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Recent years have seen tremendous progress toward building programmable quan-

tum computers, with a variety of private companies and government agencies, as

well as academic institutions, investing heavily in the emerging technology. Quan-

tum computers promise to solve certain problems that are intractable for classical

computers, but the utility of existing devices is severely restricted by noise. This the-

sis details several attempts to overcome this noise and make use of existing devices

to address outstanding questions in physics. The work presented here demonstrates

that, by employing error mitigation and avoidance techniques, existing devices can

be used to study both ground state physics (Chapters 2, 3) and dynamics (Chapters

5, 6) of local spin systems. I also consider a non-local system of Majorana fermions

(Chapter 4) but find its simulation to be beyond the capabilities of existing quantum

processors at nontrivial system sizes. Whether the successful quantum simulations

detailed here are extensible beyond the reach of classical techniques remains an open

question, but the rapid pace of development suggests that useful quantum advan-

tage may occur soon. Of the quantum simulations presented here, that of Chapter

5 is the most promising candidate for useful quantum advantage because it both

addresses an outstanding question in the scientific community and extends beyond

our classical simulations. However, more work is needed to determine whether it is

beyond the capabilities of approximate classical methods as well. I expect that, in



the coming years, quantum processors will be able to perform quantum simulations

that are increasingly useful for the scientific community and increasingly difficult to

simulate classically.
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CHAPTER 1

INTRODUCTION

1.1 Ideal quantum computers

Ideal quantum computers differ from their classical counterparts in that, instead of

performing logical operations on bits, they perform unitary operations and measure-

ments on quantum states, which are written in terms of qubits. An ideal qubit is a

two-state quantum system, whose Hilbert space Hq is spanned by the states |0⟩ and

|1⟩. The Hilbert space of an n-qubit quantum computer is the tensor product H⊗n
q .

The state of a single qubit can be readily visualized on (or in) the Bloch sphere,

with pure states on the surface and mixed states in the interior. In particular, the

state can be written

ρ =
1

2
(I + a⃗ · σ⃗) , (1.1)

which has the nice property that

⟨σi⟩ = ai, (1.2)

seen easily by taking Tr[ρσi]. This implies, for example, that |0⟩, the eigenstate of σz

with eigenvalue +1, is at the north pole and |1⟩, the eigenstate of σz with eigenvalue

−1, is at the south pole. Similarly, |+⟩ = 1√
2
(|0⟩+ |1⟩), the eigenstate of σx with

eigenstate +1 lies on the positive x-axis, with Cartesian coordinates (1, 0, 0).

Further, using the fact that (⃗a · σ⃗)2 = |a|2I, and that Tr[ρ2] ≤ 1, where it equals
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one if and only if ρ is pure, it is readily seen that |a|≤ 1 and is equal to one if and

only if the state is pure. Thus, a⃗ describes the state of the qubit on or in a sphere.

Unitary operations on the Hilbert space act as rotations on a⃗. This stems from

the fact that SU(2) is a double cover of SO(3). Explicitly, a rotation of angle θ about

the axis n̂, acting in the 3-dimensional real space in which a⃗ lives, can be represented

as a unitary matrix acting on the 2-dimensional complex Hilbert space:

U(θ, n̂) = e−i(n̂·σ⃗)θ/2 = cos

(
θ

2

)
I− i sin

(
θ

2

)
(n̂ · σ⃗) . (1.3)

This allows us to easily visualize any single-qubit unitary as a rotation. There are

a number of single qubit gates that are standard in quantum computing. These

include the three Pauli matrices, which are often written as X = σx, Y = σy, and

Z = σz. From Eq. 1.3, it is readily seen that, up to an unphysical global phase,

these implement 180◦ rotations about their respective axes. For example the fact

that X|0⟩ = |1⟩ can be visualized as the north pole of the Bloch sphere, rotated 180◦

about the x-axis, equaling the south pole. Another important single-qubit gate is

the Hadamard gate, H = 1√
2
(X + Z), which implements a 180◦ rotation about the

axis n̂ = 1√
2
(x̂+ ẑ).

Single-qubit gates alone are not sufficient for universal quantum computation

because they cannot generate entanglement between qubits. This requires two-qubit

gates. An example of a two-qubit gate is the controlled-not gate, or the CNOT gate,

which implements an X on the target qubit if the control qubit is in the |1⟩ state.

If we number the qubits as |q1q0⟩ and let qubit 0 be the control and qubit 1 be the
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target, then this has the matrix

CX = I⊗ |0⟩⟨0|+X ⊗ |1⟩⟨1|

= |00⟩⟨00|+|11⟩⟨01|+|10⟩⟨10|+|01⟩⟨11|

=



1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


(1.4)

where the states are ordered as |00⟩, |01⟩, |10⟩, |11⟩, like binary numbers.

Another important two-qubit gate is the controlled-Z gate, or the CZ gate. This

is defined as

CZ = I⊗ |0⟩⟨0|+Z ⊗ |1⟩⟨1|

=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


= |0⟩⟨0|⊗I + |1⟩⟨1|⊗Z.

(1.5)

as is clear from the matrix representation, we can think of either qubit as the control

qubit in this case. Note also that CX and CZ are related to each other by Hadamards

on the target qubit since HZH = X and HXH = Z. It turns out that single-qubit

gates, plus either CX or CZ, are sufficient for universal quantum computation. Any

n-qubit unitary matrix can be decomposed, to a specified precision, in terms of single

qubit and CZ gates.

3



Another important class of two qubit gates are fSim gates, which are number-

conserving gates described by the matrix

UfSim(θ, ϕ) =



1 0 0 0

0 cos θ i sin θ 0

0 i sin θ cos θ 0

0 0 0 eiϕ


, (1.6)

which parameterizes all number-conserving two qubit gates up to single-qubit Z

phases. For example, a Z gate is an fSim gate with (θ, ϕ) = (0, π). The iSWAP gate

is an fSim with (θ, ϕ) = (π/2, 0). The SWAP gate, which swaps two qubits, is related

to fSim(π/2, π) by single-qubit phases.

Sequences of single- and two-qubit gates are represented visually as quantum

circuits, which are read from left to right. For example,

H

represents a single qubit to which a Hadamard is applied and which is then mea-

sured. Unless otherwise specified, qubits are assumed to begin in the |0⟩ state, so

the measurement outcomes of this circuit will be 50% “0” and 50% “1”. The symbol

for a CZ gate is

and the symbol for a CX gate, with the top qubit as control and the bottom qubit

as target, is
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Ideal universal quantum computers would have a revolutionary impact on society.

They would enable an exponential speedup in the prime factorization of large num-

bers [153], the difficulty of which is the basis of widely-used forms of encryption, such

as RSA, a quadratic speedup in searching through a database [66], and the ability to

simulate quantum dynamics, e.g. by implementing Trotterized time evolution of a

quantum Hamiltonian or quantum phase estimation to measure energy eigenvalues

and generate eigenstates [92].

Ideal quantum computers can be simulated by classical computers, but at an

exponential cost in the number of qubits. This stems from the fact that the stat-

evector describing n qubits consists of 2n complex numbers. For example, a 36-qubit

statevector, stored with single precision, takes 550 gigabytes, whereas a 37-qubit

statevector takes 1100 gigabytes. The system requirements even to store the state

quickly surpass the RAM available even in the most powerful supercomputers.

1.2 Real quantum computers

Various hardware implementations of qubits exist or are being pursued. Each has

its own technical challenges. This section focuses on transmons, the hardware im-

plementation chosen by both Google and IBM.
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1.2.1 The spectrum of a transmon

A transmon consists of a Josephson junction and a capacitor, as illustrated in Figure

1.1.

Ic C

Figure 1.1: A transmon.

The Josephson junction is a superconducting circuit element that behaves like a

nonlinear inductor. The current through it and voltage across it satisfy the Josephson

equations:

I = Ic sinφ

V = Φ̄0φ̇,

(1.7)

where φ is the Josephson phase (similar to the magnetic flux through an inductor),

and Φ̄0 = h̄/(2e). Ic is the critical current above which the junction behaves like a

regular resistor. (For small currents, these are the same equations as for an inductor).

(From now on, I will set h̄ = 1.) The energy stored in the Josephson junction is

therefore

U =

∫
IV dt = −Φ̄0Ic cosφ, (1.8)

while the energy stored in the capacitor is

K =
1

2
CV 2 =

1

2
C(Φ0φ̇)

2 (1.9)
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Treating the Josephson phase as the canonical coordinate, we therefore have the

Lagrangian

L = K − U =
1

2
C(Φ̄0φ̇)

2 + Φ̄0Ic cosφ. (1.10)

The canonical momentum is therefore

n =
∂L
∂φ̇

= CΦ̄2
0φ̇, (1.11)

which happens to be equal to Φ̄0CV = Q/(2e), i.e. the charge on the capacitor in

units of the Cooper pair charge, 2e. It is called n because it counts the number of

Cooper pairs. Now, we impose the canonical commutation relation:

[φ, n] = i (1.12)

and write the Hamiltonian:

H =
n2

2CΦ̄2
0

− Φ̄0Ic cosφ

= 4ECn
2 − EJ cosφ,

(1.13)

where EC = e2/(2C) is the charging energy and EJ = Φ̄0Ic. This is the Hamiltonian

for a nonlinear oscillator with a cosine potential. The fact that the number of Cooper

pairs on the capacitor is integer implies that φ is periodic. The energy eigenfunctions

are exactly the Mathieu functions (see, e.g. Appendix B of [96]).

Although the exact eigenfunctions and eigenenergies are known, intuition can be

gained by Taylor expanding the cosine. The lowest-order approximation is

H0 = 4ECn
2 +

1

2
EJφ

2, (1.14)
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which is a harmonic oscillator Hamiltonian with frequency ω =
√
8EJEC . Next, we

consider the quartic correction:

H1 = −
1

4!
EJφ

4. (1.15)

The first-order correction to the energy in the mth eigenstate is simply ⟨m|H1|m⟩,

which is easily computed in the oscillator’s number basis using

φ =

(
2EC

EJ

)1/4 (
a+ a†

)
n = − i

2

(
EJ

2EC

)1/4 (
a− a†

)
.

(1.16)

The result is that

ω10 =
√

8EJEC − EC

ω21 =
√

8EJEC − 2EC

. . .

ωm,m−1 =
√

8EJEC −mEC ,

(1.17)

that is, the spacing between consecutive energy levels decreases by the charging

energy EC . The quantity η ≡ ω21 − ω10 is called the anharmonicity, which is −EC

to leading order. The nonzero anharmonicity allows one to individually address the

0 → 1 transition and therefore isolate the lowest two energy levels as the qubit

subspace. Care must be taken to avoid populating the higher energy levels, e.g.

by minimizing the ω21 fourier component of any pulses used to control the qubits.

Population of the higher states is known as leakage.

Note that there is a physical energy difference between the |0⟩ and |1⟩ states.

Therefore, |ψ⟩ = c0|0⟩ + c1|1⟩ is not stationary; it evolves to |ψ(t)⟩ = c0|0⟩ +
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c1e
−iω10t|1⟩, i.e. it rotates about the z axis of the Bloch sphere at an angular fre-

quency ω10. This is accounted for by working in the interaction picture, i.e. in a

rotating frame that also rotates about the z axis at frequency ω10.

Depending on the type of two-qubit gate used, Z gates and Z-rotations more

generally may be able to be implemented virtually. This means that, instead of

applying any physical operations to the qubit, a Z gate simply updates the frame,

which affects, for example, the lab-frame axes about which X and Y gates act. This

strategy can be used, for example, if the native two-qubit gate is CZ, since single

qubit Z phases commute with CZ, so the change of frame has no effect on the two-

qubit gate. For more general fSim gates, it is not so trivial to apply the frame-change

to the gate, so physical Z gates are used instead.

1.2.2 Frequency-tunable transmons

One feature of some transmon designs (such as Google’s) but not others (such as

IBM’s) is the ability to tune the frequency of the qubit (i.e. ω10) during the execution

of a quantum circuit. This is useful for applying physical Z gates. For example, to

apply a Z rotation by an angle θ, simply detune the qubit’s frequency by an amount

∆ω such that τ∆ω = θ, where τ is the duration of the gate. Tuning the frequencies of

individual qubits is also useful for avoiding any unwanted resonances. The lifetime of

a qubit (i.e. the time that it remains in the |1⟩ state before decaying to the |0⟩ state)

turns out to be highly frequency-dependent in a complicated and time-dependent
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way that is still not fully understood (see e.g. [103, 179]). Being able to tune the

qubit’s frequency helps optimize its lifetime.

The mechanism used to control a qubit’s frequency is relatively simple in princi-

ple and is described, e.g., in [33]. Consider two Josephson junctions in parallel, as

depicted in Figure 1.2. Two Josephson junctions in parallel are known as a super-

conducting quantum interference device, or SQUID.

Ic Ic C

Figure 1.2: A tunable frequency transmon.

Current will flow through the two Josephson junctions to exactly cancel any

external magnetic flux through the loop. In particular, if the phases of the two

junctions are φ1 and φ2, and Φext is the external magnetic flux, then

φ2 − φ1 = Φext/Φ̄0. (1.18)

Meanwhile, assuming for simplicity that Ic is the same for both junctions, the energy

stored in the junctions is

U = −EJ (cosφ1 + cosφ2)

= −2EJ cos

(
φ1 + φ2

2

)
cos

(
φ1 − φ2

2

)
= −2EJ cos

(
Φext/Φ̄0

)
cosφ,

(1.19)

where φ = φ1+φ2

2
. Note that because the circuit elements are in parallel, φ̇1 = φ̇2 =

φ̇ = V , so φ is conjugate to n as before. Thus, we have the same Hamiltonian

10



as before, except with EJ → 2EJ cos
(
Φext/Φ̄0

)
. Therefore, to leading order in

perturbation theory, the 0→ 1 transition frequency is

ω10 =
√

8EJ,maxEC cos
(
Φext/Φ̄0

)
− EC . (1.20)

Where, in this case, EJ,max = 2EJ . This shows that, by controlling a D.C. external

magnetic flux through the SQUID, one can tune the qubit frequency.

1.2.3 Single-qubit gates

So far, we have seen how to perform Z rotations, either virtually through a change

of frame, or physically by detuning the qubit frequency. This subsection shows how

to perform single-qubit gates. The discussion here follows that of [33]. Consider a

qubit that is capacitively coupled to a voltage source, as shown in Figure 1.3.

Ic C Vd
Cd

Figure 1.3: Circuit for driving a quibt.

Written in terms of φ̇, and setting Φ̄0 = 1 for convenience, the energy in the

capacitors is now

K =
1

2
Cφ̇2 +

1

2
Cd (Vd(t)− φ̇)2 . (1.21)
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The conjugate momentum to φ is therefore

ñ =
∂L
∂φ̇

= Cφ̇− Cd(Vd(t)− φ̇)

= CΣφ̇− CdVd(t),

(1.22)

where CΣ = C + Cd. This leads to the Hamiltonian

H =
ñ2

2CΣ

+
Cd

CΣ

Vd(t)ñ− EJ cosφ, (1.23)

after dropping a term proportional to V 2
d because it does not contain any quantum

operators. If the drive frequency is on resonance with the qubit frequency, it can be

used to excite |0⟩ ↔ |1⟩ transitions.

To gain some intuition for the effect of the driving term, let’s truncate to the

qubit subspace. Without the driving term, the qubit Hamiltonian is

H0 = −
ω

2
σz, (1.24)

where ω is the qubit frequency. The driving term is

H1 =
Cd

CΣ

Vd(t)ñ

= −iCdVd(t)

2CΣ

(
EJ

2EC

)1/4 (
a− a†

)
→ CdVd(t)

2CΣ

(
EJ

2EC

)1/4

σy

= Ωf(t)σy

(1.25)

where now EC = e2/(2CΣ) and Vd(t) = V0f(t). Ω = CdV0

2CΣ

(
EJ

2EC

)1/4
. Next, we write
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H1 in the interaction picture:

Hint = Ωf(t)eiωσz/2σye
−iωσz/2

= Ωf(t) (cos(ωt)σy + sin(ωt)σx) .

(1.26)

Next, suppose that f(t) = sin(ωt+ ϕ). Expanding the sines and cosines in terms of

eiωt and e−iωt and discarding the terms that rotate at a frequency of 2ω (the rotating

wave approximation), we arrive at

Hint ≈
Ω

2
(σx cosϕ+ σy sinϕ) . (1.27)

That is, the interaction causes the qubit to rotate on the Bloch sphere at an angular

frequency of Ω, known as the Rabi frequency, about an axis determined by the phase

of the driving signal: n̂ = cosϕx̂ + sinϕŷ. For example, by setting ϕ = 0 and

applying the pulse for a time τ = π/Ω, we can implement an X gate. Similarly,

setting ϕ = π/2, we can implement a Y gate. Now, we see that we can implement

arbitrary single qubit gates. Care must be taken in shaping the pulse f(t) to avoid

exciting transitions to higher states of the transmon. For futher details, see Ref. [121].

1.2.4 Readout

Qubits are measured using a technique known as dispersive readout, which is de-

tailed, for example, in Refs. [33, 148]. A qubit is capacitively coupled to a linear LC

oscillator, called the readout resonator, as depicted in Figure 1.4.

Following the same procedures to obtain the Hamiltonian for this circuit, the

capacitive coupling leads to an interaction term between the qubit and the oscillator
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Ic C Cr

Cc

Lr

Figure 1.4: A qubit coupled to a linear resonator, the setup used for dispersive
readout.

of the form

Hg = g(a† − a)(σ− − σ+), (1.28)

where a is the oscillator’s lowering operator and σ− is the qubit’s lowering operator.

g is a function of the capacitances and the qubit and oscillator frequencies, ωq and ωr,

given by Eq. 2.93 in Ref. [33]. This interaction term modifies the joint eigenstates of

the qubit-resonator system. In particular, the energy required to excite the oscillator

depends on the state of the qubit. The dispersive shift, χ, is defined as

2χ = ω|1⟩
r − ω|0⟩

r

=
(
E|1,1⟩ − E|1,0⟩

)
−
(
E|0,1⟩ − E|0,0⟩

)
,

(1.29)

where E|nq ,nr⟩ is the eigenenergy of the eigenstate connected to the state, which,

in the absence of Hg, has nq excitations in the transmon and nr excitations in the

readout resonator. If one makes the rotating wave approximation to eliminate the

terms that do not conserve the total number of excitations and then computes the

eigenenergies using second-order perturbation theory, the dispersive shift is found to

be

2χ =
−2g2η

∆2(1− η/∆)
, (1.30)

where η = ω21 − ω10 is the qubit’s anharmonicity, and ∆ = ωq − ωr is the detuning

of the qubit away from the resonator’s frequency.
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The readout resonator is connected to a transmission line via another capacitor

with capacitance Cκ, which determines the coupling, κ between the readout resonator

and the external electronics. Microwave signals are sent through the transmission line

at approximately the readout resonator frequency, which are partially reflected and

partially transmitted. This serves as a probe of the resonator’s frequency, which,

as we have seen, depends on the state of the qubit. This is how measurement is

performed. If the qubits have tunable frequencies, the detuning ∆ can be kept

large to preserve the qubit’s coherence and then decreased when a measurement is

performed, in order to increase the dispersive shift. κ controls how fast readout can be

performed; a larger κ corresponds to faster readout. However a larger κ also means

more coupling between the qubit-resonator system and the outside environment,

which causes decoherence. This can be partially mitigated by inserting a bandpass

filter at the qubit frequency (see Ref. [148] for a detailed discussion).

1.2.5 Two-qubit gates

Different architectures exist for coupling transmons. IBM uses a conceptually simple

cross-resonance method to couple transmons [34]. Each qubit has a microwave drive,

and to couple two qubits, one simply drives one qubit (the control) at the resonant

frequency of an adjacent qubit (the target). This can be used to implement CNOT

gates. However, it can lead to unwanted crosstalk, as other qubits may also be

excited.
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Amore involved way to control the interactions of qubits is by introducing another

component called a coupler. One design is the inductively-coupled “gmon” tunable

coupler, invented by John Martinis’ group, which became Google Quantum AI [32].

These tunable couplers allow the user to turn off interactions when they are not

wanted as well as to achieve the entire family of fSim gates. The circuit for a gmon

coupler is depicted in Figure 1.5. Tunable couplers can also be constructed that

utilize capacitive coupling between the qubits (Ch. 8 of [128], [177]), which is the

coupler design that is implemented in Google’s Sycamore processors [5]. However,

the inductive design is described here.

Lg

Lc

Lg

Figure 1.5: A tunable gmon coupler between two qubits.

The two qubits are the SQUIDs (parallel Josephson junctions), in series with their

respective capacitors. The inductance, Lc, of the coupler Josephson junction can be

tuned by applying an external magnetic flux. In particular, from the Josephson

equations (Eq. 1.7), the inductance is

Lc =
Φ̄0

I0 cos δ
, (1.31)

where δ is the phase difference across the junction, which can be controlled with
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an external DC magnetic flux. Furthermore, there is a mutual inductance between

the two qubits that is controlled by Lc. In particular, assuming that Lg ≪ LJ and

Lg ≪ Lc, if a current Iq is sent down through the left qubit, most of it goes straight

through the left Lg to the ground, whereas a small fraction of it, Icp = IqLg/(2Lg+Lc)

flows through Lc to the right half of the circuit. Most of this (all but O(Lg)) flows

through the right Lg to ground. The current through the right Lg creates a magnetic

flux LgIcp through the right SQUID, which is positioned close to it. In particular,

the mutual inductance, to leading order in Lg, is

M =
L2
g

2Lg + Lc

, (1.32)

where, as mentioned earlier, Lc is tunable via an external magnetic flux. The mutual

inductance creates a coupling between the two qubits, which, to leading order, is:

Hint = −
EJM

LJ + Lg

φ1φ2. (1.33)

Applying the rotating wave approximation, which drops the non-number-conserving

terms, the interaction Hamiltonian becomes

Hint = −
ω

2

M

LJ + Lg

(
a†1a2 + a1a

†
2

)
= g

(
a†1a2 + a1a

†
2

) (1.34)

where ai is the annihilation operator for qubit i, and ω is the qubit frequency. This

Hamiltonian generates swapping between the qubits, i.e. oscillations between the

|01⟩ and |10⟩ states at an angular frequency of

g = −ω
2

Lg

LJ + Lg

Lg

2Lg + Φ̄0/(I0 cos δ)
. (1.35)
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In addition to swapping, Hint shifts the energy of the |11⟩ state by connecting

it to the |02⟩ and |20⟩ states. More specifically, if the frequency detuning between

the two qubits is ∆ = ω2 − ω1 (where ωi is the frequency of qubit i), then to second

order in g, the energy of the |01⟩ and |10⟩ states shift as

E|01⟩ = ω1 +
g2

∆

E|10⟩ = ω2 −
g2

∆

(1.36)

while the energy of the |11⟩ state shifts as

E|11⟩ = ω1 + ω2 +
2g2

η −∆
+

2g2

η +∆

= ω1 + ω2 +
4g2η

η2 −∆

(1.37)

Therefore, in the frame rotating at the qubit frequency, the |11⟩ state acquires a

phase at a rate of

ω11 =
4g2η

η2 −∆
. (1.38)

Thus, gmons naturally generate fSim gates (Eq. 1.6), with θ ∼ gτ and ϕ ∼ g2τ ,

where τ is the duration of the pulse. In particular, appropriately choosing g and τ

to set θ = 0 and ϕ = π, CZ gates can be achieved. One has to be careful to avoid

leakage from the |11⟩ state to the |20⟩ and |02⟩ states.

