithmically with the 

number of measurements made on each run of the device,          (c). These can be 

understood analogously to the Shannon-Hartley theorem:

   

This latter observation demonstrates a read-out-based capacity bottleneck. 

The QNN can be used to perform tasks on both quantum and classical data 

(d-e). The capacity of the QNN predicts how much data is required to ensure 

generalization (f-g): as the amount of training data exceeds the capacity, 

training and test errorconverge , evidenticing that the QNN fails to memorize, 

and instead learns a compressed, generalizable model of the training data .

(c)

(a)

QNN Capacity for Generative and Quantum Tasks
 1. By defining a measure of expressive power in information units -- the (Q)NN's

capacity -- we can understand (Q)NNs using information theory. 

2. The capacity is the amount of information needed to describe models learn- 

able by the (Q)NN. It is physically bound by the information trainable into the para-

meters,        .  A (Q)NN will generalize when training data provided exceeds        .

3. (Q)NNs with classical parameters  do not have a capacity advantage over 

classical NNs. They may still have other quantum advantages if carefully designed.   

4. The capacity of QNNs is often limited (bottlenecked) by measurement noise *.

5. QNNs with quantum parameters may have an exponential capacity advantage

over classical NNs, but will require exponentially more data to train.  

 *notable exceptions apply to generative QNNs and QNNs that act on and/or produce quantum data
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 We can apply the capacity concept to QNNs that are tasked 

with performing operationsthat produce quantum outputs 

simply by considering the amount of information that can

be stored, and then retrieved, through the degrees of freedom 

controllable within the density matrix describing the states 

the QNN can learn to produce (above). 

 For generative tasks (below), a (Q)NN is used to produce samples

from an intended distribution. Here, we can quantify the generative

capacity as the amount of information which can be stored and then 

retrieved from the histograms of samples the QNN can be trained

to produce.  

Bottleneck

 Since they may process information within an exponentially-larger space, it seems plausible

that QNNs may boast some advantages over purely-classical NNs, in speed of training or

inference, in expressive power, or other metrics. Nonetheless, no systematic conditions for

when and how QNNs (practical or otherwise) can be better than classical NNs have been 

developed.

Here, we answer this general question through the lens of information theory. Our results

can be viewed as a rigorous means of counting parameters in (Q)NNs, and the basis for an 

information theory of (Q)NNs (i.e., parameterized machines trained to perform 

computations, possibly based on quantum physical effects). 

When are QNNs > classical NNs?

quantum feature vector

classical output layer

Quantum neural network: a 

parameterized quantum channel

*While we refer to these continuous spaces here, it is essential later to consider that all quantities, inputs, outputs 

and parameters, are only specifiable to finite-precision.

** Of course, even the most general density matrix has more constraints than a general 

complex matrix of the same size. Also, it is important to remember that our parameters really have finite precision,

regardless of whether they are quantum or classical in nature.
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