The fact that tunable couplers naturally give rise to a continuous family of native

fSim gates was utilized in Ref. [119] (see Section II of the supplementary information

to that paper, in particular) and in Refs. [115, 74, 86], which built on the techniques

developed in that work.
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Transmon-based quantum processors do not have native all-to-all coupling among

their qubits. The couplers in Google Sycamore processors enable the qubits to be

coupled in a 2D cartesian grid, ideal for implementing the surface code. IBM has

chosen instead to couple qubits in what they call a heavy-hex lattice, which consists

of connected 12-qubit loops (one for each vertex and each edge of the tiled hexagons).

Although gates between nonadjacent qubits are not available natively, they can be

decomposed into local gates, in particular by applying SWAP gates until the qubits

are adjacent, performing the desired operations, and then swapping them back. This

is a disadvantage compared to trapped ion qubits, which feature native all-to-all

connectivity.

1.3 Characterizing errors

Unlike ideal quantum computers, real quantum computers are subject to a variety of

sources of error. Their coupling to the environment, including through the readout

resonator, causes amplitude damping, or decay from the |1⟩ state to the |0⟩ state.

This is characterized through the decay time, T1. Further, they can be subject to

various sources of error that suppress the off-diagonal components of the density

matrix (or, equivalently for a single qubit, the x and y components of the Bloch

sphere representation of the state). These types of errors are known as dephasing and

are characterized by the time T2, the decay constant of the length of the projection

of the Bloch vector onto the xy plane. Amplitude damping contributes to T2, but
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so do other things. For example, for frequency tunable transmons, fluctuations in

the external magnetic flux, caused by noise in the electronics, contributes to T2 by

applying random Z rotations. Furthermore, leakage out of the qubit subspace and

miscalibration of gates are sources of errors. Error rates on existing devices can

fluctuate on a timescale of hours, so fast characterization of errors and recalibration

is important.

The simplest model of an error is a depolarizing channel, which erases all of the

information in the state with probability p. An n-qubit depolarizing channel takes

the form

Φdep(ρ) = (1− p)ρ+ p

2n
I. (1.39)

This can be written as a Pauli channel (a quantum channel where all of the Kraus

operators are Pauli operators), using the fact that

I =
1

4n

4n−1∑
i=0

PiρPi, (1.40)

where Pi is an n-qubit Pauli operator. This channel corresponds to randomly ap-

plying Pauli operators, with equal probabilities for each. To prove Eq. 1.40, expand

the trace-1 Hermitian matrix ρ in the basis of Pauli operators and note that, for

each non-identity single-qubit Pauli operator in the expansion of ρ, half of the Pi

will commute with it and the other half will anti-commute.

Therefore, we can also write the depolarizing channel as

Φdep(ρ) =

(
1− p

(
1− 1

4n

))
ρ+

p

4n

4n−1∑
i=1

P̂iρP̂i. (1.41)
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This leads to some confusing terminology. Sometimes, reported error rates are the

depolarizing probability p, and sometimes, they are the “Pauli error,” related to the

depolarizing error by

pPauli = p

(
1− 1

4n

)
. (1.42)

There are many techniques for measuring various types of errors in quantum

processors. Here I discuss only a few important examples.

1.3.1 Randomized benchmarking

Randomized benchmarking (RB) is a standard way to characterize error rates [49, 40],

used at both IBM and Google. At Google, it is typically used for single-qubit error

rates, whereas cross-entropy benchmarking (XEB) is used to characterize two-qubit

gates. First, a random sequence of Clifford gates is chosen. By the Gottesman-Knill

theorem, the Clifford gate that inverts the sequence can be found efficiently and is

appended to the sequence. Therefore, ideally, the measurement outcome should be

0. Assuming that the noise channel is a depolarizing channel, the probability of

measuring something other than 0, pRB, is related to p by

pRB = p

(
1− 1

2n

)
. (1.43)

However, instead of using a single sequence to extract p, one uses random sequences

of varying lengths and fits an exponential decay to the probability of measuring 0 as

a function of the sequence length. From the decay constant, one extracts the error
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rate. This allows one to characterize gate errors separately from state preparation

and measurement (SPAM) errors.

. . .U1 U2 Ul−1 U−1

Figure 1.6: A length-l randomized benchmarking circuit. Each of the Ui is a random
Clifford gate.

1.3.2 Cross-entropy benchmarking

Randomized benchmarking may not be convenient if one wants to benchmark a two-

qubit gate that is not simply related to Clifford gates. For example, if the goal is to

benchmark a particular fSim gate, randomized benchmarking may not be convenient.

A better choice is to use cross-entropy benchmarking (XEB) [15].

XEB is similar to RB in that it assumes a depolarizing noise channel and char-

acterizes the noise using random circuits of varying lengths. The gate sequence is

shown in Figure 1.7. Note that the sequence is not inverted, like it is in RB.

Under a depolarizing channel, the expectation value of any observable Ô decays

towards its trace:

⟨Ô⟩dep. = (1− p)⟨Ô⟩+ 1− p
2n

Tr
[
Ô
]
. (1.44)

For XEB, one first performs a classical statevector simulation of the gate sequence

(which is possible since it only involves two qubits) and obtain the ideal probabilities
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. . .

. . .

U1

G

U3

G

U5 U2l−1

G

U2l+1

U2 U4 U6 U2l U2l+2

Figure 1.7: A length-l cross-entropy benchmarking circuit. Each of the Ui is a random
single-qubit gate, and G is the two-qubit gate that we would like to benchmark.

for each of the four measurement outcomes. The operator Ô is then chosen to be

Ô = diag(ρideal) =
∑
i

pideali |i⟩⟨i|. (1.45)

Eq. 1.44 then becomes∑
i

pobsi pideali = (1− p)
∑
i

(
pideali

)2
+

p

2n

=⇒ p =

∑
i p

ideal
i

(
pideali − pobsi

)∑
i

(
pideali

)2 − 1
2n

,

(1.46)

which shows how to obtain the depolarizing channel probability from measurements

of the probabilities of the observed bitstrings. As in randomized benchmarking, this

is repeated for sequences of varying lengths, and the error per gate is extracted from

fitting a decaying exponential to 1 − p. If the single qubit error rate is much lower

than the two-qubit error rate, which is typically the case, this error rate can be

assigned to the two qubit gates. Otherwise, one may need to subtract the error from

the single-qubit gates.
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1.3.3 Readout error rates

Readout errors are significant (often percent level) on existing transmon-based quan-

tum processors. Because single-qubit error rates are small compared to readout error

rates, the latter can be benchmarked simply by repeatedly preparing the qubit in

either |0⟩ or |1⟩ and measuring the probability of obtaining the wrong measurement

outcome. The readout error rate when the qubit is prepared in |0⟩ is called e0.

Similarly, e1 is the readout error rate when the qubit is prepared in |1⟩.

Several factors contribute to readout errors. One is simply misidentification of the

|0⟩ and |1⟩ states. As detailed in Ref. [148], the raw measurement from the readout

line consists of an in-phase (I) and quadrature (Q) component of the scattered signal

(the amplitudes of the sine and cosine components of the signal). The qubit state

affects the frequency of the resonator, which affects the phase of the scattered signal.

Thus, a region of the IQ plane is associated with the |0⟩ state, while a different

region is associated with the |1⟩ state. More specifically, the measured point in the

IQ plane is random with an approximately Gaussian distribution, where the two

Gaussians (associated with the |0⟩ and |1⟩ state, respectively) have different centers.

The tails of the Gaussians overlap, causing some misidentification error. See Sec. 3.5

of Ref. [148] for more details. This misidentification error can be made symmetric

or can be made to reduce one type of error at the expense of the other depending

on where the boundary between the two regions is drawn. However, other factors,

such as decays from the |1⟩ to the |0⟩ state during the measurement, including

measurement induced transitions, generally cause e1 to be higher than e0.
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Typically, multiple qubits share the same readout line. This and other factors can

cause correlations among the readout errors, and can also make simultaneous readout

errors (i.e. readout error rates when multiple qubits are measured simultaneously)

higher than isolated readout error rates. This is typically the case on existing devices.

To benchmark simultaneous readout errors, one can prepare the qubits in random

bitstring states, measure the qubits, and extract the single-qubit readout error rates.

1.3.4 T1 and T2

To measure the amplitude damping rate, T1, simply prepare the qubit in the |1⟩

state, wait a variable time, and measure. Fit an exponential to the probability of

measuring 1 as a function of time.

To measure the dephasing rate, T2, simply prepare the qubit in the equatorial

plane of the Bloch sphere, e.g. by applying a
√
X or

√
Y gate, wait a variable amount

of time, and measure the projection of the Bloch vector in the equatorial plane. (This

is known as a Ramsey sequence.) Fit a decaying exponential to
√
⟨X⟩2 + ⟨Y ⟩2; the

decay constant is T2. T2 can be significantly improved by dynamical decoupling,

where, instead of leaving a qubit idle, an echo sequence of pulses is applied. This

echo sequence can reduce the effect of slow fluctuations in the qubit’s frequency

caused by varying external magnetic flux. See Section 6.5 of Ref. [33]. Because

amplitude damping also contributes to dephasing, T2 ≤ 2T1.
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1.3.5 State preparation errors

Qubits may also have state preparation errors, i.e. the initial state may not be |0⟩.

Coherent deviations from |0⟩ can be detected by first applying a variable Z rotation

and then measuring ⟨X⟩ or ⟨Y ⟩. Oscillations indicate that state preparation was not

perfect. See Ref. [101] for more details on how to measure state preparation errors

independently from readout errors.

1.4 NISQ Algorithms

The algorithms discussed in Section 1.1 require very low error rates, which will require

some form of error correction, i.e. redundantly encoding logical qubits in multiple

physical qubits and detecting errors, perhaps by measuring stabilizer operators. This

is currently far out of reach. However, other algorithms exist that are being imple-

mented on existing devices and could possibly lead to useful applications. In this

section, I describe a few of the these algorithms suitable for noisy intermediate-scale

quantum (NISQ) devices.

1.4.1 Trotterized time evolution

One of the promising applications of existing quantum processors is to simulate

other quantum systems. Suppose that the system to be simulated is described by
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a Hamiltonian, H, and we want to implement e−iHt, or an approximation to it.

Suppose that there is not a simple exact decomposition of e−iHt in terms of the

available single and two-qubit gates, but that H = HA +HB, where [HA, HB] ̸= 0,

and we know how to implement e−iHAt and e−iHBt in terms of the basic gates. Then

we can achieve an approximation to the desired time evolution as

e−iHt ≈
(
e−iHAδte−iHBδt

)t/δt
(1.47)

From Taylor expanding both sides, it is easily shown that

e−iHAδte−iHBδt = e−iHδt − 1

2
[HA, HB]δt

2 +O(δt3). (1.48)

Thus, the overall error is

(
e−iHAδte−iHBδt

)t/δt − e−iHt = −1

2
[HA, HB]tδt. (1.49)

The O(δt) error can be eliminated by instead using the second-order Trotter expan-

sion:

e−iHt ≈
(
e−iHAδt/2e−iHBδte−iHAδt/2

)
. (1.50)

Chapter 5 of this thesis implements Floquet dynamics that are related to the Trot-

terization of the 1D Heisenberg model.

1.4.2 Adiabatic state preparation

In addition to studying the dynamics of quantum systems, it is also useful to study

their eigenstates, or mixtures of eigenstates such as thermal states. The goal could
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either be to study these states themselves, or to prepare them as initial states, e.g.

to compute a multi-time correlation function in a particular state.

Adiabatic state preparation utilizes the adiabatic theorem from quantum mechan-

ics, that states that, if the system begins in an eigenstate of Hi, and the Hamilto-

nian is slowly changed from Hi to Hf , then the system ends up in the corresponding

eigenstate of Hf . For example, Hi could be chosen so that its ground state is easy to

prepare. Then, a Trotterized time evolution of a time-dependent Hamiltonian that

interpolates between Hi and Hf is applied. The final state is an approximation to

the ground state of Hf . If the gap between the ground state and the first excited

state is small at any time during the evolution, then there is a risk of exciting out

of the ground state if the time evolution is not slow enough. On the other hand, a

slower time evolution requires deeper circuits and hence more noise.

1.4.3 The variational quantum eigensolver

While adiabatic state preparation provides a circuit to approximately prepare the

ground state of a given Hamiltonian, Hf , it may not be the shallowest circuit that

does so to a given fidelity, and optimizing for circuit depth is very important on cur-

rent noisy devices. The variational quantum eigensolver (VQE) attempts to find a

shallower circuit to prepare the ground state by postulating an ansatz (i.e. a param-

eterized quantum circuit, which generates a parameterized trial wavefunction). The

energy is measured and is fed into an optimization routine, run on a classical com-
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puter, that tunes the variational parameters in order to minimize the energy. After

many iterations, this may converge to an approximation to the ground state. The

ansatz can be chosen to have a similar structure to the circuit used in adiabatic state

preparation, so it is guaranteed to perform no worse than adiabatic state preparation

in terms of circuit depth. VQE is implemented in Chapter 2 of this thesis.
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CHAPTER 2

VQE AND ERROR MITIGATION

2.1 Introduction

Quantum computation promises to revolutionize physics and chemistry. Our ability

to make quantitative predictions about many-body and strongly coupled quantum

mechanical systems, such as atoms with many electrons, or systems of quarks and

gluons, has, with classical computers, been severely hampered by the exponential

memory requirements of storing and operating on many-body wavefunctions. Quan-

tum computers overcome this difficulty by representing the wavefunction in the state

of the qubits themselves. Noise, however, has prevented current quantum comput-

ers from surpassing the capabilities of classical computers in almost all applications,

including quantum simulation.

In the long term, fault-tolerant quantum computation may be achieved using

error-correction techniques that employ many physical qubits to encode each logical

qubit. In the near term, there is much effort aimed at less costly methods to mitigate

or compensate for the effects of noise in current quantum hardware. Some of these

error-mitigation techniques involve artificially increasing the noise and extrapolating

the output to zero noise [102, 159, 50, 84, 131, 70]. Others involve representing the

ideal circuit in terms of noisy ones (the so-called “quasi-probability method”) [159,

50]. Still others involve using replica copies of the system to effectively take powers
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of the density matrix and suppress errors [97, 75], while others attempt to learn the

effect of the noise by training on classically simulable circuits [70, 38, 118, 152].

Several proposed error-mitigation methods have successfully modeled the noise

as damping the expectation values of observables towards their expectation values

in maximally mixed states, i.e., ⟨Ô⟩noisy ≈ C⟨Ô⟩exact + (1 − C)Tr[Ô]/2n, where 0 <

C < 1, Ô is an observable, and n is the number of qubits [70, 38, 118, 61, 116,

163, 168, 167, 152]. In this work, we consider traceless observables, so the last term

is not present (although its inclusion would not present any significant difficulties).

Knowing the damping factor, C, the exact expectation value can be recovered from

the noisy one. Various methods for estimating the damping factor are proposed in the

works cited above. Here we propose another method and compare the performance

of these methods to each other and to zero noise extrapolation when applied to

the test problem of measuring the ground state energy of a 1D mixed field Ising

spin chain. We find that several methods offer significant improvements over no

mitigation, enabling circuits of up to about 25 ansatz layers to yield expectation

values within 10% of the correct expectation value. Which method works best is

problem-dependant, but for our test problem, we find that estimating the damping

factor from the perturbative regime of the Hamiltonian works particularly well.
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2.2 Test problem

Our goal is to benchmark error mitigation methods, in order to get a sense for

when excessive circuit depth impedes obtaining meaningful results. To benchmark

these methods, we consider the problem of finding ground states of the 20-qubit 1D

mixed-field Ising model.

The mixed-field Ising model is defined by the following Hamiltonian:

H = −J
∑
i

ZiZi+1 − hx
∑
i

Xi − hz
∑
i

Zi, (2.1)

where we impose cyclic boundary conditions on the spins. If hz = 0, this reduces

to the transverse-field Ising model, which is exactly solvable using a Jordan-Wigner

transformation when the number of qubits is large. In this case, a term arising

from the cyclic boundary conditions can be neglected [133]. It is, of course, also

solvable in the limits h2x/(J
2 + h2z) ≪ 1 and J2/h2x ≪ 1. For intermediate values

of the field strengths, however, it is non-integrable and quantum chaotic [89, 90].

Approximate methods have been developed to study this model outside of its inte-

grable regime [175]. For the system size studied here (20 qubits), such approximate

methods are not necessary since the Hamiltonian can be exactly diagonalized on a

classical computer. For a discussion of the perturbative regimes of this Hamiltonian,

see Appendix A.1. Fig. A.1 compares the exact ground state energies of this model to

those computable in second-order perturbation theory from the analytically solvable

limits. Throughout this work, we set J = 1, which sets the overall scale of H.

We use an ansatz to parameterize approximate ground states of this Hamiltonian.
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In particular, we consider a variant of the Alternating Layered Ansatz (ALT) [30,

122], shown in Fig. A.2 and described in Appendix A.3. We consider both the full

ALT ansatz and a constrained version of it, with even cyclic permutation symmetry

imposed. The permutation symmetry reduces the number of parameters from n(l+1)

to 2(l + 1), where n is the number of qubits and l is the number of ansatz layers.

Fig. A.3 shows that this ansatz is able to capture the ground states of these Hamil-

tonians as the number of layers is increased. In fact, we do not need to make l very

large to capture the ground state, but we do so anyway to study error mitigation.

For future applications of the Variational Quantum Eigensolver (VQE), in which

the ansatz circuits are wide and deep enough that they are not classically simula-

ble, the optimization step will need to be performed using measurements from the

quantum computer. If the effect of the noise is indeed to damp expectation values of

observables, and the parameter dependence of the damping factor does not noticeably

shift the location of the minimum, then it is not necessary to apply error mitigation

during the optimization routine. In this case, correcting the damping is more rele-

vant after the optimization, when we evaluate the optimized circuit. We demonstrate

that our symmetrized ansatz circuits can be optimized for the mixed-field Ising model

on 20 qubits using unmitigated measurements from quantum computers (Figs. 2.1

and 2.2). Having shown this, and because our primary goal is to benchmark error-

mitigation techniques, we proceed to optimize the remaining circuits classically. In

all Figures other than 2.1 and 2.2, the results were obtained with circuits that were

optimized classically.
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2.3 Error mitigation techniques

We consider the following questions: Given optimized circuits that approximate

ground states of the Hamiltonian (2.1), how can we best estimate the damping

factor that characterizes the suppression of the expectation value of the Hamiltonian

when evaluated on a quantum computer? How deep can we make our ansatz using

this method? The remainder of this section contrasts techniques for estimating

the damping factor. We do not include the method of Ref. [168], which requires

simultaneous measurements of all of the qubits, because readout-error mitigation on

a large number of qubits is a significant challenge beyond the scope of this work. We

also do not include the motion-reversal method of Ref. [152] because, for circuits of

the depths considered here, repeating them and their inverses several times leads to

very small fidelities, to which it is impossible to accurately fit an exponential using a

reasonable number of measurements. Further, this method relies on the assumption

that the circuit and its inverse lead to similar decays in fidelity, which may not be

true. We also do not include the quasi-probability method because it requires gateset

tomography. We benchmark the following methods. “Extrapolation in circuit depth”

is a new method proposed here, whereas the others have been proposed in previous

works. We also tested two methods that did not perform as well, which are described

in Appendix A.4.
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2.3.1 Zero noise extrapolation

In our implementation of zero noise extrapolation (ZNE) [102, 159, 50, 84, 131,

70], we artificially increase the noise by replacing CNOT gates with odd numbers

of CNOT gates. For example, if we want to increase the noise by a factor of 3,

we replace each CNOT gate by 3 CNOT gates. We can scale the noise by factors

other than odd integers by randomly picking CNOT gates to repeat an odd number

of times. We then use an exponential fit to extrapolate the measured energy to

zero noise. We use three points (one of which is the unmodified circuit) to do this

extrapolation.

2.3.2 Calibrating using the perturbative regime

Recently, the Google team observed that, at least for the specific system they studied,

the damping factor was independent of the coupling strength [61]. They proposed,

therefore, that one can measure the damping factor in a perturbative regime of the

Hamiltonian, and then use the same damping factor outside of the perturbative

regime to correct the results from the quantum computer.

This method is, of course, limited to Hamiltonians that have a perturbative

regime, which doesn’t include all Hamiltonians of scientific interest. For example,

instances of the Sachdev-Kitaev-Ye (SYK) Hamiltonian do not have a perturbative

regime, but simulations of the model may give insights into holography and quantum
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gravity (e.g., [7, 114, 108, 18, 129]). Nevertheless, many Hamiltonians of interest do

have a perturbative regime, so this technique may still prove useful.

The mixed-field Ising model has several different perturbative regimes, discussed

in Appendix A.1. For the purposes of this error-mitigation technique, we consider

only perturbation in small hx; we fix hz = 0.1 and consider 0 < hx ≤ 0.5 to be the

perturbative regime and hx = 1.5 to be outside of the perturbative regime. While

we might obtain a better estimate of the damping factor by averaging measurements

over multiple perturbative regimes, approaching the desired field strength from both

sides, multiple perturbative regimes is not a generic feature of Hamiltonians so we

do not employ this trick.

2.3.3 Extrapolation in circuit depth

In contrast to Ref. [61], but in agreement with the observation that exponentials work

well for ZNE [50], we expect that the damping factor should decay exponentially in

the number of ansatz layers and generally observe this to be the case. Further,

circuits with small depth may be classically simulable because only qubits in the

backwards light cone of the measured qubits need to be included. For 1D ansätze

with nearest-neighbor 2-qubit gates, such as the ansatz considered here, the number

of qubits needed for exact classical simulation is min(m+2l, n), where l is the number

of ansatz layers, m is the number of qubits on which the observable acts, assumed

to be adjacent, and n is the total number of qubits. If 36 qubits are classically
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simulable, then for the Hamiltonian considered here (Eq. 2.1), with m = 2, we can

simulate up to 17 ansatz layers for arbitrarily large n. More generally, one needs to

consider the size of the backwards light cone as a function of the number of ansatz

layers to determine the maximum number of layers that can be simulated classically.

This method will not work as well or at all for observables that act on many qubits

in the same term, such as the SYK Hamiltonian in either the Jordan-Wigner or

Bravyi-Kitaev [17] representation. To test this mitigation method for our system,

we fit an exponential to the damping factor for up to 15 ansatz layers and then use

the fit to predict the damping factor for up to 50 layers.

2.3.4 Calibrating by omitting 1-qubit gates

Another recent paper [163] proposed estimating the damping factor by eliminating

all of the 1-qubit gates in the circuit. The remaining 2-qubit gates, which are all

controlled-NOTs, leave the state in |00 . . . 0⟩, and the damping factor is estimated as

the fidelity of measuring all zeros. For our system, eliminating the single-qubit gates

is achieved by setting θ⃗ = 0. In addition to estimating the damping factor using

the fidelity, as suggested by Ref. [163], we also compare the measured energy to the

energy in the ideal state to estimate the damping factor.

This method can be regarded as a special case of a method in which the ansatz is

evaluated at classically solvable points. For our ansatz, if we pick the Y-rotations to

be θi = niπ/2, for integers ni, then the circuit is within the Clifford group and hence
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classically simulable. Using Clifford circuits to estimate the damping factor has been

proposed previously [38]. For generic choices of the ni, however, the expectation value

of the Hamiltonian becomes vanishingly small — and hence impossible to measure

with a finite number of shots — as the number of ansatz layers becomes large. The

fidelity also cannot be measured without adding more gates to the circuit because the

final state is not generically a computational basis state, so estimating the predicted

damping factor from the fidelity is not possible. Therefore, these circuits cannot

be used to measure the damping factor using the method described in the previous

paragraph. We might instead consider picking all of the ni to be even, so that the

state remains a computational basis state. In generic computational basis states,

at large n, the Hamiltonian will still have a small expectation value, although not

as small as in a generic state. Nevertheless, we could estimate the damping factor

by measuring the fidelity of the final state in such a circuit. In the present work,

we focus on the case θ⃗ = 0, which produces the ground state of the free (hx = 0)

Hamiltonian, a state close to the states of interest. We leave the study of other

Clifford circuits to future work.

In Ref. [163], this method is combined with ZNE. We also benchmark the com-

bination of this method with ZNE. There are two ways of combining these methods.

One could apply ZNE to the original circuit and to the calibration circuit (the one

with the single-qubit gates removed) separately and then divide the former result by

the predicted damping factor from the latter result (we call this method “ZNE first”),

or we could divide the measured energy from each noise-scaled target circuit by the

estimated damping factor from the corresponding noise-scaled calibration circuit and
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then extrapolate the quotient to zero noise (we call this method “ZNE last”). We

benchmark both methods.

2.4 Experimental techniques

Independent of the error-mitigation technique under consideration, we always do the

following to reduce noise:

1. We omit gates outside of the backwards light cone of the measured observable.

This technique has previously been called a light-cone filter and has been found

to be beneficial [116].

2. In order to implement the previous technique to its fullest advantage, and also

to reduce the number of qubits measured simultaneously, we measure each

Hamiltonian term separately.

3. The qubits in our ansatz are connected in a loop, as are the qubits on the

quantum computer. For a loop of n qubits, there are 2n ways to map the

circuit qubits to the physical qubits that preserve this connectivity (cyclic per-

mutations and a reflection). We average over four of these mappings. Such

an average has been called qubit assignment averaging [61]. Instead of picking

these mappings randomly, we pick configurations for which the damping fac-

tor, as predicted by multiplying fidelities, is the largest (closest to one). This

ensures that we avoid particularly noisy qubits or gates to the extent possible

while also averaging out systematic biases.
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4. Additionally, we implement randomized compiling [170, 26, 27, 163], which

helps convert coherent errors into depolarizing-channel errors. In this method,

every CNOT gate is randomly replaced by one of 16 dressed CNOT gates, to

which it is equivalent in the absence of noise. The 16 dressed gates are described

succinctly in Figure 1 of [163]. We apply this method when benchmarking

error mitigation methods (i.e. Figs. 2.3-2.6) but not when running the VQE

experiments (Figs. 2.1-2.2).

5. Finally, we apply readout error mitigation, assuming that readout errors are

uncorrelated and that the error rates are as measured by IBM and reported in

the backend properties. For details, see Appendices A.5-A.6.

2.5 Results and Discussion

First, we demonstrate that the training phase of VQE can converge even when we

don’t apply error-mitigation techniques to correct the damping. Then we compare

the performance of the various error-mitigation techniques at estimating the damping

factor for tuned circuits.

2.5.1 VQE using unmitigated quantum circuit evaluations

Consider the training phase of VQE. In order to improve the convergence of our

optimizer, we impose a cyclic permutation symmetry on the ansatz, so that each row
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of Y -rotations is described by two angles instead of n. This reduces the number of

parameters from n(l + 1) to 2(l + 1), where n is the number of qubits and l is the

number of ansatz layers. We begin at a random point in parameter space and use

the quantum computer to measure the energy. We feed the measured energy into the

Simultaneous Perturbation Stochastic Approximation (SPSA) optimizer, running on

a classical computer, which picks the updated parameters [1]. The first 50 function

evaluations are used to calibrate an SPSA hyperparameter as in [85], following which

the optimizer iterates through the SPSA algorithm. At each iteration, SPSA uses two

evaluations of the energy, at θ⃗ = θ⃗i ± ci∆i, and we submit both of these evaluations

together in the same job for improved speed.

Figs. 2.1 and 2.2 show the results of this VQE optimization for a 20-qubit mixed-

field 1D Ising model on ibmq sydney and ibmq toronto, respectively, with 3–6 ansatz

layers. We see that the optimizer is often able to converge to a state close to the true

ground state, that is, below the energy of the first excited state. The lowest energy

state achieved during our VQE runs has an energy of −33.54. For comparison, the

true ground state energy is −33.90, and the first excited state energy is −32.60.

We might worry that this convergence would be spoiled by a parameter-dependent

damping factor. Indeed, in some of our runs, the damping factor can be seen to

increase as the optimizer converges to the ground state, indicating its parameter

dependence.

Although the parameter dependence of the damping factor does not prevent con-

vergence in our system, we cannot guarantee that it never will. If the damping factor
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shifts the locations of the minima, techniques to minimize this effect will be neces-

sary. These could include additional experimental techniques to symmetrize over

measurement outcomes, such as exchanging the roles of “1” and “0”, or applying

an error mitigation technique during the optimization routine. Many of the error-

mitigation techniques discussed here, however, assume either that the damping factor

is parameter independent or that the circuit has been optimized. Of the methods

that we benchmark, only ZNE could be used during the optimization phase.

One might naturally guess that some of the parameter dependence of the damping

factor comes from asymmetric readout errors. We show in Appendix A.6 that, indeed,

the asymmetric readout errors lead to a predictable additive shift of expectation val-

ues, and hence a parameter-dependent damping factor (Eq. A.6). However, because

the shift is constant, its effect is to shift the overall energy by a constant amount, leav-

ing the location in parameter space of the minimum unchanged. For the mixed-field

Ising Hamiltonian, this overall shift is approximately −n(hx + hz)(e1 − e0) ≈ −1.6

for n = 20, hx = 1.5, hz = 0.1, and (e1 − e0) ≈ 0.05. This is a larger relative shift

when the energy is closer to zero. It should therefore have the effect of making

the damping factor closer to unity at negative energies further from the minimum

(closer to zero). We see instead the opposite effect, so this is not the source of the

parameter-dependent damping factor.
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2.5.2 Comparison of mitigation techniques

Having established that, in at least some cases, error mitigation is not needed to

tune the ansatz parameters, we now compare the performance of the error-mitigation

techniques, applied to optimized circuits. For the methods that work by estimating

a damping factor, we plot the observed damping factor on the same axes as those

predicted by the various methods (Fig. 2.3). Additionally, for all of the methods,

we plot the relative error of the reconstructed energy as a function of the number of

ansatz layers (Fig. 2.4). Finally, we show to how many layers each method allows us

to extend our ansatz circuits while successfully mitigating the energy to within 10%

of its true value (Figs. 2.5-2.6).

2.6 Discussion and Conclusion

We have used the variational-quantum-eigensolver algorithm to solve a quantum spin

model with up to 20 qubits (spins), and have compared various error-mitigation tech-

niques that can be applied to the VQE output to correct the measured ground-state

energy. We see that, for studying ground states of the mixed-field Ising model on 20

qubits on ibmq toronto and ibmq sydney, all of these methods provide improvements

over no mitigation. Zero noise extrapolation fails for large circuit depths because the

measured energy, even with no added noise, is damped very close to zero, and it is dif-

ficult to extrapolate these measurements to zero noise. For the run on ibmq sydney,

ZNE first fails at 9 layers (Figs.2.5-2.6). Some of the fits used in our implementation
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of ZNE are shown in Fig. 2.7 and illustrate the difficulty of extrapolating to zero

noise when the initial circuit is deep.

Using the Hamiltonian’s perturbative regime to estimate the damping factor

worked relatively well, perhaps best out of the methods that we tested. In Fig. 2.3,

we see that it correctly predicts the damping factor on both devices most of the time

even though it, too, seems to fail when the circuit extends to 50 ansatz layers. The

reader may have noticed that the error bars in Fig. 2.4 are larger for this method

than for the others. This is because the variance of the damping factor over the five

Hamiltonians in the perturbative regime contributes to the statistical uncertainty of

the predicted damping factor (see Fig. 2.8). This could be reduced by picking more

points in the perturbative regime. However, the fact that the spread of the measured

damping factors is larger than one would expect from their individual error bars in-

dicates that this method is unlikely to predict the correct damping factor exactly.

Further, this method has a significant overhead, requiring the optimization of the

ansatz circuits for each of the perturbative regime Hamiltonians in addition to the

Hamiltonian of interest. Its applicability is also limited because, unlike ZNE, it can

only be applied to optimized circuits and only to systems that have a perturbative

regime.

As seen in Fig. 2.3, the damping factor did decay approximately exponentially

in the number of ansatz layers. Therefore, the exponential fit to the points with

at most 15 layers worked reasonably well out to about 25 layers, which is better

than ZNE performed on ibmq sydney but not as well as the “from pert” method
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worked. Extrapolating in the number of ansatz layers also only works for optimized

circuits, but it does not require the Hamiltonian to have a perturbative regime. It

does, however, require the Hamiltonian and the ansatz to be local in order for the

shallow-depth ansatz circuits to be exactly classically simulable.

The method of removing the single-qubit gates, like ZNE, does not require the

ansatz to be optimized and does not place any restrictions on the Hamiltonian or

the ansatz. However, it does assume that the damping factor is independent of

the ansatz parameters, which we have seen is not true. Consequently, this method,

whether combined with ZNE or not, does not perform as well as the other methods

(c.f. Fig. 2.3).

In summary, we have seen that error-mitigation methods that work by estimating

a damping factor can outperform zero noise extrapolation and extend feasible circuit

depths to about 25 ansatz layers. However, these methods are also more specialized,

best suited to specific types of Hamiltonians and ansätze and poorly suited to the

optimization phase, during which one could still apply ZNE. The Hamiltonian studied

in this work was particularly simple and did not require error mitigation during the

optimization phase. However, that will not always be the case.

By carefully studying error mitigation techniques and the circuit depths that

they enable on current devices, we are progressing toward the day when quantum

comptuers will be a tool for learning new things about physics and chemistry systems.
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Data and code availability

The code used to perform the numerical simulations, the experimental runs on IBM’s

hardware, and the data analysis (including error mitigation) is available at https:

//github.com/mcmahon-lab/error_mitigation_vqe. The data used to produce

the figures may be made available upon request.
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Figure 2.1: VQE for the 20-qubit Ising Hamiltonian, with energy evaluations per-
formed on ibmq sydney, with hx = 1.5 and hz = 0.1. Unmitigated energies are fed
into the SPSA algorithm. We impose cyclic permutation symmetry on the ansatz to
reduce the number of parameters. Note that SPSA involves computing E(θ⃗i± ci∆i),

not E(θ⃗i). In the upper panels, the dark-blue dots are the unmitigated energies mea-
sured on the quantum computer. These are damped compared to the dark-yellow
dots, which show exact classical evaluations of the same circuits, from which we com-
pute the observed damping factor (blue dots in lower panels). The purple horizontal
line in each upper panel shows the energy of the classically optimized ansatz circuit,
and the magenta dashed line shows the energy of the exact ground state. The hor-
izontal black dashed line indicates the first excited state energy. In all trials except
the 4-ansatz-layer trial, the optimizer succeeds in finding a state whose energy is
below the first excited state energy (we would pick the point with the lowest energy,
not necessarily the last point).
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Figure 2.2: Same as Fig. 2.1 except on ibmq toronto. The discontinuities, particularly
apparent in the 4-layer experiment, coincide with daily recalibrations of the device.
For the 3- and 4-layer trials the optimizer succeeds in obtaining states with energies
below the first excited state energy.
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Figure 2.3: Measured and predicted damping factors for ground states of the 20-qubit
mixed field Ising model with hx = 1.5 and hz = 0.1. The methods used to predict the
damping factor are described in Secs. 2.3.2, and 2.3.3, and 2.3.4, respectively. For the
first method, we take hx = {0.1, 0.2, 0.3, 0.4, 0.5} to represent the perturbative regime
and average the measured damping factors for those five circuits. ZNE is absent from
this plot because it does not predict a damping factor. When computing energies, we
apply readout error mitigation using the reported readout error rates, as discussed in
Appendix A.6. We see that the “from pert” method correctly predicts the damping
factor for circuits up to about 25 layers and that all of the methods fail by 50 layers.
Error bars indicate statistical errors only (see Appendix A.2).
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Figure 2.4: Relative error in the measured ground state energy of the 20-qubit mixed
field Ising model with hx = 1.5 and hz = 0.1, mitigated using each of the methods
studied in this chapter.
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Figure 2.5: Effectiveness of error mitigation. “3” means that the reconstructed
energy is within 10% of the correct value. “2” means statistically indeterminate at 1
standard deviation. “1” means statistically indeterminate at 2 standard deviations.
“0” means that the reconstructed energy deviated by more than 10% from the true
energy. In this figure, the methods involving calibration circuits do not include
separate readout error mitigation.
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Figure 2.6: Same as Fig. 2.5, but applying readout error mitigation (Appendix A.6)
to all energy evaluations, including in calibration circuits.
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readout error mitigation
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Figure 2.7: Some of the exponential fits used for zero noise extrapolation on
ibmq sydney. It is not clear that readout error mitigation, as we perform it, is
beneficial for this method. In fact, for 30 and 40 ansatz layers, some of the readout-
mitigated energies were negative, causing the exponential fits to fail. In future work,
we intend to to explore better ways of performing readout error mitigation. It is also
clear why this method fails at large circuit depth. The measured energy is very small
even before we artifically increase the noise, and it is therefore difficult to extrapolate
back to zero.
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Figure 2.8: Some of the extrapolations used when estimating the damping factor from
the perturbative regime. The solid horizontal line indicates the predicted damping
factor (the mean of the damping factors for hx ≤ 0.5), and the dashed horizontal
lines indicate the 1σ uncertainty of the mean. Readout error mitigation has already
been applied in these plots.
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CHAPTER 3

DISSIPATIVE STATE PREPARATION

Chapter 2 described the preparation of ground states of the 1D mixed-field Ising

model using VQE. Ref. [115] discusses the preparation of similar states using a very

different method, dissipative cooling, which mimics how cooling happens in nature.

The system is coupled to an environment, in this case ancilla qubits that are reset

between cycles. The interaction is designed to remove quasiparticles from the system

and hence cool it towards its ground state. Although the removal of quasiparticles

is not perfect, the resulting state of the system resembles the ground state in sev-

eral important ways, quantified by long-range correlations, mutual information, and

quasiparticle content.

This chapter details my contribution to Ref. [115]. Although I am an author of

that paper, I did not write the text, so it is not reprinted here. Readers of this thesis

are encouraged to read Ref. [115] for the full context.

My contributions to this work were twofold. First, I contributed the code that

the first author used to compute the ground state energy of the 1D transverse field

Ising model (TFIM), used in Figures 2 and 3 of the paper. Second, I performed

numerical simulations of VQE, using code that I had written for the project discussed

in Chapter 2 as a comparison. Further, although I did not write the manuscript, I

did provide detailed comments on a draft of it, which were integrated into the final

version.
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3.1 Analytical solution of the transverse field Ising model

This section shows how to compute the ground state energy of the transverse field

Ising model. A similar calculation was first performed by Ref. [133]. The Hamiltonian

that we would like to solve is

H = −J

(∑
i

ZiZi+1 + g
∑
i

Xi

)
. (3.1)

We will solve this by doing a Jordan-Wigner transformation. Breaking convention

slightly, define the Majorana fermions:

χj = Zi

∏
j<i

Xj

χ̃j = Yi
∏
j<i

Xj,

(3.2)

which satisfy {χi, χj} = 2δij, {χ̃i, χj} = 2δij, and {χ̃i, χ̃j} = 2δij, where the curly

brackets are anti-commutators. We can write the Hamiltonain in terms of these as

H = −iJ

(∑
i

χ̃iχi+1 − g
∑
i

χ̃iχi

)
. (3.3)

Next, we want to find a new set of Majorana fermions in terms of which the

Hamiltonian becomes that of free fermions. Note that an orthogonal transformation

of Majorana fermions preserves the anticommutation relations. That is, if we define

new Majorana fermions ψi = Oijχj (with implicit summation over repeated indices),

then

{ψi, ψj} = OikOjl{χk, χl}

= 2(OOT )ij

= 2δij,

(3.4)
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so the anti-commutation relations are preserved under orthogonal transformations.

Now, we can write the Hamiltonian as

H = −iχ̃iHijχj, (3.5)

where

Hij = Jδj,i+1 − Jgδij. (3.6)

We want to find a new set of Majorana fermions ψi and ψ̃i that diagonalize H, i.e.

eliminate the hopping term. Let’s define

χi = Oijψj

χ̃i = Õijψ̃j.

(3.7)

(This is different from our previous O and ψ.) In terms of these, the Hamiltonian

becomes

H = −iÕikψ̃kHijOjlψl

= −iψ̃i(Õ
THO)ijψj.

(3.8)

Next, suppose that we have found the singular value decomposition of H and can

write it as

H = ÕΣOT , (3.9)

where Σ is diagonal. (We will denote the diagonal elements of Σ as λi.) Then we

can write

H = −i
∑
i

λiψ̃iψi. (3.10)
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To relate this back to more familiar free fermions, define the fermionic creation and

annhilation operators:

ai =
1

2

(
ψi + iψ̃i

)
a†i =

1

2

(
ψi − iψ̃i

)
,

(3.11)

which satisfy the canonical anticommutation relation {ai, a†i} = δij. The fermionic

number operator for species ψi is

a†iai =
1

2

(
1− iψ̃iψi

)
, (3.12)

so we can finally write the Hamiltonian as

H = −
∑
i

λi

(
1− 2a†iai

)
. (3.13)

The ground state energy is therefore

E0 = −
∑
i

λi. (3.14)

Now, suppose we want the expectation values of the individual ZZ and X terms.

To find them, we will write these operators in the ψ basis. We have

ZiZi+1 = iχ̃iχi+1

= iÕijOi+1,kψ̃jψk

= ÕijOi+1,k(aj − a†j)(ak + a†k)

⟨0|ZiZi+1|0⟩ =
∑
j

ÕijOi+1,j

= (ÕOT )i,i+1.

(3.15)
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Similarly,

Xi = −iχ̃iχi

⟨0|Xi|0⟩ = −(ÕOT )ii.

(3.16)

These results allow the ground state energy, as well as the individual ZZ and X

terms to be computed efficiently. I wrote the following Python code to implement

this solution (the sparse arrays are just used for convenient initialization; they are

converted to numpy arrays):

import numpy as np

from scipy.linalg import svd

from scipy.sparse import coo_array

def fermion_H(n, g, J=1):

i = np.append(np.arange(n - 1), np.arange(n))

j = np.append(np.arange(1, n), np.arange(n))

data = np.append(J * np.ones(n - 1), -J * g * np.ones(n))

H = coo_array((data, (i, j)))

return H

def ising_ground_state_energy(n, g, J=1):

# returns the ground state energy of the transverse field Ising model
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H = fermion_H(n, g, J).toarray()

l = svd(H, compute_uv=False)

return -sum(l)

def ising_ground_state(n, g, J=1):

H = fermion_H(n, g, J).toarray()

Otilde, l, OT = svd(H)

E = -sum(l)

M = Otilde @ OT

ZZ = np.array([M[i, i + 1] for i in range(n - 1)])

X = -np.diag(M)

return E, ZZ, X

3.2 Comparison of VQE and cooling

Having described both VQE and cooling, it is informative to see how they compare

when applied to the same problem. To do this, I used the same ansatz as in Chapter

2, which is illustrated in Figure A.2, and optimized it classically using the gradient-

based GPU optimizer that I wrote for Chapter 2.

First, consider the 18-qubit antiferromagnetic chain with g/J = 1, for which

results are shown in Figure 3 of Ref. [115], including the lower panel of Fig. 3.D. In
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particular, in Eq. 3.1, we pick J = −1, g = −1 (corresponding to rotating Z → X,

X → −Z from Eq. 1 of Ref. [115]). The exact ground state energy is E0 = −22.562,

and the gap between the ground state and first excited state is E1−E0 = 0.170. For

VQE, we minimize the standard cost function,

C(θ⃗) =
〈
ψ(θ⃗)

∣∣∣H ∣∣∣ψ(θ⃗)〉 . (3.17)

The results are shown in Figure 3.1. The text in each of the two panels shows the

energy that was achieved, the fidelity with the true ground state, the expectation

value of the parity,
∏

iXi, and the maximum single-site |⟨Zi⟩|. Plotted is the same

long-range correlation function shown in Figure 3.D of Ref. [115]. In particular,

YjPj+1,k−1Yk = Yj

(
k−1∏

i=j+1

Xi

)
Yk (3.18)

(since we are using Z → X, X → −Z compared to Ref. [115]).

It appears that at least 19 layers are needed in order to generate the long-range

correlations (here “layer” means the same thing as in Chapter 2 and Figure A.2).

Nevertheless, in both cases, the energy achieved was very close to the ground state

energy, well below the energy of the first excited state. This illustrates that E/E0 can

be made close to unity while other quantities, such as long-range correlations, and,

in this case also the single-site ⟨Zi⟩, differ significantly from what they are in the true

ground state. The precise energy measurements needed to distinguish E = −22.52

from E = −22.56 could prove difficult on real devices, where both many shots and

high fidelities are required for this level of precision.

Next, consider the same chain with g/J = 0.6, for which results are shown in the
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Figure 3.1: Classically-simulated VQE applied to the antiferromagnetic 1D TFIM
with g/J = 1. The long-range correlation function from Fig. 3D of Ref. [115] is
shown.

upper panel of Fig. 3.D in Ref. [115]. The ground state is nearly degenerate. The

lowest two energy eigenstates are approximately 1√
2
(|0101 . . .⟩ ± |1010 . . .⟩). The

ground state energy is extensive; E0 ∼ n (specifically E0 = −18.8498), whereas the

gap between the lowest two energy levels is approximately gn (specifically 0.0001).

The small gap makes it nearly impossible for VQE to identify the ground state from

within the nearly degenerate subspace without any extra input.

In particular, if I simply perform VQE with Eq. 3.17, I find that it tends to

converge to states close to either |0101 . . .⟩ or |1010 . . .⟩. ⟨Zi⟩ exhibits an antiferro-
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magnetic pattern, whereas in the true eigenstates, ⟨Zi⟩ = 0. These states lack the

long-range correlations exhibited in Fig. 3.D of Ref. [115].

However, this is selling VQE a bit short, since it is straightforward to modify the

cost function to enforce that ⟨Zi⟩ ≈ 0, a property that we know by symmetry the

ground state should have:

C(θ⃗) =
〈
ψ(θ⃗)

∣∣∣H ∣∣∣ψ(θ⃗)〉+ λ

(∑
i

(〈
ψ(θ⃗)

∣∣∣Zi

∣∣∣ψ(θ⃗)〉)2) , (3.19)

where λ > 0. Using this cost function, I find that, indeed, VQE is able to converge

to an eigenstate. However, it is still unable to distinguish between the ground state

and the first excited state. This is illustrated in Figure 3.2. Two independent

optimization routines are performed, one with the 18-layer ansatz and one with the

19-layer ansatz. The classically-performed optimization routine is allowed to run for

several hours and then is stopped, perhaps before it has fully converged. It is clear

that the 18-layer case shown on the left converged to the first excited state, whereas

the 19-layer case shown on the right coverged to the ground state, even though the

18-layer case actually had a lower energy. This again highlights the importance of

not relying solely on energy as the criterion of convergence, especially when the gap

is small.

Suppose that we did not know which of these two states was the ground state.

As we have seen, measuring the energy gives the wrong answer in this case. We

might additionally measure the parity ⟨
∏

iXi⟩, which could tell us the answer if we

know what the parity of the ground state is supposed to be, i.e. in Figure 3.2, we

can select the state with positive parity. However, parity measurements are difficult
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Figure 3.2: Classically-simulated VQE applied to the antiferromagnetic 1D TFIM
with g/J = 0.6 and ⟨Zi⟩ ≈ 0 enforced with a penalty term. The long-range correla-
tion function from Fig. 3D of Ref. [115] is shown.

on many qubits because if there is an error on any one of the qubits, that flips the

sign of the parity. From Eq. A.10, we see that, if e0 + e1 ≈ 2%, then we expect the

expectation value of the parity measurement to be suppressed by a factor of about

0.98n, which for 18 qubits is 0.7. This damping factor is not so close to 0 that we

cannot tell the sign of the parity. However, as we scale up the number of qubits, we

require more shots to be able to tell the sign of the parity. Typical readout error

rates on a Sycamore processor are shown in Figure C.3 for the experiment described

in Chapter 5.
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It is striking that, even though dissipative cooling performs much worse than

VQE in terms of the energy, it is able to pick out the ground state from within

the nearly-degenerate subspace and reproduce produce the long-range correlation

function, which is difficult for VQE if there is a small gap and there is no easy way

to add penalty terms to pick out the eigenbasis. For the 1D TFIM, adding penalty

terms to pick out the eigenbasis from within this subspace is easy, but that may not

be true for all gapless systems. Further, as we have discussed, distinguishing the

ground state from the first excited state, even if VQE is picking out eigenstates as

in Figure 3.2, may be difficult. Finally, the dissipative cooling algorithm naturally

produces eigenstates of the Floquet unitary rather than of the Hamiltonian, which

may be desired in some cases. Generating Floquet eigenstates using VQE is not

straightforward.
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CHAPTER 4

CHARACTERIZING CORRELATED READOUT ERRORS

4.1 Introduction

Quantum computers promise to transform computational chemistry and physics by

enabling more accurate simulations and by rendering previously intractable compu-

tations within reach. Classical computers are severely limited in their ability to sim-

ulate many-body quantum mechanical systems with long-range entanglement, and

analytical methods based on perturbation theory generically fail at strong coupling.

Quantum computers, however, promise to overcome these challenges by encoding the

quantum state of the system directly in the state of the qubits, the two level systems

used as the basis for digital quantum computation.

The main reason why quantum computers have not yet succeeded in providing

an advantage over classical techniques for studying these systems is that the circuit

depth is severely limited by noise, particularly by high two-qubit error rates and

decoherence. In the long-term, the goal is to use error correction to achieve fault-

tolerant quantum computing. In the near term, however, a variety of error-mitigation

methods have been proposed that aim to undo the effects of the noise on expectation

values of interest [142].

Another challenge has also hindered quantum advantage on superconducting

transmon-based quantum computers: state preparation and measurement (SPAM)
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errors. SPAM error rates on these devices are high, about 1–10%, depending on the

device and the qubit, which makes the simultaneous readout of many qubits unre-

liable. This effect is particularly relevant for measuring fermionic operators, which

act on many qubits simultaneously after being written as Pauli operators using a

Jordan-Wigner or Bravyi-Kitaev transformation. Various creative techniques have

been proposed to mitigate correlated measurement (also known as readout) errors

(e.g. [126, 154, 67, 132, 110, 11, 72]).

A more common approach to readout error mitigation consists of measur-

ing the measurement fidelity matrix (MFM, also known as the response matrix),

Rij = P (measure j|prepare i), and applying its inverse to the measured counts.

This is feasible if one assumes that readout errors are uncorrelated (e.g. [16]) but is

exponentially difficult in general. It is also feasible if one allows for readout errors

to have a local or quasi-local correlation structure [68].

In this work, we benchmark correlated readout errors on current IBM quantum

computers and test the extent to which it is necessary to include these correlations in

error mitigation. In particular, we measure sparse Sachdev-Ye-Kitaev (SYK) Hamil-

tonians [176] in low-energy product states. Although product states are not good

approximations to the ground state, they can be constructed without any two-qubit

gates, so the error is dominated by SPAM errors. Further, terms in the SYK Hamilto-

nian act on many qubits, so this observable is particularly sensitive to SPAM errors.

Even so, we find that uncorrelated readout error mitigation is able to reproduce the

correct energy to within statistical uncertainty in almost all cases.
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4.2 Test problem: Sparse SYK

The Sachdev-Ye-Kitaev model was introduced by Alexei Kitaev in 2015 as a simple

example of the holographic principle; in the large-N and low temperature limit, it is

dual to Jackiw-Teitelboim gravity [95, 93, 94, 111, 112, 113]. It is described by the

ensemble average over Hamiltonians of the form

H = i
q
2

∑
i0<...<iq−1

ji0...iq−1χi0 . . . χiq−1 , (4.1)

where the χi are Majorana fermions: {χi, χj} = δij, and the ji0...iq−1 are Gaussian-

random numbers with mean 0 and variance J2(q−1)!
Nq−1 . q is an even number that must

be at least four for the model to be dual to JT gravity, and N is the number of

fermions, which, as we will see, is twice the number of qubits needed to represent

the Hilbert space. J is a constant that sets all of the physical scales. For this work,

we fix q = 4. Note that the interactions are all-to-all

We can write this as a qubit Hamiltonian using a Jordan-Wigner or Bravyi-Kitaev

transformation [17]. The Jordan-Wigner transformation allows one to represent 2n

Majorana fermions using n qubits: χi =
1√
2
XiZi−1 . . . Z0 and χ̃i =

1√
2
YiZi−1 . . . Z0.

The reader can verify that this reproduces the correct anticommutation relations.

When written in terms of Pauli operators using the Jordan-Wigner transformation,

the reader can see that the terms in the highly-nonlocal SYK Hamiltonian (4.1)

act on extensively many qubits; there are Pauli-Z strings between the non-adjacent

fermions. The Bravyi-Kitaev transformation also produces large Pauli operators,

although not quite as large as those produced by Jordan-Wigner, as illustrated in
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Figure B.1.

There is significant interest in implementing SYK Hamiltonians on a quantum

computer (e.g. [114, 7, 108, 157]). Doing so could let us study aspects of the

SYK model and quantum gravity that are not analytically tractable. It is also an

important component of a recent experiment that claims to create a state dual to a

traversable wormhole [18, 129, 151, 78].

One challenge in studying SYK this way is that the number of Hamiltonian terms

is very large:

N
q

. However, Ref. [176] argued that it is only necessary to keep

O(N) terms from this Hamiltonian in order to recover the interesting physics of SYK

(see also [25]). If the number of terms kept is Nterms, then the new variance of the

couplings should be chosen as

J2(q − 1)!

N q−1

N
q


Nterms

≈ J2N

qNterms

. (4.2)

The interesting physics of the SYK model, including its duality with JT gravity,

emerges at low temperatures. To study this regime on a quantum computer, it

is necessary to prepare a low-temperature thermal state. The most feasible near-

term proposals for doing this are variational techniques in which the energy must be

measured at each iteration (e.g. [157, 114]). Low-temperature SYK thermal states

have not yet been achieved for system sizes large enough to exhibit the characteristic

fast-scrambling dynamics that led Kitaev to consider SYK as a model of holography.
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Many challenges prevent the production of these thermal states on current quan-

tum computers, including, prominently, the practical limitations on circuit depth.

However, because the Hamiltonian terms act on so many qubits, readout errors are

also quite significant. In this chapter, we consider the easier of these challenges,

namely that of mitigating the readout errors.

4.3 Characterizing and mitigating readout errors

Existing quantum computers have state preparation and measurement (SPAM) er-

rors, the latter of which are also known as readout errors. These errors impede the

measurement of operators that act on many qubits simultaneously, such as the SYK

Hamiltonian (4.1). Further, these readout errors may be correlated, making them

more difficult to mitigate. Here, we study the readout errors on several IBM quantum

processors, characterizing their correlations, and studying readout error mitigation

applied to measurements of sparse SYK Hamiltonians.

4.3.1 Uncorrelated readout errors

Before including correlations, we consider a simpler model of readout errors. In

particular, we assume that the response matrix for the n-qubit system is a tensor
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product of n 2× 2 response matrices:

R = ⊗qRq, Rq =

1− e(q)0 e
(q)
1

e
(q)
0 1− e(q)1

 . (4.3)

The single-qubit error rates, e0 and e1, are measured by preparing the qubits in

random bitstring states and extracting the probability of bit-flip errors. We further

condition on the qubit having been prepared in the |0⟩ state in the preceeding bit-

string, since we have found that state preparation errors can be higher when the

previous state of the qubit was |1⟩. This procedure assumes the error rates associ-

ated with readout are much higher than those associated with state preparation and

single-qubit X gates, which is generally the case. The inverse of the response matrix

can then be efficiently constructed and applied to measured bitstrings.

To test the efficacy of this method, we prepare low-energy product states and

measure the expectation value of the SYK Hamiltonian, Eq. 4.1. More specifically,

we consider sparse SYK (Eq. 4.2), with Nterms random terms and coefficients. We

convert this to a spin Hamiltonian using either a Jordan-Wigner or Bravyi-Kitaev

transformation. We then use a classical optimizer to find the product state with the

lowest energy. The use of product states allows us to run circuits without two-qubit

gates, thus isolating the effect of readout errors. Further, we divide the Hamiltonian

terms into sets that can be measured simultaneously (see Appendix B). Next we run

two sets of circuits: (1) the random bitstring circuits to characterize the readout

error rates and (2) the circuits to prepare the low-energy product state and measure

its energy, both in the same job. Running them in the same job means that they

will be executed in the order: circuit 0, shot 0, circuit 1 shot 0, . . . , which allows
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us to exclude any effects from error rates drifting over time. Finally, we process the

measured bitstrings, extracting the unmitigated and mitigated SYK energy.

Results from various 27-qubit quantum processors are shown in Figure 4.1. Here

we consider sparse SYK with 54 Majorana fermions and either 25 or 100 terms.

We find that uncorrelated readout error mitigation is able to reproduce the correct

energy to within statistical uncertainty. Thus, correlated readout error mitigation is

not necessary in this case.

Next, we repeat the experiment on a 65-qubit quantum processor, ibmq brooklyn.

We consider sparse SYK with 130 Majorana fermions (65 qubits) and 25 terms.

As shown in Figure 4.2, we find that, somewhat remarkably, uncorrelated readout

error mitigation is able to transform raw energy measurements, sometimes even with

the wrong sign, to mitigated values that are within 1σ of the true energy. Results

are shown for two sparse-SYK instances, one of which is qubitized via a Bravyi-

Kitaev transformation and the other of which is qubitized using a Jordan-Wigner

transformation. Readout errors have a more significant effect in the Jordan-Wigner

case, as expected since the Pauli operators act on more qubits. This also leads

to smaller error bars in the Bravyi-Kitaev case, and there we see what may be a

small systematic deviation from the ideal energy. The VQE optimization routine

requires precise energy measurements in order to be able to identify the gradient.

Therefore, small systematic errors could potentially lead to poor performance of the

algorithm. Therefore, we now focus on characterizing and attempting to invert,

correlated readout errors on this 65-qubit device.
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4.3.2 Characterizing correlated readout errors

First, we make a simplifying assumption about the structure of the correlated errors.

We assume that

P (b′n−1b
′
n−2 . . . b

′
0|bn−1bn−2 . . . b0) =

∏
i

Pi(b
′
i|bn−1bn−2 . . . b0), (4.4)

where P (b′n−1b
′
n−2 . . . b

′
0|bn−1bn−2 . . . b0) is the probability of observing bitstring

b′n−1b
′
n−2 . . . b

′
0 given that the qubits were prepared in the computational basis state

corresponding to the bitstring bn−1bn−2 . . . b0. In the expression on the right-hand

side, Pi(b
′
i|bn−1bn−2 . . . b0) is the probability that qubit i is measured to be b′i given

that the qubits are prepared in bn−1bn−2 . . . b0 (marginalizing over the other qubits).

We have found this to be a good model of errors on the devices that we studied.

We identify correlated readout errors as follows:

1. Data collection:

(a) Randomly choose nb ≤ 2n unique n-bit bitstrings. Let’s call these bij,

where i ∈ {0, . . . , nb} indicates which bitstring it is and j ∈ {0, . . . , n}

labels the qubit.

(b) Generate a length nb Python list of Qiskit quantum circuits that prepare

n qubits in the computational basis states corresponding to the bitstrings

generated in (a).

(c) Run these circuits in a single job on the desired quantum processor, using

s shots, the maximum delay time between circuits, and disabling excited
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state promotion (ESP) readout [125, 124]. If this data is going to be used

for error mitigation, then ideally it should be run in the same job as the

circuits that the mitigation is going to be applied to.

2. Data analysis:

(a) For each qubit q and each given state of that qubit (g ∈ {0, 1}), do the

following:

i. For each of the prepared bitstrings such that bi,q = g and bi−1,q = 0,

compute the number of times (out of s) that qubit q was measured to

be 1− g, marginalizing over the measured states of the other qubits.

We find that conditioning on the qubit having been prepared in 0

in the previous state is necessary to eliminate the effects of state

preparation errors, which otherwise can lead to a higher error rate

when the previous state of qubit q was 1. This generates a list of

approximately nb/4 numbers that, when considered as fractions out

of s, each approximate the error rate on qubit q, given that it is

prepared in the state g. If no correlations are present, then these

numbers are sampled from a binomial distribution with s weighted

coin-flips and probability p.

ii. Perform a hypothesis test to check whether list of numbers found in

i. is consistent with a binomial distribution. In practice, we check

whether the variance is significantly greater than that predicted by

a binomial distribution: p(1 − p)s, using the mean of the list found
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in i., divided by s to estimate p. If no significant deviation from a

binomial distribution is found, then we don’t identify any correlations

here and continue the for loop (a). Otherwise:

A. Iterate over the number of control qubits, nc, starting with 1

and going up to nc,max, the user-defined maximum number of

control qubits. Within this loop, iterate over the possible choices

of control qubit(s), of which there are

n− 1

nc

. For each choice

of control qubits, split the numbers (sample error rates) found in

i. according to the state of the control qubit(s). Test whether all

of the sub-vectors are consistent with binomial distributions. If

yes, accept these control qubits. Otherwise, continue.

The actual procedure is slightly more complicated in that we also iterate over the

number of distinct error rates among the 2nc states of the control qubits, favoring

fewer distinct error rates.1 Further, we don’t stop looking for control qubits once

we have found candidate control qubits; we continue to see if there are any other

candidates with the same number of control qubits and number of distinct error rates.

The p-values from the hypothesis tests are all scaled up appropriately to account for

the fact that we are doing many hypothesis tests. We consider the probability that a

binomial distribution will ever produce a sample variance as large as that observed,

1For example, if there are two control qubits, there are a maximum of 4 distinct error rates on
the affected qubit, one for each joint state of the two control qubits; however there could be fewer
distinct error rates. For example, it could be that the error rate on the affected qubit is larger when
the control qubits are in the state 11, while the other 3 states produce the same error rate on the
affected qubit.
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in any of nt trials, where nt is the number of ways of partitioning the vector from

(2.a.i) that we are iterating over.

4.3.3 Mitigating readout errors

The characterization procedure described in Section 4.3.2 can also be used for error

mitigation. In particular, correlation maps like that shown in Figure 4.6 can be used

to identify the tensor product structure of the 2n×2n response matrix. In particular,

the correlation map can be decomposed into sets of qubits, which we call islands,

such that there are no correlations between the islands. This is illustrated in Figure

4.7. The response matrix is then a tensor product of the response matrices in the

islands. For the case shown in Figure 4.7, the largest island has size 17, so the

problem of inverting a 265×265 matrix is thus reduced to that of inverting a 234×234

matrix. While this is a significant reduction in complexity, unfortunately, it is still

infeasible.

However, this could be the starting point for identifying the correlations that most

strongly affect the readout error rates. Including only the strongest correlations in

the response matrix could lead to smaller correlation islands and make the problem

tractable. We leave this for future work.
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4.4 Conclusions

There are a number of challenges that make SYK a particularly difficult system

to study using programmable quantum processors. If one wants to perform VQE

on a system that is large enough for quantum advantage, correlated readout errors

may pose a challenge. This challenge may be overcome either with readout error

mitigation strategies that attempt to include the most important correlations, as

outlined in the previous section, or with improvements in device performance so that

the correlations are a negligible effect, as is already the case on the 27-qubit devices

studied in this chapter. However, other challenges may prove less surmountable. In

particular, we found in the Appendix (Fig. B.2) that the circuit depths required to

approximate the ground state may be much deeper than those needed for the 1D spin

chains considered in Chapters 2 and 3, which is not surprising if one motivates VQE

by considering adiabatic state preparation and notes the complexity of the SYK

Hamiltonian. Circuit depth is severely limited by both two-qubit gate errors and

coherence times. While it is possible that these challenges may be addressed with

a clever sparsification of the Hamiltonian, fermion-to-qubit mapping, or variational

ansatz, we do not see SYK as a likely candidate for quantum advantage in the near

term.

75



Contributions

This work was performed in collaboration with Raphael Pooser and Titus Morris

of Oak Ridge National Laboratory. We thank Haggai Landa and Paul Ginsparg

for helpful discussions. ER gratefully acknowledges financial support from US DOE

grant DE-SC0020360 and access to IBM quantum-computer time via the AFRL

IBM Q Network Hub, facilitated by Laura Wessing and Jon Maggiolino. ER also

thanks Peter McMahon for access to computing resources. The views expressed are

those of the authors, and do not reflect the official policy or position of IBM or

the IBM Quantum team. We used Qiskit [161] to interact with IBM’s devices. The

introduction to this chapter contains text that ER wrote for a DOE SCGSR proposal.

Code availability
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Circuits to measure readout errors can be run with readout_circuits_rand_execute,

and the readout correlation map can be constructed with readout_partition(job),

where job is the IBMQ job with the random circuits (both in readout_characterization.py).

This returns a readout_partition object that contains the correlation map. The

parameter max_n_control sets the maximum number of control qubit when con-

structing the map. The method measure_H allows one to measure a Hamiltonian

(or other operator written in terms of Pauli operators) and apply readout error mit-
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igation, as long as the islands are small enough. For uncorrelated readout error

mitigation, simply set max_n_control = 1.
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Figure 4.1: Uncorrelated readout error mitigation for sparse SYK with 54 Majo-
rana fermions (27 qubits). Vertical lines separate different random instances of
sparse SYK. The instance shown in trial 0 is converted to a spin Hamiltonian via a
Bravyi-Kitaev transformation, whereas the rest are converted to spin Hamiltonians
via Jordan-Wigner transformations. The Hamiltonians used for instances 0–6 contain
25 terms, whereas the instances used in trials 7-11 contain 100 terms. Unless other-
wise indicated, the experiments are performed on the 27-qubit device ibm hanoi. As
described in the text, the lowest-energy product state is identified classically (energy
shown in green). It is prepared and its energy measured on the quantum processor
(measured energy shown in orange). Uncorrelated readout error mitigation is applied
to the measurement results, and the mitigated energy is shown in blue. All error
bars are ±1σ.
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Figure 4.2: Same as Figure 4.1 except for sparse SYK with 130 Majorana fermions (65
qubits), run on the 65-qubit device ibmq brooklyn. Both sparse SYK instances have
25 terms. As indicated in the plot, one is transformed to a spin Hamiltonian using a
Bravyi-Kitaev transformation and the other using a Jordan-Wigner transformation.
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Figure 4.3: The readout error rate on qubit 0 depends on the state of qubit 10. This
correlation was identified using the procedure described in the text.
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Figure 4.4: The readout error rate on qubit 23 depends on qubit 9 if it is prepared in
the 0 state (left) but on both qubits 23 and 37 if it is prepared in the 1 state (right).
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Figure 4.5: The readout error rate on qubit 30. When prepared in the 1 state (right),
the readout error rate on least two distinct values depending on the prepared state
of the other qubits. Out of the 63 prepared states of the other qubits, 19 result
in an error rate above 9%, whereas the other 44 result in an error rate below 6%.
However, this splitting is not accounted for by the state of any three other qubits on
the device. This suggests a correlation with more than three control qubits.
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Figure 4.6: Correlation graph of readout errors on ibmq brooklyn. The qubits high-
lighted in Figures 4.34.5 are labeled. Arrows indicate correlations in the readout
error rates. Grey lines indicate where native two-qubit gates can be applied. The
colors of the qubits indicate their average readout error rate.
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Figure 4.7: Same as Figure 4.6 but with qubits colored according to their island.
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Figure 4.8: Same as Figure 4.7 but with when multiple options exist for possible
control qubits, the maximum likelihood option (smallest variance of the error rate)
is picked, whereas in Fig. 4.7, the most local option is picked.
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Figure 4.9: Same as Figure 4.7 but indicating in red which qubits exhibit multiple
error rates that are not controlled by the states of at most three other qubits. An
example of such a qubit is shown in Figure 4.5.
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CHAPTER 5

THE HEISENBERG MODEL AND THE KPZ UNIVERSALITY

CLASS

In statistical physics, the notion of universality is a powerful assertion; it im-

plies that systems with entirely different microscopic interactions can share the same

emergent macroscopic description due to having certain basic physical properties in

common. It is a triumph of this assertion that, for instance, the Ising model pre-

vails in our understanding of the zero-temperature phase transitions in a wide class

of systems [83, 144]. The basic ingredients commonly affecting universality classes

are the collective behavior of constituent elements, symmetries, conservation laws,

and dimensionality, as described by the renormalization group (RG) theory [130]. In

contrast to rather well-understood low-temperature universality classes, which are

determined by ground-state physics, we have limited knowledge of the universality

classification of dynamical phases of matter at finite temperatures, where contribu-

tions from the entire spectrum must be considered [135, 60].

It has been observed in several dynamical systems that the long-time behavior

permits a few-parameter hydrodynamical description, suggesting the existence of

universality [155, 52, 82, 184, 171, 56]. The emergence of a hydrodynamical descrip-

tion relies on reaching local, and subsequently, global equilibrium [109, 23]. This fate

is less certain in systems with an extensive set of conserved quantities, i.e., integrable

systems, which are known to evade thermalization, and their universal behaviors are

discussed in the framework of generalized hydrodynamics [28, 13, 44, 24, 42].
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Distinct microscopic models or dynamics belong to the same universality class

if they share a single scale-invariant limit under a RG flow [83, 130]. A universality

class is commonly characterized by scaling exponents and scaling functions, and it

is rather implausible to extract them all experimentally. Therefore, experiments,

e.g., on quantum processors, cannot prove that a set of observed dynamics belongs

to a given class, but they can falsify a universality conjecture [136] by examining

its predictions. They can also probe numerically and theoretically challenging re-

gions of the parameter space, which has proven advantageous for studying universal

behaviors [155, 52, 82, 184, 171, 56].

Superconducting quantum processors offer high wavefunction sampling rates,

which enabled them to outperforming classical computers in sampling tasks [5, 173].

On these processors one can go beyond mean expectation values and provide “snap-

shots” of an observable, which allows for measuring quantum fluctuations and the

probability distribution of the observable. The capability of collecting full counting

statistics could have fundamental consequences for our understanding of dynamical

universalities. In particular, it is commonly assumed that the scaling functions and

exponents of the first few moments uniquely determine a universality class, and there

have not yet been any instances where the higher moments of an observable have led

to a different classification.

Spin dynamics in the one-dimensional (1D) XXZ model have been the subject of

numerous recent studies [169, 13, 104, 156, 147, 77, 62, 41, 63, 43, 45, 46, 76, 150,

79, 171]. This integrable model describes nearest-neighbor exchange interactions
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Figure 5.1: Domain wall relaxation in the Heisenberg XXZ spin chain. (A)
Schematic of the unitary gate sequence used in this work, where fSim gates are applied in
a Floquet scheme on a 1D chain of NQ = 46 qubits. (B) Relaxation dynamics as a function
of site and cycle number for µ = ∞, 0.9, and 0.3 for initially prepared domain-wall states
with 2⟨Sz⟩ = ± tanhµ. (C) Histogram showing the probability distribution of transferred
magnetization after t = 1, 5 and 20 cycles (arrows in B) for µ =∞.

between spin-1/2 particles, with the Hamiltonian [71]

Ĥ =
∑
i

(
Sx
i S

x
i+1 + Sy

i S
y
i+1 +∆Sz

i S
z
i+1

)
, (5.1)

where Sx, Sy, and Sz are spin-1/2 operators, and ∆ is the anisotropy parameter.

When ∆ = 1, this system is the Heisenberg model, a paradigmatic model of quantum

magnetism that possesses a global SU(2) rotational symmetry. The spin dynamics in

the Heisenberg model exhibit characteristics consistent with the Kardar-Parisi-Zhang

(KPZ) universality class, which was originally introduced to describe the stochastic,

nonlinear dynamics of driven interfaces and has proven to apply to a wide range of

classical systems [104, 156, 147, 77, 62, 41, 63, 43, 45, 46, 76, 150, 171]. The KPZ-

like behavior of the spin dynamics is surprising due to the absence of stochasticity

and nonlinearity in the Heisenberg model.
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In a 1D chain of NQ = 46 superconducting qubits, we simulate this spin model

by periodic (Floquet) application of high-fidelity 2-qubit unitary fSim(θ, ϕ) gates

(Fig. 5.1A, see SM and Ref. [127]). Here, θ sets the amplitude of hopping between

adjacent qubit lattice sites, and ϕ is the conditional phase angle imparted when two

spin excitations are adjacent to each other. Within each cycle, two-qubit fSim(θ, ϕ)

gates are applied between all neighboring pairs in the chain, resulting in the cycle

unitary:

ÛF =
∏

even bonds

fSim(θ, ϕ)
∏

odd bonds

fSim(θ, ϕ). (5.2)

In the limit θ, ϕ → 0, ÛF is the Trotter–Suzuki expansion of the XXZ Hamil-

tonian (5.1), with ∆ = sin(ϕ/2)/sin(θ). Away from this limit, there is no unique

Hamiltonian associated with ÛF , but Eqs. (5.1) and (5.2) still share symmetries and

are both integrable by the Bethe ansatz [14, 29, 164, 36, 107].

To study dynamics under the unitary evolution (5.2), we generate domain-wall

initial states with an adjustable contrast parameter µ (Fig. 5.1B). Specifically, we

initialize the chain in a set of product states such that the left and right halves have

average magnetization ± tanh(µ), respectively:

ρ(t = 0) ∝ (e2µS
z

)⊗NQ/2 ⊗ (e−2µSz

)⊗NQ/2. (5.3)

When µ → ∞, the system approaches a pure domain-wall state with the two sides

fully magnetized in opposite directions. Only when µ = 0, the initial state is an

infinite-temperature thermal state that preserves SU(2) symmetry. When µ ̸= 0,

the magnetization is preferentially along the z-axis, breaking the SU(2) rotational
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Figure 5.2: Mean and variance in various transport regimes. (A) Mean of trans-
ferred magnetization ⟨M(t)⟩ as a function of cycle number for initial states with µ = 0.5
and for ∆ = 0.16 (purple triangles), 1 (orange squares), 1.6 (green circles). Light and
dark curves show simulations with and without noise, respectively. The ⟨M(t)⟩ can be fit
to t1/z and gives z = 1.12 ± 0.04 in the ballistic, z = 1.6 ± 0.1 in the superdiffusive, and
z = 1.9 ± 0.2 in the diffusive regime. The inset illustrates three different regimes charac-
terized by ∆ = sin(ϕ/2)/sin(θ) with the orange line being the isotropic Heisenberg limit.
(B) Histogram showing the probability distribution of measuredM for values of ∆ studied
in A at cycle 14. Light and dark lines show experimental data and noiseless simulation
results, respectively. (C,D) Mean and variance ofM for ∆ = 1 and 0.2 ≤ µ ≤ 1 (brighter
to darker squares). With increasing µ, the mean increases, while the variance decreases.
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symmetry of the Heisenberg model.

A natural measure of spin transport is the total transferred magnetization,M(t),

defined as twice the net number of excitations that have crossed the middle of the

chain after t cycles. In our experiment, we sample over initial bitstring states with

probabilities given by Eq. (5.3). For each initial state, we prepare the qubits in

that state and then apply t cycles of fSim gates. Let NR,1(b) be the number of

excitations (“1”s) in the right half of bitstring b. The transferred magnetizationM

is the stochastic variable defined by

M(t)/2 = NR,1(bt)−NR,1(bi), (5.4)

where bi is the initial bitstring, sampled from Eq. (5.3), and bt is the associated final

bitstring sampled at t. For example, if the initial bitstring is 111010 and the final

bitstring is 110110, then the transferred magnetization is 2. Since the dynamics are

number-conserving, the transferred magnetization is also the net number of zeros

that have crossed from the right to the left. Repeating the experiment many times,

we construct the probability distribution ofM, P (M).

Fig. 5.1B shows measurement instances for three values of µ. The left column in

each panel shows an instance of the initial state for the given µ, and the subsequent

columns show typical bitstrings evolved from that state. As excitations (spin flips)

propagate through the chain, smaller domains become more probable. In Fig. 5.1C,

we show histograms of M at different times, starting in a pure (µ = ∞) domain

wall. Due to locality of the circuit, |M(t)| is upper-bounded by 2 t. Consequently,

the distribution is narrow and centered around a small value at t = 1, since only

91



a few excitations have crossed the middle of the chain, and becomes wider at later

times.

In the context of spin transport, the first and second (variance) moments ofM

have been extensively studied both theoretically and experimentally [13, 104, 156,

147, 77, 107, 62, 41, 63, 43, 45, 46, 76, 150, 171, 88]. Taking advantage of our

tunable fSim gates, we explore how these two moments depend on the anisotropy

parameter, ∆. Fig. 5.2A shows the mean of M over time for values of ∆ equal

to 0.16 (purple), 1 (orange) and 1.6 (green), and an initial domain wall height of

µ = 0.5. We observe markedly different scaling behaviors in the three regimes.

Eliminating the initial transient cycles, we fit a power law, ⟨M⟩ ∼ t1/z, to the data

over cycles 10–23 and extract scaling exponents of z = 1.12 ± 0.04, z = 1.6 ± 0.1

and z = 1.9 ± 0.2. These are in close agreement with theoretical predictions for

the ballistic (z = 1)[183], superdiffusive (z = 3/2)[104], and diffusive (z = 2)[145,

39] behaviors, respectively. Observation of superdiffusive propagation for isotropic

interactions (∆ = 1), measured here and also in other works [169, 104, 156, 147, 77,

41, 62, 63, 45, 43, 46, 76, 150, 171, 88], has been interpreted as a signature of the

KPZ universality class.

Numerical simulation of these domain-wall dynamics are shown with solid dark

lines in Fig. 5.2A. A variety of numerical simulations often rely on approximation

schemes, which could lead to inaccurate results. In contrast, here we perform exact

statevector sampling up to cycle 18 without any approximations. This is achieved by

taking advantage of the fact that ⟨M(t) ⟩ only depends on the spins within the light
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cone of width 2t, and can thus be determined exactly by simulating shorter chains.

This simplification also allows for arriving at analytical results for all moments ofM

at early cycles. Nevertheless, the computational cost grows exponentially, and with

the resources used here, the simulations at cycles 14, 16, and 18 take about 1, 2, and

14 hours, respectively (see SM).

Importantly, the slight discrepancies between the observed and predicted expo-

nents are also seen in the exact statevector simulations up to t = 18 cycles (colored

lines), suggesting that these deviations primarily stem from finite-time and large-µ

effects and are less affected by experimental imperfections. Indeed, the exact scaling

exponents are only expected in the long-time limit and as µ → 0. By simulating

the effects of noise in our system (lighter lines in Fig. 5.2A), we find that these are

almost negligible for ∆ < 1 and ∆ = 1, and somewhat larger for ∆ > 1, due to the

lower values ofM in the diffusive regime. This effect is also noticeable in the magne-

tization transfer distributions in Fig. 5.2B. Since the distribution is narrower in the

∆ > 1 case, the noise has a larger effect on the shape of the distribution here than

for the other two values of ∆. The error in this case is found to be predominantly

caused by combined occurrences of T1 errors and 0 → 1 readout errors, which are

not eliminated by post-selection (SM). By including this effect in the simulation, we

find good agreement in all three regimes.

Superdiffusive transport, ⟨M⟩∼ t2/3, at ∆ = 1 is a characteristic of systems

within the KPZ universality class. Moreover, numerical studies found that the

spin-spin correlation function coincides with the KPZ scaling function [106, 137],
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Figure 5.3: Skewness and excess kurtosis of transferred magnetization. (A) Skew-
ness of transferred magnetization distribution S as a function of t, for ∆ = 1 and various
µ ∈ [0, 1.5]. Experimental data and noiseless simulation results are shown with squares
and lines, respectively. We symmetrize the µ = 0 probability distribution, after which the
skewness is exactly 0. (B) Same as (A), but for excess kurtosis of the transferred magne-
tization distribution Q. (C, D) Analogous to (A) and (B), but with the x-axis re-scaled
as µ t2/3 and excluding data points for which t < 8. Dashed horizontal gray lines indi-
cate predictions based on the KPZ universality class (TW GUE: Tracy-Widom Gaussian-
unitary-ensemble), and nonlinear fluctuating hydrodynamics (NLFH) model [123]. The red
horizontal lines show S measured in Ref. [171] (µ = 1.53), and the 1σ confidence interval.

which has led to the conjecture that near-equilibrium spin transport in the Heisen-

berg model belongs to the KPZ universality class [106, 100, 178]. This universality
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class is associated with the classical nonlinear stochastic KPZ equation ∂h/∂t =

ν∇2h + λ(∇h)2 + η(x, t), which was originally introduced [143] to describe the dy-

namics of driven interfaces as a height field h(x, t), where ν, λ, η set the strength

of the smoothening diffusion, roughening nonlinear growth, and stochasticity terms,

respectively. The conjecture asserts that at late times the magnetization profile

behaves similarly to ∂h(x, t)/∂x. Consequently,

lim
µ→0
M(t) ←→ 2h(0, t)− h(−∞, t)− h(∞, t). (5.5)

To further examine the universality class of the Heisenberg spin dynamics, two

aspects are of particular importance. First, since the universal behavior is expected

to depend on whether the system is in equilibrium, it is essential to measure the

dependence on µ. Second, while the scaling exponent of the mean is consistent

with the KPZ universality class, further insights can be gained by examining higher

moments (the “full counting statistics”) of P (M). Due to the reduced signal-to-noise

ratio, measuring higher moments at small µ is experimentally challenging. We utilize

our fast sampling capability to measure P (M) as a function of µ and t (Refs. [99,

65]). Figs. 5.2C,D show the temporal evolution of M and its variance for various

values of µ ranging from 0.2 to 1. We find that, at small µ, the dynamical exponents

of both the mean and the variance are close to 3/2. For larger µ, the dynamical

exponent of the mean approaches 5/3, consistent with recent numerical results [104]

(SM).
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Next, we extract the skewness S and kurtosis Q of P (M),

S =
α3

α
3/2
2

, Q =
α4

α2
2

− 3, (5.6)

where αk =
〈
(M− ⟨M⟩)k

〉
is the kth moment. In Fig. 5.3A, we show the temporal

dependence of S for µ ranging from 1.5 to 0.1. Consistent with Ref. [171], S ap-

proaches to about 0.3 for µ > 1. However, as µ is reduced towards the equilibrium

point, we observe that S goes to zero. Fig. 5.3B shows that for later cycles, the initial

strong time dependence of Q weakens. By averaging over cycles 16 to 23, we obtain

a kurtosis of −0.05± 0.02 (Fig. 5.3B).

In order to test the KPZ universality conjecture, one needs to study the infinite-

time (t→∞) and near-equilibrium (µ→ 0) limits. These limits are experimentally

inaccessible. However, if there exists a function f(µ, t) such that the moments are

functions of f(µ, t), then one may be able to extrapolate measured values at finite

µ and t to these unattainable limits. We empirically find that the zero crossing of

S scales as t0 ∼ µ−1.49 (SM), suggesting that S may be a function of µt2/3. Indeed,

after excluding the initial transient behavior, S does appear to be a single-valued

function of µt2/3 (Fig 5.3C, SM).

KPZ has been conjectured to apply to high-temperature thermal states at late

times, corresponding to taking µ→ 0 first and then t→∞ (Ref. [106]). In this case,

P (M) should become the Baik-Rains distribution [138]. However, this distribution

is skewed (Table 5.1), whereas our measurements suggest that S = 0 (Fig. 5.3C), as

is also dictated by symmetry.
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One might also search for KPZ universality away from µ = 0, corresponding to a

different order in taking these noncommuting limits. When taking t→∞ first, the

appropriate probability distribution to compare P (M) against is the Tracy Widom

(TW) distribution [138], which has S of about 0.22. This order of limits corresponds

to large µt2/3 in Fig. 5.3C, where we indeed find S consistent with this distribution,

as also seen in earlier experiments [171]. However, Q of the TW GUE (Gaussian

unitary ensemble) distribution is 0.09, whereas we find Q = −0.05 ± 0.02. The

emergence of KPZ dynamics in this order of limits is further ruled out by numerical

and theoretical predictions that the dynamics become diffusive (z = 2) on a timescale

t ∼ 1/µ3 (Refs. [99, 64]).

One could consider taking the two limits simultaneously in a way that the dynam-

ics do not become diffusive, e.g., by holding µt2/3 constant. The correct distribution

to compare against is TW GUE in this case as well. If we take the limit with µt2/3

fixed at a large value, we find S consistent with TW GUE, but the measured Q is

still inconsistent with the TW GUE prediction of 0.09, ruling out KPZ dynamics

on the timescales accessible in the experiment. While it remains possible that KPZ

dynamics will emerge at much later times (i.e., Q will increase to 0.09), we see no

evidence or motivation for this.

An outstanding question is why only lower-point observables seem to behave con-

sistently with KPZ universality. Intriguingly, other systems have been identified that

exhibit similar behavior. One such system is a nonlinear fluctuating hydrodynamic

(NLFH) model with two coupled stochastic modes [21, 22, 123], which predicts S = 0,
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⟨M⟩ σ2 S Q
Experiment t2/3 t2/3 0 * −0.05± 0.02

KPZ (Baik-Rains) t2/3 t2/3 0.36 0.29

NLFH t2/3 t2/3 0 0.14

CLL t2/3 t2/3 0 ∈ [−0.03, 0.03]

Table 5.1: Comparison of the experimentally observed moments with the theoreti-
cally predicted values from various models. The experimental kurtosis value is av-
eraged over cycles 16 − 23 and µ = 0 − 0.4, and the errors are computed using the
jackknife method. Green (red) entries indicate agreement (disagreement) between
the data and theory. See supplement for details regarding KPZ predictions. *The
skewness is 0 due to symmetrization of our data.

consistent with the Heisenberg spin chain. However, it suggests Q = 0.14, differing

from what we observe, perhaps because not all aspects of the model are universal.

Another such system is the classical Landau-Lifshitz (CLL) magnet [99, 98], which

predicts S = 0 and a Q that is negative and close to zero at these time scales [98].

These are consistent with our experimental results. It is rather surprising that this

classical system is so successful in capturing the behavior of a quantum spin chain

with enhanced quantum fluctuations due to confinement [59].

Studies of the universal aspects of quantum dynamics have attracted notable

interest recently; accordingly, a complete classification of their universal properties

is lacking. Our findings suggest these classifications could involve unanticipated

subtleties. Our first result, also observed by others, is the superdiffusive transport

characterized by ⟨M⟩ ∼ t2/3, shown in Fig. 5.2A. While this anomalous diffusion is

suggestive of the known KPZ universality classes, this classification is not compatible

with our second finding—the vanishing of S and Q near equilibrium (Figs. 5.3C, D).
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Despite the apparent success of the CLL model, a full understanding requires the

development of a systematic spacetime RG framework that could establish the origin

of the KPZ-like behavior starting from the microscopic dynamics of the Heisenberg

model. Quantum processors have the potential to help with such RG studies. For

example, the multi-scale entanglement re-normalization ansatz (MERA) applies ideas

of RG flow to tensor networks and quantum circuits [165, 53].

Our observations are rooted in the interplay of integrability, quantum fluctua-

tions, and symmetry and have proved to be challenging to describe using an effective

quantum field theory. The observed discrepancies with KPZ predictions suggest that

the infinite-temperature dynamics in the Heisenberg chain—if universal—belong to

a yet-to-be-discovered dynamical universality class.

Contributions

This chapter is an adaptation of [143]. I implemented the experiment, calibrated the

gates, developed error mitigation techniques, collected experimental data, developed

numerical simulation techniques, ran the numerics, made the figures, and contributed

to the interpretation and writing. The experiment was proposed by Tomaz Prosen,

Sarang Gopalakrishnan, and Vedika Khemani, who also provided theory support.

Pedram Roushan selected the proposal for me to work on and directed the project.

Trond Andersen collected additional experimental data, contributed to writing and

figure preparation, and was actively involved in discussions of interpretation. Rhine

Samajdar performed additional numerics and contributed to manuscript preparation
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and interpretation. The project was made possible by the Google Quantum AI team,

which provided infrastructure and support.
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CHAPTER 6

MEASUREMENT INDUCED PHYSICS

Like Chapter 3, this chapter details my contributions to a project on which I was

not the lead author, namely version 2 of Ref. [74], of which I am the third author.

This work uses a Sycamore processor to study the dynamics of monitored circuits.

As illustrated in Figure 6.1, it takes advantage of a mapping from the monitored cir-

cuit (panel a) to one with only terminal measurements (panel c). We are interested

in the following a particular trajectory among the mid-circuit measurements, which,

in the circuit that is actually implemented (panel c), corresponds to post-selecting

on a particular measurement outcome for the upper qubits. This collapses the re-

maining qubits into a pure state |ψm⟩. Obtaining decent statistics to characterize

|ψm⟩ requires many shots because we need to post-select on the same measurement

outcomes each time.

Finally, the second Rényi entropy is measured on subsystems of |ψm⟩ using ran-

domized measurements, following the protocol of Refs. [51, 81, 48, 19, 149]. A

transition from extensive to sub-extensive entanglement is observed as the circuit

parameters are varied (panel e). This utilizes an error mitigation technique whereby

the subsystem entropy due to decoherence is subtracted off. The measured Rényi

entropies are in good agreement with numerical simulations (see the supplemental

material to Ref. [74]).

My contribution to this project was to calibrate fSim gates and collect the experi-
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Figure 6.1: An experiment to study the dynamics of a monitored circuit, highlighting
a tunable crossover from volume-law to area-law entanglement.

mental data that appear in panel c. I used the same code and techniques to calibrate

fSim gates for this project as for Chapter 5, which are detailed in Appendix C.1.3.

There are two important differences between gate calibration for this work and

for the project described in Chapter 5. One is the additional challenge of calibrating

multiple choices of fSim angles simultaneously. The circuit depicted in Figure 2 of

Ref. [74] involves three different two-qubit gates: (1) CZ gates, used to initialize

the Bell pairs, (2) SWAP gates, used to extend the output state |ψm⟩ over space

instead of time, and (3) fSim(θ, ϕ), which implements the dynamics; the fSim angles

are chosen here to be either (θ, ϕ) = (0.1π, 0.2π) or (θ, ϕ) = (0.4π, 0.8π). The other

distinction is that the 1D chain used in this experiment contains only 18 qubits,

whereas the chain used in Chapter 5 contains 46 qubits.

My strategy in performing this experiment was to begin by calibrating the 46
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qubits used in Chapter 5 and then pick an 18-qubit sub-chain based on the single-

and two-qubit gate fidelities, measured using RB and XEB, respectively, as well

as on readout error rates (see Section 1.3). The ordering of the qubits within the

chain (i.e. which end to call qubit 0) was determined based on the fidelities of the

SWAP and fSim(θ, ϕ) gates in their respective portions of the chain (fSim(θ, ϕ) gates

are performed on the first 7 qubits, and SWAP gates are performed on the last 12

qubits). CZ gates are implemented as fSim(0, π), and SWAP gates are implemented

as fSim(π/2, π), plus single qubit Z rotations. In particular,

Rz(π/4)

fSim(π/2, π)

Rz(π/4)

Rz(π/4) Rz(π/4)

= , (6.1)

where is a SWAP gate, and the equality is up to a global phase. In order to

reduce leakage, a longer rise time of 8 ns was used for the SWAP gate, as described

in the supplement to Ref. [74]. The resulting two-qubit error rates are shown in

Figure 6.2.
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line indicates the median.
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CHAPTER 7

CONCLUSION

This thesis has considered a number of projects that all work toward the goal

of achieving useful quantum advantage, that is, of using an existing or near-term

quantum processor to solve a problem that is both of interest to the community

and cannot be solved using classical methods. What constitutes “useful” is open

to some interpretation, as is the level of proof required to demonstrate quantum

advantage. Chapter 5 of this thesis is perhaps the closest that has been achieved.

The experiment detailed there is useful in that it addresses an outstanding ques-

tion in the scientific community, and the quantum hardware exhibits an advantage

over the classical techniques tested so far (see also Ref. [146]). However, there may

well be other classical techniques that can solve the problem efficiently [31]; testing

such techniques should be a high priority for determining whether this experiment

might have achieved quantum advantage or whether an incremental scaling up of

the experiment might be able to do so. After outlining how this scaling up might

be achieved, I take a broader view and offer reflections on the directions that I find

most promising for the next 2–5 years.

7.1 Immediate follow-ups to Chapter 5

If, after thoroughly investigating known classical simulation techniques, it turns out

that the higher moments of the transferred magnetization are indeed difficult to
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compute classically, several improvements can be made to the experiment to increase

the number of qubits and cycles. In Appendix C, I show that achievable circuit

depths are limited by amplitude damping and that the algorithmic relaxation time,

TA
1 , is approximately a factor of two worse than one would expect from the measured

singe-qubit amplitude damping rates at their idle frequencies. One explanation for

the shorter algorithmic relaxation time has to do with the frequency trajectory that

the qubits follow over the course of a cycle. As illustrated in Figure C.2, the qubit’s

lifetime is a function of its frequency. The idle frequency is carefully picked with this

in mind, but over the course of a cycle, the qubit is at other frequencies that are not

carefully chosen with T1 in mind. By optimizing the frequency trajectory, it may be

possible to improve the algorithmic relaxation time and hence the number of cycles

that can be achieved in the experiment.

Further, errors that make it past the post selection appear to be dominated by

a combination of amplitude damping and 0 → 1 readout errors. This explains the

observed discrepancies between the ∆ > 1 experimental data and noiseless simula-

tions (Figs. C.5, C.14). Although the ∆ = 1 data, which is most relevant to the KPZ

conjecture, appears more robust to these errors, suppressing this effect may never-

theless be beneficial. This can be achieved by an alternate readout calibration that

favors low 0 → 1 error rates at the expense of higher 1 → 0 error rates. Although

such a calibration would reduce the number of counts that pass the post-selection,

it would increase the quality of the post-selected data. Balancing these competing

considerations amounts to balancing the systematic and statistical sources of error,

which may be carefully investigated in order to improve the experiment.

106



7.2 Strategies for the next 5 years

Next, I step back and make some high-level observations and suggestions about

strategies that seem promising for applications of quantum processors in the next

5 years. I do not comment on efforts towards error correction, which, for example,

Google is actively pursuing [4, 2], instead focusing on so-called NISQ applications

that do not require error correction.

7.2.1 Application first or method first?

There are two competing, but perhaps complementary, strategies for how to achieve

useful quantum advantage on near-term hardware. One strategy is what I call

“method first,” in which error mitigation itself is the goal; the work is either meant to

be application-independent, or the application is chosen to showcase the error mitiga-

tion technique. This strategy is exemplified by IBM’s work in this area (e.g. Refs. [12,

91]), as well as by Chapters 2 and 4 of this thesis. The method-first philosophy is in

line with the community’s approach to error correction, which is application-agnostic.

The opposite philosophy, exemplified by many of Google’s NISQ experiments, in-

cluding those described in Chapters 3, 5, and 6, is what I would characterize as

“application first,” in the sense that the particular application is the primary goal

and any error mitigation is specifically tailored to that application.

Both strategies have their merits. The method-first approach has led to the
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development of powerful, general techniques for error mitigation based on scalably

characterizing the noise and then either inverting it [12] or amplifying it and ex-

trapolating back to zero [91], along with a number of other techniques described

in Chapter 2. Eventually, in order to demonstrate useful quantum advantage, these

techniques will need to be applied to a carefully-chosen problem so that the quantum

processor teaches us something interesting, i.e. eventually, the application will need

to become the focus.

The application-first approach has the advantage that often, application-specific

error mitigation techniques offer an advantage over more general ones. For example,

the error mitigation employed in Chapter 5 of this work takes advantage of number-

conservation in the ideal dynamics, as well as the causality structure of the circuit,

whereas the error mitigation employed in Chapter 6 (described in detail in Ref. [74])

takes advantage of how the entanglement between the system and its environment is

expected to grow with system size. These techniques might be considered too simple

or too problem-specific to be studied for their own sake, but they can still be highly

effective for these particular problems, and in the search for any useful application

of existing or near-term quantum processors, problem-specific techniques like these

might pay off.

Chapter 4 of this thesis provides an example of some of the pitfalls that can arise

when taking the method-first approach. In this chapter, I have a specific application

in mind (VQE for SYK), but focus on trying to mitigate correlated readout errors

generally rather than on solving the test problem end-to-end. This approach hindered
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me a bit in working on this project. I was immersed in the technical details of

characterizing and mitigating correlated readout errors before asking how important

this was and whether it would actually enable VQE for SYK. It was only after

developing the techniques to characterize and mitigate correlated readout errors that

I discovered that, on the 27-qubit devices, correlated readout errors did not have a

significant effect on the observable of interest (Fig. 4.1). On the 65-qubit device,

they may have had a small but statistically significant effect (Fig. 4.2). However, on

this device, the correlation structure was too complicated to easily invert (Fig. 4.7).

It is possible that it could be made tractable by only considering the most important

correlations, but even so, it seems that VQE for SYK likely requires deeper circuits

than current gate fidelities and coherence times support (Fig. B.3). An application-

first approach would have forced me to think about these considerations from the

beginning and only devote significant time and effort to solving the correlated readout

error problem if it enabled me to study something interesting end-to-end.

I do not intend to diminish the value of method-first work, which has led to the

development of a variety of promising error mitigation techniques that may well find

useful application. However, in these early days of quantum processors, when the

community is still trying to demonstrate any useful application of the technology, it

makes sense to hand-pick applications that are well suited to the technology, tailoring

the error mitigation to the application. This focuses the technical effort on precisely

what is needed to solve the problem and also allows one to take advantage of features

that may not be present in the general case.
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7.2.2 Which applications?

Having expressed a preference for beginning with a particular application in mind, I

now offer some advice on picking an application.

Consider the circuit depth.

Until error correction leads to fault-tolerance, perhaps the most important consid-

eration when picking an application is that the fidelity of the quantum state decays

exponentially due to T1, T2, and gate errors. No matter what error mitigation tech-

niques one employs, the signal is exponentially suppressed and therefore requires

an exponentially large number of measurements in order to be distinguished from

random noise. A non-error-corrected quantum processor is not going to provide an

exponential speedup over classical computers (unless one finds a problem that maps

to a constant-depth circuit and is hard classically).

Quantum advantage is rather a game of two competing exponentials: (1) the

exponential cost, in runtime and memory, of classically simulating quantum circuits

versus (2) the exponential growth of the number of shots needed on a quantum

processor to measure an exponentially suppressed signal. The hope is that, although

the cost is exponential on both sides, the quantum processor may come out ahead.

This has already been shown to be the case for random circuit sampling (the so-called

“quantum supremacy” experiment) [5, 174, 182, 120]. The goal of the NISQ project

for the next few years, before error correction is available, will be to identify other,
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more useful, applications where quantum processors provide an advantage.

Although some quantum systems are more interesting to study than others, I

recommend starting with a relatively simple system rather than the one that is most

interesting. As described earlier in this chapter, I began my quantum computing

career thinking that I would simulate the Sachdev-Ye-Kitaev model. However, as

discussed in Appendix B, this system is very difficult to simulate, compared to the

local spin chains that have been successfully simulated (although not yet definitively

beyond the capabilities of classical computers). My advice is to focus on systems that

have only O(1) circuit depth per Trotter step, at least until quantum advantage has

been demonstrated for these systems. Spin chains where the coupling in the dynamics

matches the connectivity of the qubits are particularly well-suited to existing devices.

Further, there is no need to remain in the Trotter limit; faster dynamics can be

achieved by considering Floquet systems instead of Hamiltonian systems, which helps

reduce circuit depth. I suggest noting the circuit depths that have been achieved in

state-of-the-art experiments to date (e.g. [120, 91], and Chapter 5 of this work, or

whatever has been achieved to date) and avoiding anything significantly deeper than

that (absent any innovation that makes deeper circuits possible).

Consider classical simulability.

The conventional wisdom is that 1D is easy and 2D is hard for classical simulations.

While there may be exceptions to this rule, it will generally be beneficial to take

advantage of any 2D connectivity present in the device in order to make the circuits
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more difficult for classical methods. Further, if the quantum processor supports

multiple types of entangling gates, consider which is more difficult to simulate clas-

sically. For example, CZ and CNOT gates are only rank-2, so applying a CZ gate in

a tensor network simulation does not increase the bond dimension by as much as a

generic two-qubit gate, which is rank-4. Understanding the capabilities and limita-

tions of classical simulation techniques is crucial for identifying an application that

may exhibit quantum advantage and can help avoid the pitfalls of Ref. [91], which

claimed quantum advantage and was almost immediately followed by three papers

that demonstrated that their observables could be computed classically [87, 10, 160].

Consider usefulness.

Although the most interesting quantum systems may be out of reach for now, there

are outstanding questions about simpler systems that one may hope to answer using

near-term devices. Questions about local spin systems may not be impactful enough

to justify billions of dollars of investment, but that is not the goal; the investment

will not pay off before error correction. The goal is simply to find something that

is more useful than random circuit sampling or whatever applications have been

demonstrated to date.
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7.2.3 Considerations when running the experiment

After picking an application, it is time to design the experiment. This subsection

discusses various strategies to improve the quality of the experimental data.

Calibration, mitigation, and error avoidance

Error mitigation is not the only way to reduce the effects of noise. Another way is

through improved calibration. The tunable-frequency and tunable-coupler architec-

ture at Google provides many extra knobs to adjust compared to the fixed-frequency

architecture with cross-resonance based coupling that is available at IBM. Because of

this, calibration is a more significant component of the experiments in Chapters 5 and

6, performed on Google hardware, than in of those in Chapters 2 and 4, performed

on IBM hardware.

In order to calibrate the hardware for a particular experiment, it is important

to understand what types of errors are dominant in that experiment, because some-

times, one type of error can be reduced at the expense of another type of error.

An error budget can be learned through simulations with noise, as in Section C.2.3

for Chapter 5. In this particular experiment, I find that the dominant sources of

noise are amplitude damping and 0 → 1 readout errors. Therefore, improving the

algorithmic T1 could benefit the experiment even if it is at the expense of increased

gate errors. As discussed earlier in this chapter, reducing the 0 → 1 readout error

rate could also benefit the experiment.
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In addition to calibration and error mitigation, careful circuit design can improve

an experiment. I call this error avoidance. For example, in Chapter 5, if the initial

bitstring is more than half-full (more 1s than 0s), the physical states corresponding to

|1⟩ and |0⟩ are interchanged, which improves the algorithmic T1 (Fig. C.1). Similarly,

in Chapter 2, gates outside the backwards light-cone of the measured operators are

omitted, reducing the effects of cross-talk. Simple improvements such as these in

experimental design can go a long way in improving overall fidelities.

Benchmarking

On existing transmon-based devices, error rates fluctuate over the course of hours due

to what are known as TLSs (e.g. [103, 179]). Therefore, it is important to regularly

benchmark the performance of the qubits being used in an experiment. This includes

monitoring readout error rates, single-qubit error rates, and two-qubit error rates,

the latter of which can be characterized using either randomized benchmarking or

cross-entryopy benchmarking, discussed in Chapter 1. This helps identify when part

of the device is broken so that it can be either recalibrated or avoided. Measured

error rates should be compared against those reported in state-of-the-art papers

(e.g. [120, 91, 4] or whatever papers are current) and not perform the experiment

without attaining comparable error rates.
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Simulations

Classical simulations are critical to NISQ experiments. They serve three purposes:

(1) validation of the experiment, (2) understanding the dominant sources of noise,

and (3) understanding whether the experiment is a candidate for quantum advan-

tage, and if so, what resources (i.e. number of qubits, circuit depth) are needed.

Even if one considers (3) before beginning the experiment, it is worthwhile to re-

turn to (1) and (2) later. I recommend using measured error rates as inputs to the

noisy simulations. The simulations enable identification of the types of noise that

contribute most significantly to systematic errors in the measured observables. This

knowledge can be used to reduce these sources of error, possibly at the expense of

others. When measurements are dominated by statistical errors, I recommend taking

data faster, possibly at the expense of increasing systematic errors (c.f. Sec. 7.1),

as long as doing so does not make the systematic errors larger than the statistical

errors.

7.3 Outlook

We are fortunate to live in a time when quantum processors are just starting to extend

beyond the capabilities of classical computers in a limited set of problems. With

further improvements in device fabrication and calibration, as well as improvements

in experiment design and error mitigation, I am confident that we will see increasingly

useful and increasingly difficult-to-simulate applications of quantum processors in the
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near future, although such applications will likely be restricted to certain easy-to-

simulate systems such as locally coupled spins (or possibly nonlocally coupled spins

on a trapped ion device where native nonlocal gates can be performed). Although

other systems with more direct commercial applications will likely remain out of reach

in the near future, near-term devices hold the potential to inform our understanding

of important topics in condensed matter physics, such as thermalization, many body

localization, and the behavior of monitored quantum systems. This is tremendously

exciting for the physics community but falls short of the world-changing promises of

quantum computing. For those promises to be realized, we will need error correction,

which various research groups, such as Google Quantum AI [2], are actively pursuing.
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APPENDIX A

APPENDIX TO CHAPTER 2

A.1 Perturbation theory for the mixed-field Ising model

The mixed-field Ising Hamiltonian (Eq. 2.1) is analytically solvable in several limits,

as discussed in the main text. In the small-hx limit, it is diagonal in the com-

putational basis, and the ground state (assuming J > 0 and hz > 0) approaches

|00 . . . 00⟩. The ground state energy, to second order in hx is

Egs = −n
(
hz + J +

h2x
2hz + 4J

+O(h3x)

)
. (A.1)

Further, in the large hx limit, the ground state approaches |++ . . .++⟩, where

|+⟩ = 1√
2
(|0⟩+ |1⟩). In this limit, the ground state energy is

Egs = −n
(
hx +

2h2z + J2

4hx
+O

(
h−2
x

))
. (A.2)

Finally, in the small hz limit, the Hamiltonian approaches the transverse-field

Ising model, which, in the large-n limit, is exactly solvable via a Jordan-Wigner

transformation [133]. Deriving an analytical expression for the ground state energy

in the small hz limit is beyond the scope of this work. Instead, we numerically

compute the energy to second-order in perturbation theory in this limit (i.e. using

the exact numerical eigenvectors from hz = 0).

The perturbative results are compared to the exact ground state energies in

Fig. A.1.
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A.2 A note about error bars

Throughout Chapter 2, error bars indicate statistical errors only. There are, of

course, a variety of systematic errors as well. However, the present goal is to cor-

rect these systematic errors, so it is more appropriate for error bars to only show

statistical errors, which result from having a finite number of counts. We consider

the variation among the qubit assignments used in the qubit assignment averaging

to be a systematic error, as the same choices of qubit assignments are used in the

calibration circuits as in the circuit that we wish to correct. However, we consider

the variation over the different “perturbative” points in the method introduced in

Sec. 2.3.2 to be statistical error, since a larger sample of such points can always be

taken.

A.3 Variational ansatz circuit

As described in the main text, our ansatz consists of CNOTs between adjacent qubits

and Y-rotations on all qubits (Fig. A.2). CNOT is a basis gate on IBM’s quantum

computers. However, the Y-rotations and the change of basis required to measure

Xi must also be written in terms of basis gates. We use the following basis-gate

decompositions:

Ry(θ) = Rz(π)
√
XRz(π + θ)

√
X

HRy(θ) = Rz(π)
√
XRz(3π/2− θ)

√
XRz(−π).

(A.3)
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ibmq toronto and ibmq sydney include 12- and 20-qubit loops, the topologies studied

here, so we have not needed to apply any gates between non-neighboring qubits.

A.4 Poorly performing methods

In addition to the methods discussed in the main text, we also benchmark two meth-

ods that do not perform as well. In one of these methods, which we call “multiplying

fidelities,” we multiply (1 − ei), where ei is the reported error rate for gate i, over

all of the gates appearing in the backwards light cone of the observed qubits. This

is then taken as an estimate of the overall damping factor. In Fig. A.4, it is clear

that this method predicts more suppression than actually exists. The other poorly

performing method is to use the noise model in Qiskit Aer, which includes local

depolarizing channels on all of the gates, thermal relaxation errors, and readout er-

rors. This method is not scalable since it requires simulating the circuit, but we

benchmark it for comparison. It consistently predicts less suppression than exists.

A.5 Readout error mitigation

In the standard technique for readout error mitigation on n measured qubits, one

prepares the qubits in each of the 2n computational basis states and measures the

probabilities of reading out the different outcomes (e.g. [6]). This results in a 2n×2n

matrix, which is inverted to perform the mitigation. When n is large, this method
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Figure A.1: Exact ground state energy of the mixed-field Ising model (Eq. 2.1) and
predictions from second-order perturbation theory, for hz = 0.1. Relevant to this
work, we see that hx ≤ 0.5 is in the small hx perturbative regime, while hx = 1.5
is outside of it (at least to second order). For the small-hz limit, we cheat slightly
and use exact diagonalization to compute the eigenstates and eigenenergies when
hz = 0. We thus include the cyclic boundary term that is neglected in analytic
treatments (cf., Eq. 2.4 in [133], and the following discussion), so the small-hz line
should be regarded as slightly better than one could do analytically, but approaching
the analytical solution as the number of spins increases.

Initialization Layer 1 Layer 2 Layer 3

Figure A.2: The Alternating Layered Ansatz that we use throughout this work,
shown for 6 qubits and 3 layers. When we impose partial cyclic permutation symme-
try, we demand that, within a layer of y rotations, all of the rotations on even qubits
have the same angle, and all of the rotations on odd qubits have the same angle.
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becomes intractable and one must make simplifying assumptions, such as ignoring

correlations among the qubits or among sets of qubits. For the Mixed-Field Ising

Hamiltonian (Eq. 2.1), we only need to measure at most two qubits simultaneously,

so the standard readout error mitigation method is easily tractable. Nevertheless, we

assume uncorrelated readout errors and use the methods developed in Appendix A.6

to perform the mitigation. We use the readout error rates measured by IBM during

their approximately daily calibrations [3]. We have found that this works about as

well as doing the full readout error mitigation using our own calibrations.

A.6 Uncorrelated readout errors

In this appendix, we show that the effect of uncorrelated readout errors is to reduce

the expectation value of a Pauli operator by the factor (1 − 2em), for each qubit

measured, where em = (e0 + e1)/2 is the average readout error, and offset it by a

small additive amount. Some similar results appear in [58].

Suppose that we want to measure a Pauli string of length N by applying readout

gates to all of the qubits. If the readout gates were noiseless, we would measure out-

come q with probability f(q). The noiseless expectation value of the Pauli operator

is then ⟨P ⟩ =
∑

q P (q)f(q), where P (q) = ±1 is the bit parity of q. Now, suppose

that the measurement gates add noise such that the probability of a 0 getting mea-

sured as a 1 is e0 and the probability of a 1 getting measured as a 0 is e1. Let f̃(q)

be the probability distribution of the outcomes, including this readout error. Let
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˜⟨P ⟩ =
∑

q P (q)f̃(q).

The main result that we will establish is that

˜⟨P ⟩ =
∑
q

P (q)f(q)(1− 2e0)
n0(q)(1− 2e1)

n1(q), (A.4)

where n0(q) is the number of bits in q that are 0, and n1(q) is the number of bits in

q that are 1. If the two error rates are equal (e0 = e1 = em), Eq. A.4 becomes

⟨P̃ ⟩ = ⟨P ⟩(1− 2em)
N , e0 = e1 = em. (A.5)

However, we can also simplify Eq. A.4 without assuming the error rates are equal.

For N = 1, ⟨P ⟩ = f(0)− f(1), so Eq. A.4 becomes

⟨P̃ ⟩ = ⟨P ⟩(1− e0 − e1) + e1 − e0, N = 1. (A.6)

For larger N , ⟨P ⟩ does not determine f(q). However, the largest and smallest

⟨P̃ ⟩ for a given ⟨P ⟩ will always result from letting f(q) be nonzero for at most two

choices of n1(q), one with n1 even and the other with n1 odd. Define these values

as n+
1 and n−

1 , respectively. Define n±
0 = N − n±

1 and f± to be the corresponding

probabilities. Then ⟨P ⟩ = f+ − f−, and so Eq. A.4 becomes

⟨P̃ ⟩ =
(
1 + ⟨P ⟩

2

)
(1− 2e0)

n+
0 (1− 2e1)

n+
1 −

(
1− ⟨P ⟩

2

)
(1− 2e0)

n−
0 (1− 2e1)

n−
1

(A.7)

Without loss of generality, we assume that e1 ≥ e0. We also assume that e1 < 0.5.

Then ⟨P̃ ⟩ is maximized by picking n+
1 = 0 and n−

1 to be either N or N−1, whichever
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is odd. Similarly, the smallest ⟨P̃ ⟩ is obtained by picking n+
1 = N or N−1, whichever

is even, and n−
1 = 1. For the case of N = 2, this becomes

(1−2e1) [⟨P ⟩(1− e1 − e0)− (e1 − e0)] ≤ ⟨P̃ ⟩ ≤ (1−2e0) [(1− e0 − e1)⟨P ⟩+ e1 − e0] .

(A.8)

The midpoint between these two bounds gives an estimate of ⟨P̃ ⟩ when N = 2:

⟨P̃ ⟩ ≈ ⟨P ⟩(1− e0 − e1)2⟨P ⟩+ (e1 − e0)2, N = 2. (A.9)

Note that the y-intercept is suppressed compared to the N = 1 case (Eq. A.6).

Indeed, it becomes more suppressed as we go to higher N . Numerically, we find

that, for N ≳ 3, for randomly chosen f(q),

⟨P̃ ⟩ ≈ (1− e0 − e1)N⟨P ⟩, N ≳ 3 (A.10)

where this becomes a better approximation as N increases. We present numerical

evidence for this result in Figs. A.5–A.6.

A.6.1 Proof of Eq. A.4

Consider two bit strings, both of length N , q and q′. Define the following quantities:

k0(q, q
′) =

N−1∑
i=0

1q′i=01qi=1, u0(q, q
′) =

N−1∑
i=0

1q′i=01qi=0,

k1(q, q
′) =

N−1∑
i=0

1q′i=11qi=0, u1(q, q
′) =

N−1∑
i=0

1q′i=11qi=1.

(A.11)
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Then, upon adding readout error, the probability f̃(q) of measuring bit string q

is

f̃(q) = f(q)(1−e0)n0(q)(1−e1)n1(q)+
∑
q′ ̸=q

f(q′)e
k0(q,q′)
0 e

k1(q,q′)
1 (1−e0)u0(q,q′)(1−e1)u1(q,q′).

(A.12)

The expectation value of bit parity in the distribution f̃ is

⟨P̃ ⟩ =
∑
q

P (q)f(q)(1− e0)n0(q)(1− e1)n1(q)

+
∑
q

∑
q′ ̸=q

f(q′)P (q′)(−1)k0(q,q′)+k1(q,q′)e
k0(q,q′)
0 e

k1(q,q′)
1

× (1− e0)n0(q′)−k0(q,q′)(1− e1)n1(q′)−k1(q,q′)

=
∑
q

P (q)f(q)(1− e0)n0(q)(1− e1)n1(q)

+
∑
q′

n0(q′)∑
k0=0

n1(q′)∑
k1=0

n0(q
′)

k0


n1(q

′)

k1

 f(q′)P (q′)ek00 e
k1
1

× (1− e0)n0(q′)−k0(1− e1)n1(q′)−k1(−1)k0+k11k0+k1>0

=
∑
q′

n0(q′)∑
k0=0

n1(q′)∑
k1=0

n0(q
′)

k0


n1(q

′)

k1

 f(q′)P (q′)ek00 e
k1
1

× (1− e0)n0(q′)−k0(1− e1)n1(q′)−k1(−1)k0+k1

=
∑
q

P (q)f(q)(1− 2e0)
n0(q)(1− 2e1)

n1(q),

(A.13)

which is Eq. A.4.
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Figure A.3: Ansatz performance in representing ground states of the mixed-field Ising
Hamiltonian on 20 qubits, with hx = 1.5 and hz = 0.1. The symmetric ansatz is able
to represent the ground states nearly as well as the full ansatz with the same number
of layers. Further, relatively few layers are needed to capture the ground state.
However, we experiment with many more layers in Chapter 2 and this appendix so
as to benchmark error mitigation techniques.

Figure A.4: The measured damping factor (black “x”s) versus the number of
ansatz layers, for classically optimized circuits that are then run on ibmq sydney
or ibmq toronto. The circuits are optimized to the ground state of the 12-qubit
mixed-field Ising Hamiltonian with hx = 1.5 and hz = 0.1. The blue line shows the
damping factor that is predicted from multiplying the fidelities of the gates in the
backwards light cone of the measured qubits. The orange line shows the prediction
from a Qiskit Aer noise model with local depolarizing errors, thermal relaxation er-
rors, and readout errors. In both cases, the error rates are obtained from the device’s
calibration. For deep circuits, multiplying the gate fidelities consistently predicts too
much suppression, whereas the Qisit Aer model with local gate errors predicts too
little suppression.
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Figure A.5: In this Figure and in Fig. A.6, we generate random probability distribu-
tions f(q) that give the desired expected values of bit parity ⟨P ⟩, which are equally
spaced between −1 and 1. ⟨P̃ ⟩ is then calculated using Eq. A.4. The resulting data
are compared to Eq. A.9, and the residuals R̂ are plotted. In this Figure, two qubits
are measured, and the effect of the readout error is bounded by Eq. A.8 (blue lines)
and approximated by A.9 (red line). We set e1 = 0.1 and e0 = 0.05.
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Figure A.6: Same as Fig. A.5 but reading out 3, 4, 10, and 11 qubits, respectively.
Eq. A.10 (red line) is a good approximation and becomes better as the number of
measured qubits increases.
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APPENDIX B

APPENDIX TO CHAPTER 4: SYK

B.1 VQE for SYK

Some states are easier to prepare than others. For example, an infinite-temperature

initial state can be implemented by randomly sampling initial bitstrings, requiring

only a single layer of X gates. However, the duality between SYK and Jackiw-

Teitelboim (JT) gravity emerges at low temperatures. A low-temperature initial

state might require a variational technique similar to VQE [114]. Other proposals

for generating thermal states include Refs. [35, 181, 8, 180, 9, 172, 158, 73, 37]. The

dissipative cooling protocol studied in Chapter 3 may also be useful for generating

thermal states. As a proxy for the difficulty for generating a low-temperature thermal

state, this appendix considers the difficulty of generating an approximation to the

ground state.

The difficulty of generating the ground state is related to the difficulty of per-

forming time evolution. Adiabatic state preparation, dissipative cooling, and even

phase estimation all involve implementing Trotterized time evolution with the tar-

get Hamiltonian, which is difficult for SYK, O
(
N7/2t+N5/2t polylog(N/ϵ

)
, before

adding the cost of transpiling to the connectivity of the device, which might add

another factor of N on a 1D device or
√
N on a 2D device [7]; for comparison the 1D

spin chains studied elsewhere in this thesis only have a cost of O(Nt) in the number
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of gates and O(t) in depth. VQE is motivated by adiabatic state preparation, so if

the latter is difficult, the former is also likely (but not guaranteed) to be difficult.

In this appendix, I consider some of the particular difficulties involved in performing

VQE for SYK.

The first thing to note is that the SYK Hamiltonian (Eq. 4.1) has

N
q

 ∼ N4

terms, which is significantly more than the 1D spin chains studied in Chapters 2, 3,

and 5, which have O(N) terms. This affects the number of measurements that must

be performed in VQE, as well as the number of rotations that must be performed

in order to implement a Trotter step. Although this isn’t how I implement it in

Chapter 2, VQE for the 1D TFIM, can be performed with only two measurement

configurations per energy measurement (measure all of the qubits in the X basis

and in the Z basis). In contrast, because Majorana fermions on different sites do

not commute with each other, many of the terms in Eq. 4.1 cannot be measured

simultaneously. Terms that overlap by an even number of Majoranas commute,

whereas those that overlap by an odd number do not. I want to divide these terms

into the smallest number of bins such that all of the terms within a bin mutually

commute. This will tell us the minimum number of circuits per VQE iteration.

This appendix presents a method for grouping the Hamiltonian terms.

The first step is to write the terms as Pauli operators. This can be

done using a Jordan-Wigner transformation (also used in Chapter 3) or a

Bravyi-Kitaev transformation [17], for example. Python code is available at

https://github.com/eliottrosenberg/correlated SPAM/blob/main/pauli algebra.py, which
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conveniently implements these transformations. Example usage is as follows

from pauli_algebra import *

whichMajorana = 5

N = 10

encoding= 'jordan_wigner'

pauli_op, coeff = majorana(whichMajorana, N, encoding)

print(pauli_op)

print(coef)

which outputs

[3 3 2 0 0]

1

This means that χ5 = Y2Z1Z0. (The convention in the Jordan-Wigner transformation

used here is that even Majoranas begin with an X and odd Majoranas begin with a

Y , then they have trailing Zs down to Z0.)

One can also input a product of Majorana fermions. For example, to write the

product χ5χ8 in terms of spin operators, you can do

whichMajorana = [8,5]

N = 10
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encoding= 'jordan_wigner'

pauli_op, coeff = majorana(whichMajorana, N, encoding)

print(pauli_op)

print(coef)

which outputs

[0 0 1 3 1]

1j

This means that χ5χ8 = iX2Z3X4. The convention is that in a product of operators,

the rightmost one is the 0th one, which is the 0th element of the list (which confus-

ingly appears on the left when printed). The output pauli_op indicates, for each

of the N/2 sites, which type of Pauli operator acts on that site (0 for I, 1 for X, 2

for Y , and 3 for Z). The other output, coef, keeps track of the coefficient on the

output Pauli operator, which will be a fourth root of unity.

The same functions work with the Bravyi-Kitaev encoding. For example,

pauli_op, coef = majorana(5,10,'bravyi_kitaev')

print(pauli_op)

print(coef)

outputs
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[0 3 2 1 0]

1

meaning that, in the Bravyi-Kitaev encoding with N Majorana fermions, χ5 =

Z1Y2X3. You can input a product of Majorana fermions as well. For exam-

ple, pauli_op, coef = majorana([8,5],10,'bravyi_kitaev') returns pauli_op

= [0 3 2 2 1] and coef = -1j, meaning that χ5χ8 = −iZ1Y2Y3X4.

This tool makes it simple to convert the SYK Hamiltonian into a spin Hamil-

tonian. In order to understand the difficulty of measuring ⟨HSYK⟩ on a quantum

processor, it is important to quantify the sizes of the Hamiltonian terms, i.e. the

number of sites on which they act nontrivially. Figure B.1 shows the distribution

of sizes these terms after converting the fermions to spin operators using either a

Jordan-Wigner or Bravyi-Kitaev transformation. The Bravyi-Kitaev transformation

leads to significantly smaller terms, a clear advantage for implementation on NISQ

devices. However, these terms still act on about 10-12 sites, which is a significant

challenge compared to the spin Hamiltonians studied elsewhere in this thesis, the

terms of which only act on at most two sites.

In order to perform VQE, expectation values of these terms must be measured.

The average effect of readout errors on these measurements is given by Eq. A.10.

In particular if e0 + e1 ≈ 2% and P contains 12 terms, I expect the expectation

value of the operator to be damped to about 78% of its ideal value due to readout

errors. This is a significant effect that must be compensated for using readout error

mitigation, as detailed in the main text, Chapter 4.
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Figure B.1: The number of sites on which terms in the SYK Hamiltonian act nontriv-
ially after qubitization via either a Jordan-Wigner or Bravyi-Kitaev transformation,
as a function of system size.

Next, I return to the issue of grouping the Hamiltonian terms. Code for perform-

ing this grouping is available on Github1. The strategy is as follows:

1. I start with a list, remaining, of the Pauli operators that I have yet to measure.

Sort this list by size and pick the largest Pauli operator, pauli_to_measure;

I will measure in a basis that lets us measure this operator. However,

1https://github.com/eliottrosenberg/correlated SPAM/blob/main/SYK/generate SYK Hamiltonian.m
(written in MATLAB, sorry; blame Stuart Geman for teaching me to use MATLAB in undergrad)
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pauli_to_measure may contain identity operators on some sites, and I will

want to fill those in with either X, Y or Z so that I measure as many terms

simultaneously as I can. To do this I:

2. first remove pauli_to_measure from remaining, as well as any other Pauli

operators that I have already covered (i.e. those that commute with

pauli_to_measure and do not act on any sites that pauli_to_measure does

not act on). Next,

3. if the number of bases to assign, num_qubits_to_assign, is small (at most 9):

(a) search through all of the 3**num_qubits_to_assign possible assign-

ments, and select the one that maximizes the number of terms in

remaining that are measured (this is implemented by the function

find_optimal_assignment). Otherwise:

(b) do the following, implemented by find_good_assignment: of the terms

in remaining that commute with pauli_to_measure, find the one that

fills in the maximal number of unassigned bases (i.e. fills in the

maximum number of identity factors in pauli_to_measure). Fill in

pauli_to_measure accordingly and remove any terms that are now mea-

sured by this choice from remaining. Repeat until there is no change in

pauli_to_measure.

4. The basis in which to measure, pauli_to_measure is now fully constructed.

Add it to the list of bases in which to measure.

5. Repeat steps 1–4 until remaining is empty.

134



The results of this grouping algorithm are shown in Figure B.2. Evidently, the

number of measurement configurations required (as found by this algorithm) depends

on the mapping from fermions to qubits; somewhat fewer measurement configura-

tions are required for the Jordan-Wigner representation than for the Bravyi-Kitaev

representation. Of course, the commutation relations among the Hamiltonian terms

are independent of the qubitization scheme used, but because I am measuring each

qubit in a local Pauli basis, the representation does matter (e.g. Z1Z0 and X1X0

commute, but I would still measure them separately).

Unfortunately, I find that the fractional benefit from grouping decreases as the

system size increases. Further, the reduction in the number of measurements is only

about a factor of 2, not enough to make the

N
4

 terms per VQE iteration viable.

A possible workaround is to study sparse SYK instead of SYK [176, 25], which is the

solution implemented by [78].

So far, I have only considered the challenges associated with performing the

energy measurements. A separate challenge is whether a shallow ansatz, suitable

for NISQ processors, can approximate the ground state. To assess this, I picked a

single instance of the SYK Hamiltonian with 24 Majorana fermions (i.e. a particular

choice for the random coefficients in Eq. 4.1). The Hamiltonian was not sparsified;

all

24

4

 = 10, 626 terms were included. I used exact diagonalization to find the

ground state energy and then classically optimized ansatz circuits to try to minimize

the energy, ⟨ψ(θ⃗)|H|ψ(θ⃗)⟩. The ansatz and code used to optimize it were the same as
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Figure B.2: The number of measurement configurations required to measure 1000
random SYK terms.

used in Chapters 2 and 3; the ansatz is depicted in Figure A.2. This was repeated for

both the Jordan-Wigner and Bravyi-Kitaev encodings of the fermions into qubits.

The results are shown in Figure B.3. Unfortunately, after 19 ansatz layers, the

energy has only gotten about halfway to the true ground state energy (specifically,

E/Egs = 0.504 for the Bravyi-Kitaev encoding and E/Egs = 0.505 for the Jordan-

Wigner encoding at 19 ansatz layers). The poor performance compared to what

was achieved for 1D Ising models in Chapters 2 and 3 (E/Egs ≈ 1), is perhaps not
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surprising; as suggested earlier in this appendix, we might expect the performance of

VQE to be related to the performance of adiabatic state preparation, and adiabatic

state preparation certainly requires a much deeper circuit for SYK than it does for

the Ising models, given the cost of time evolution that was discussed earlier in this

chapter.
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Figure B.3: The performance of classically-optimized VQE for an instance of SYK
with 24 Majorana fermions. Repeated for both Jordan-Wigner and Bravyi-Kitaev
qubitizations. The true ground state energy is also shown, which is computed using
exact diagonalization.

As we have seen, SYK poses many challenges that would need to be overcome

137



in order for a nontrivially-sized system to be simulated on an existing or near-term

quantum processor. It is possible that by sparsifying the Hamiltonian sufficiently,

these challenges could be rendered surmountable. Regardless of the level of spar-

sification, one challenge that will remain for a VQE implementation is the need to

accurately measure the expectation values of large Pauli operators, which I address

in the main text, Chapter 4.
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APPENDIX C

APPENDIX TO CHAPTER 5

C.1 Experimental techniques and device characterization

C.1.1 Overview

The experiments are performed using 46 frequency-tunable superconducting trans-

mon qubits. The qubits are prepared in a random bitstring state according to the

probabilities set by the initial imbalance µ: qubits on the left side of the chain are

prepared in |1⟩ with probability p = eµ/(eµ + e−µ), otherwise |0⟩, and qubits on the

right are prepared in |0⟩ with probability p, otherwise |1⟩. The system is then evolved

with alternating layers of fSim gates [57, 127, 119], which implment a Floquet XXZ

model. Finally, all 46 qubits are measured in the computational basis. Because ideal

fSim gates are number-conserving, we post-select on the measured bitstrings having

the correct number of 1s, effectively mitigating against photon loss, which otherwise

causes the number of 1s to decay. After sampling over Nstates initial bitstring states,

we compute the expectation value of the kth power of the transferred magnetization

as

⟨M(t)k⟩ = 1

Nstates

∑
i

1

N counts
i (t)

∑
j

N counts
ij (t)

(
2
(
NR

1 (j)−NR
1 (i)

))k
, (C.1)
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where i is the initial bitstring and j is the measured bitstring, N counts
i (t) is the total

number of counts that survive postselection after t cycles when the initial state is i,

and N counts
ij (t) is the number of times the bitstring j is measured after t cycles when

the initial state is i. N counts
i (t) =

∑
j N

counts
ij (t). NR

1 (i) is the number of 1s in the

right half of the binary representation of i. Moments are computed as

αk(t) =
〈
(M(t)− ⟨M(t)⟩)k

〉
=

k∑
i=0

k
i

〈M(t)k−i
〉
(−⟨M(t)⟩)i ,

(C.2)

where the second line is written in terms of the experimentally measured quantities,

Eq. (C.1). Finally, the skewness S(t) and kurtosis Q(t) are computed as

S(t) = α3(t)

α2(t)3/2

Q(t) = α4(t)

α2(t)2
− 3.

(C.3)

Statistical uncertainties of each of these quantities are computed using the remove-

one jackknife method, wherein one initial state is removed from the sample, and the

variation of the quantity of interest (e.g. of ⟨M(t)⟩, α2(t), S(t), or Q(t)), depending

on which state is removed, is used to estimate the statistical uncertainty of that

quantity. The jackknife method is also used to estimate bias, which is found to

be negligible compared to the statistical uncertainties. The jackknife method is

described in more detail in Section C.1.4.

In addition to post-selecting on number conservation, we apply several additional

error avoidance and mitigation techniques:
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(1) We post-select on the causal possibility of the observed bitstring. For example,

if an initial bitstring on 8 qubits is 11011000, then it is not possible, in a noiseless

system, to observe 01011001 at cycle 1. The rightmost 1 appeared acausally (likely

by readout error) and hence the bitstring is filtered out even though it contains the

correct number of 1s. We have an efficient algorithm (described in Section C.1.2 for

checking whether a given observed bitstring is causally possible after t cycles from a

given initial bitstring. This filtering mostly affects the earliest few cycles, for which

the number of causally connected bitstrings is small. This filtering is a small effect

compared to the number-conserving post-selection, which keeps an exponentially

decaying number of bitstrings as a function of cycle number (see Figure C.1A).

(2) Noting that the effects of amplitude damping (T1) on our experiment are worse

in initial bistring states with more 1s, when an initial state is more than half-full, i.e.

the number of 1s is greater than 23, we relabel the |0⟩ and |1⟩ states, i.e. we start in

the initial bitstring b̄i instead of bi and then replace each measured bitstring bj with

b̄j, where b̄ means to apply a NOT operator to all of the bits in b. The advantage

gained from this technique is illustrated in Figure C.1C.

Figure C.1A shows exponential decay of the fraction of counts that survive the

post-selection. We call the decay constant the algorithmic relaxation time, TA
1 ,

which, as illustrated in Figure C.1C, is about 3 cycles at half filling. If one naively

estimates TA
1 at half-filling from

e−t/TA
1

?
=

23∏
i=1

e−t/T
(i)
1 =⇒ 1

TA
1

?
=

23∑
i=1

1

T
(i)
1

, (C.4)

where T
(i)
1 is the T1 of qubit i, measured at its idle frequency, we obtain an estimate
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for TA
1 of over 7 cycles, even if we pick sum to be over the 23 qubits with the shortest

T1 out of the 46 total.

There are two main mechanisms expected to cause discrepancies between the

algorithmic T1 and the estimate based on single-qubit T1 values. First, when the

coupling is turned on, the coupler is brought close to the qubits in frequency, allowing

noise in the coupler to affect the qubit. This can also enable noise-induced transitions

from the qubit to the coupler. Second, the relevant T1 for the experiment is not the T1

at the idle frequency, even though that is what is typically optimized for and reported.

The fSim gates are implemented as in Refs. [119, 74]; pairs of qubits are tuned to their

interaction frequencies in a trapezoidal coupler pulse, the amplitude and duration

of which are tuned to obtain the desired SWAP and controlled-phase angles. The

resulting fSim gate includes single-qubit phases, which must be calibrated to zero

by applying physical Z rotations [119]. Physical Z gates are fixed-duration 10-ns

gates in which the qubit frequency is detuned from the idle frequency f0 to the

frequency fz. In the frame rotating at the idle frequency, the qubit accumulates

a phase of 2π(fz − f0) × 10 ns. Therefore, the full range of phases from −π to

π can be obtained by the range of frequencies |fz − f0|≤ 0.05GHz. Figure C.2A

shows T1 as a function of frequency for a typical qubit in our chain, indicating the

idle frequency, the interaction frequencies with the two neighboring qubits, and the

range of frequencies used for physical-Z rotations. It is readily seen that, although the

idle frequency may be optimized to give a long T1, other frequencies used during the

circuit execution have T1s that can be about a factor of 2 shorter. Figure C.2B shows

how the frequencies for each of the 46 qubits in our chain vary over the course of a

142



cycle. Clearly, T1 during the circuit execution differs from T1 at the idle frequency,

and the factor-of-two difference between the measured and predicted algorithmic

relaxation time is plausibly explained.

Post selection largely mitigates against amplitude damping, characterized by the

algorithmic relaxation time, at the cost of an exponential overhead in the number of

shots required. However, some errors make it past the post selection. In particular,

although amplitude damping causes the number of 1s to decrease, 0 → 1 readout

errors cause it to increase. Therefore, when both amplitude damping and 0 → 1

readout error occur, the measured bitstrings can have the correct number of 1s and

pass the post-selection. As evident in Figure C.1A, by later cycles, the vast majority

of bitstrings have had some amplitude damping, and on 46 qubits, it is likely that

at least one 0→ 1 readout error will occur (typical readout error rates are shown in

Figure C.3), so this is a non-negligable effect. It manifests as excitations appearing

to jump nonlocally along the chain, moving from the side with high concentration to

the side with low concentration faster than they would without noise. As described

in Section C.2.3, we perform simulations including this effect and find that it ex-

plains most of the discrepancy between the noiseless simulation and the experiment.

Evidently, the quality of our post-selected experimental results could be improved by

changing how the readout calibration is done; the readout centers could be chosen

to decrease the 0 → 1 error rate at the expense of the 1 → 0 error rate (and hence

requiring more shots). We leave this modified calibration technique for future work.

There are other sources of errors that are not mitigated by post-selection. These
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include dephasing, leakage (occupation of the |2⟩ state), and control errors (fSim

angle miscalibrations). Because the coupling strengths used here are not particularly

high, leakage is not expected to be a dominant source of error. We characterize single-

and two-qubit dephasing, as well as control errors, and include these effects in our

simulations. However, we find that most of the observed discrepancy is explained by

T1 and readout errors alone (Figure C.5).

The data included in Chapter 5 were collected over the course of several months,

on different sets of qubits and two different devices. In order to ensure consistent

data quality, readout error rates, single-qubit error rates, and two-qubit cross-entropy

benchmarking (XEB) fidelities were measured periodically, typically after every 10

initial states; we kept only data for which the maximum error rates were below

thresholds that we set.

144



C.1.2 Causal filter

Here we present the causal filter with which we post-select our measured bitstrings.

We illustrate the algorithm with the two bitstrings mentioned in Section C.1.1. Sup-

pose that the initial bitstring is 11011000 and we want to know whether 01011001 is

a possible measurement outcome after one cycle.

To answer this question, we determine the minimum number of cycles required to

obtain 01011001 in the ideal dynamics. First, we assign identities to the “1”s in the

initial and final bitstring determined by their order. This is illustrated in Figure C.4,

where we assign colors to the “1”s in both the initial bitstring (on the left) and the

final bitstring (on the right). We then consider each layer of fSim gates and move

the excitations if it is allowed by the gates and if doing so brings the excitations

closer to their desired locations. For example, in the first layer, the blue and orange

excitations are blocking each other from moving (since color is determined by order).

The green one could move up, but doing so would bring it further from its final

position, so it does not move. The red excitation moves down because that brings

it closer to its final position. From the figure, it is clear that at least 1.5 cycles are

needed to obtain 01011001 from 11011000. Therefore, this bitstring would be filtered

out if seen after only one cycle.
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C.1.3 Gate calibration

We implement fSim gates using the same trapezoidal coupler pulses used in previous

works [127, 119, 74]. Here, we note some differences between how gates are calibrated

here versus in previous works. (1) in Ref. [119], the fSim gates were not of uniform

duration across pairs. Here, we adjust the padding (the idle time in Figure C.2B)

so that the gate duration (including the added padding) is uniform across pairs,

leading to the neat alignment in time acros qubits shown in Figure C.2B. (2) In

Ref. [119], Floquet calibration of the fSim angles allowed them to be controlled with

high precision. Because control errors (called disorder in Figure C.5) are a negligible

source of error for us, we instead use unitary tomography to calibrate the fSim angles.

This enables us to calibrate gates quickly and in a way that is mostly automated. We

tried Floquet calibration, which allows for more precise calibrations of the angles at

the cost of a higher overhead, but found that it did not improve our gate fidelities. (3)

We iteratively calibrate the hold time T and coupling strength gmax of the trapezoidal

pulse by measuring the fSim angles θ and ϕ at points in a small cross shape in the

(T, gmax) plane centered at the previous guess, fitting the polynomials

θ = f((b1gmax + b0)(T + Tb))

ϕ = (c1gmax + c0)(T + Tc),

(C.5)

where f is the triangle-wave function illustrated in Figure C.6. This technique allows

for fast calibration of fSim gates without relying on expensive 2d sweeps and in a

way that is more robust to noise than gradient descent. Figure C.7 illustrates this

calibration procedure.
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An advantage of being able to quickly optimize T and gmax for the desired fSim

angles is that we can now put this in an outer loop that adjusts the interaction

frequencies. Indeed, during gate calibration, we set a minimum two-qubit XEB

fidelity and optimize the interaction frequencies (re-optimizing T and gmax each time)

until all qubit pairs achieve the desired fidelity.
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C.1.4 Jackknife estimate of uncertainties

We use the “delete one” jackknife to estimate the statistical uncertainty of our skew-

ness and kurtosis, and dynamical exponent measurements [141, 162, 47]. For finite

m, where we average over initial states, define θ̂(i) to be the quantity of interest,

for example the skewness or kurtosis, computed with initial state i removed. Define

θ̂(.) =
1
Ns

∑
i θ̂(i), where Ns is the number of initial states. Then we use

σθ̂ =

√
Ns − 1

Ns

∑
i

(
θ̂(i) − θ̂(.)

)2
(C.6)

as our estimate of the statistical uncertainty of the quantity θ̂.

The averages of skewness or skewness over cycle number are uncertainty-weighted

averages, and the uncertainty of the average is computed directly using Eq. (C.6).

In the case of m = ∞, there is only one initial state, so we instead perform the

jackknife estimate by deleting each one of the shots. This gives us the uncertainty of

the skewness and kurtosis at each cycle. Because the shots, unlike the initial states,

are different at each cycle number, we cannot use the jackknife to directly compute

the uncertainty of the cycle-averaged skewness and kurtosis for m =∞. Instead, in

this case, we treat the skewness and kurtosis at each cycle as independent random

variables, so the uncertainty of their weighted average is

σweighted avg =
1√∑
twt

, (C.7)

where the weight, wt, at cycle t is 1/σ
2
t , where σt is the uncertainty of the quantity

(either skewness or kurtosis) at cycle t.

148



C.2 Simulation techniques and numerical results

Our main quantity of interest, the transferred magnetizationM, counts the number

of excitations that have moved across the center of the 1D chain. A significant

simplification stems from the fact that, at early times, excitations far from the center

have not had time to cross the center of the chain. As a result, we can imagine an

infinitely large system and only simulate a finite number of sites in order to study

it. In particular, at cycle t, it is only necessary to simulate 2t sites 1. As a result,

the optimal simulation technique varies depending on the cycle number. Through

cycle 8 (16 qubits), we obtain exact results by simulating the full density matrix.

Beyond that point, density matrix simulations become costly, so for cycles 9–18

(18–36 qubits), we instead sample random initial bitstring states, as done in the

experiment, and apply exact statevector simulation to these initial states. For the

pure domain wall case (µ = ∞), we employ tensor-network simulations using the

time-evolving block decimation (TEBD) algorithm [166] to extend the simulations

to cycle 23.

1For a particular initial bitstring state, the transferred magnetization is only independent of
system size when NQ ≥ 4t − 2, as one would expect from the causality structure of the circuit,
but after averaging over initial bitstrings (or equivalently in the mixed initial state), we find the
transferred magnetization is exactly independent of system size as long as NQ ≥ 2t sites.
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C.2.1 Analytical results

For very early times, the matrices involved are small enough that it is possible to

obtain relatively simple analytical results. Some of these are tabulated here:

Cycle 1

To compute the transferred magnetization at cycle 1, it is only necessary to consider

two qubits with an fSim gate between them. Therefore, the probability distribution

of the transferred magnetization takes a simple form. For positive integer power k,

we have:

⟨M̂k⟩ =


2k sin2 θ tanhµ, k odd

2k−1 sin2 θ
(
1 + tanh2 µ

)
, k even

. (C.8)

In particular, the mean, variance, and skewness are

⟨M̂⟩ = 2 sin2 θ tanhµ

var = 2 sin2 θ
(
1 + cos(2θ) tanh2 µ

)
S = A/B, where

A = 2
√
2
( (

2 sin4 θ tanh2 µ+ 1
)
(sinh (2µ) + cosh (2µ) + 1)2

− 3 (sinh (4µ) + cosh (4µ) + 1) sin2 (θ)
)
tanhµ

B = (sinh (2µ) + cosh (2µ) + 1)2
√(

cos (2θ) tanh2 µ+ 1
)3

sin θ,

(C.9)
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and, to leading order in µ, we have

S = µ
√
2(2 csc θ − 3 sin θ) +O(µ3)

Q = 2 csc2 θ − 3 +O(µ2).

(C.10)

Observe that, for µ ≪ 1, the skewness and kurtosis are both positive for small

θ, i.e. the Trotter limit, and negative for large θ. The crossover happens at θ =

arcsin
(√

2/3
)
≈ 0.3π. In Figure 3 of the main text, we choose θ = 0.4π, which

is why we observe negative skewness and kurtosis. In continuous-time Hamiltonian

dynamics, we expect the opposite signs.

Cycle 2

It is also possible to obtain analycial expressions at cycle 2. In particular, the mean

and variance of the transferred magnetization are

⟨M̂⟩ = 2µ sin2 θ
(
cos4 θ(3 + cosϕ) + 2 sin2 θ

)
+O

(
µ3
)

var = sin4 θ(1− cosϕ) +
1

8
(3 + cosϕ)(7 sin2 θ + sin2(3θ)) +O(µ2)

(C.11)

C.2.2 Simulation cost and runtime

To perform statevector simulations out to cycle 18 (36 qubits), we use NVIDIA’s

cuQuantum [55] and its interface with qsim [140]. cuQuantum supports multi-GPU

quantum simulations, and with eight 80-GB NVIDIA A100 GPUs, available to virtual

machines running in Google Cloud’s compute services, we can simulate up to 36

qubits. On this platform, a noiseless 18-cycle simulation takes about 17.6 seconds per

151



initial state. However, the memory required to store the state increases exponentially

in the cycle number, as shown in Figure C.8. The cuQuantum implementation stores

22t complex numbers. The memory footprint could be reduced by taking advantage

of number conservation, in which case only

2t

t

 complex numbers would be needed

to represent the state.

C.2.3 Noisy simulations

In this subsection, we describe how we performed the noisy simulations shown in Fig-

ure C.5 and Figure 2 of the main text. The simulations with disorder were performed

in a straightforward way; we simply measured the actual fSim angles, including the

single-qubit phases, using unitary tomography, and used the measured angles in

the simulation, simulating only the 2t qubits about the center, as in the noiseless

statevector simulations. The simulations with dephasing were also performed in a

straightforward way; we simply averaged over many circuits, adding high- and low-

frequency Gaussian noise to the fSim angles, as well as Z-rotations between the fSim

gates with random angles that vary both within a circuit and across shots.

The simulation of amplitude damping and readout error is slightly more involved.

For each initial 46-qubit bitstring, we consider separately the 2t qubits about the

center and the remaining 46− 2t outer qubits. For the center qubits, we perform a

noisy simulation using cirq/qsim [140] that includes the measured amplitude damping

as gates applied between the layers of fSim gates. The outer qubits are treated as
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if no two-qubit gates are applied; qubits prepared in |1⟩ are stochastically flipped to

|0⟩ with a probability 1− e−t/T1 . The resulting bitstrings from the center and outer

qubits are concatenated back together, and then bits are randomly flipped according

to the 0 → 1 readout error rate e0 and the 1 → 0 readout error rate e1. Finally,

the same post-selection that is used in the experiment is applied to the simulated

bitstrings, so that only those conserving the number of 1s and satisfying the causality

constraints survive. The readout error rates used here are those measured on the

device at the time the experiment was run, including the qubit-by-qubit variations.

The amplitude damping rate, T1, is obtained as in Figure C.1A and is approximated

as being the same across all qubits.

C.2.4 Length independence

As demonstrated in Table C.1, the transferred magnetization is independent of the

length of the chain as long as the chain consists of at least 2t qubits, where t is the

cycle number.
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Absolute difference from reference kurtosis when computed with NQ qubits.

Cycle Reference kurtosis NQ = 2 NQ = 4 NQ = 6 NQ = 8 NQ = 10 NQ = 12 NQ = 14 NQ = 16

1 −0.7888543819998315 0 10−15 10−15 10−15 10−15 10−14 10−14 NC

2 −0.3236513411118609 0 10−15 0 10−15 10−15 10−15 NC

3 −0.19032877952363814 0 0 10−15 10−15 10−15 NC

4 −0.13634880999637522 0 10−15 10−15 0 NC

5 −0.11064712866845028 0 10−15 0 NC

6 −0.0964617033065931 0 10−15 NC

7 −0.08726032489412416 0 NC

8 −0.08047534387997635 0

Table C.1: Illustration of the length-independence of the transferred magnetization,
as long as NQ ≥ 2t. Deviations are consistent with double-precision floating-point
arithmetic. The values are computed using exact density matrix simulations for
(θ, ϕ) = (0.4π, 0.8π) and µ = 0, but we observe similar agreement across system sizes
for all choices of these parameters and for all of the moments. Here “NC” means “not
computed.” The kurtosis at t = 1, NQ = 2, is given by Eq. (C.9): Q = 2 csc2 θ − 3.

C.2.5 Crossing time

In Figure 3 of the main text (panels C and D), we plot the skewness and kurtosis as

functions of µt2/3. The data collapse observed in Fig. 3C is seen even more clearly

in the numerics, shown in Figure C.9. In the inset to panel A, we see that the time

at which the skewness becomes positive scales like µ−3/2, and, in panel B, we see a

collapse of the numerical data when plotted as a function of µt2/3. The power law

scaling sensibly predicts that the crossing time becomes infinite as µ → 0, which

makes sense because the skewness is always 0 at µ = 0. The kurtosis, however,

cannot be a function of µt2/3 because it is not constant when µ = 0.
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Figure C.1: A. The fraction of the total counts that pass the post-selection, as a
function of cycle number, for a single initial bitstring. The green markers (higher
points) indicate the yield when post-selecting only on number conservation. The
purple markers (lower points) indicate the yield when post selecting on whether the
observed bitstring is causally possible given the initial bitstring in the ideal circuit, a
more stringent criteria than number conservation. Past cycle 11, the causality filter
has no effect beyond enforcing number conservation (for this particular bitstring and
set of measurements). A decaying exponential is fit to the yield when post-selected
on number conservation only. We call the yield at t = 0 the initial yield, which is
less than one because of readout error. We call the decay constant the algorithmic
relaxation time, TA

1 , which is a measure of the effective amplitude damping rate in
the experiment. B. The initial yield (orange circles) and algorithmic relaxation time
(blue ×s) as a function of the number of 1s in the initial bitstring. As expected, the
algorithmic relaxation time decreases as the number of 1s increases. The initial yield
also decreases with the number of 1s in ithe initial bitstring because 0→ 1 readout
error rates tend to be lower than 1 → 0 readout error rates. C. Employing the
error avoidance technique in which initial bitstrings bi with more than NQ/2 = 23
1s are replaced with b̄i and the resulting measured bitstrings bf are replaced with
b̄f , so that the number of 1s physically implemented is never more than 23. (Or
equivalently, we relabel the |1⟩ and |0⟩ states when the number of 1s is more than
23.) As expected, this results in a V shape for TA

1 as a function of the number of 1s
in the initial bitstring, with the minimum at 23 1s, corresponding to half-filling. At
cycle 23, the yield at half-filling is about 2×10−4, and we use 6×104 shots per initial
state, resulting in about 12 shots per initial state after post-selection. We average
over approximately 100 initial states for each value of m, θ, and ϕ that we study.
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Figure C.2: A T1 as a function of frequency for a typical qubit in our chain of
46 qubits. Vertical lines indicate the idle frequency and the interaction frequencies
with each of the two neighboring qubits. The shaded region indicates the range of
frequencies used to obtain physical Z rotation angles from −π to π. B Schematic
showing the qubit frequency as a function of time during one cycle for all 46 qubits
in a typical calibration used during this experiment.
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Figure C.3: Typical error rates achieved on our 46-qubit chain, showing readout
error, single-qubit randomized benchmarking (RB), and two-qubit cross-entropy-
benchmarking (XEB) cycle Pauli errors. The slightly lower error rates reported in
Ref. [119] are due to the different sets of angles used.

157



0

1

0

1

1

0

0

1

1

1

0

1

1

0

0

0

Figure C.4: An illustration of how we determine the minimum number of cycles
needed to obtain a given final bitstring from a given initial bitstring. In this case, at
least 1.5 cycles are needed to obtain 01011001 from an initial bitstring of 11011000
under the ideal dynamics.
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Figure C.5: Effects of various sources of error on the first four moments of the
transferred magnetization, shown for (θ, ϕ) = (0.17π, 0.6π) and m = 0.5, the same
as the green curve in Figure 2 of the main paper. The red curve shows the effects of
amplitude damping and readout error. The amplitude damping rate, T1, is extracted
from the experimental data as in Figure C.1A and is assumed to be the same for
all qubits. Readout error rates are measured by sampling random bitstrings on all
46 qubits. Dephasing is characterized using a floquet protocol. Disorder refers to
miscalibrations of the angles θ and ϕ as well as the single-qubit Z phases (see Eq. S2
of [119]). Miscalibrations of these angles are measured using unitary tomography.
Error bars are estimated using the delete-one jackknife method described in Section
C.1.4. It is clear that amplitude damping and readout constitute the dominant source
of error. This is encouraging for future experiments because the overall error rate is
controlled by the 0 → 1 readout error rate, which can be decreased at the expense
of the 1→ 0 error rate.
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Figure C.6: The periodic triangle wave function f appearing in Eq. (C.5).
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Figure C.7: Illustration of the iterative calibration of fSim gates. Panels A and B
show, in the background, the results of a 2D grid sweep, characterizing the fSim
angles θ and ϕ, respectively, as functions of the hold time, T , and coupling strength,
gmax, of the trapezoidal pulse, for a particular qubit pair. (The rise time of the
trapezoid is fixed at 5 ns.) The red colored marker indicates an initial guess for
T and gmax. In this case, the initial guess comes from the 2D grid sweep, but an
advantage of the iterative technique is that the grid sweep is not needed. More
often, we provide the initial guess without ever doing a 2D sweep, allowing faster
calibration of gates. The measured fSim angles for this guess are shown in the boxes
on the left. We then measure the fSim angles along the cross shape indicated by
the small red xs in panels A and B. The results of these measurements are shown
in panels C-F, with panels C and D showing the constant-T part of the cross, and
panels E and F showing the constant-gmax part. For the θ fits, the triangle-wave (f
in Eq. (C.5)) is unwound as indicated by the arrows. This fitting procedure gives
us the six parameters in Eq. (C.5). We then invert the fitted polynomial to obtain
the next guess for T and gmax, indicated by the orange point in panels A and B.
Sometimes, no real solutions exist within the physical bounds that we place on T
and gmax, in which case we find the closest approach, minimizing the cost function
C = (ϕ − ϕ0)

2/ϕ2
0 + (θ − θ0)2/θ20, where θ0 and ϕ0 are the target angles, subject to

the bounds that we place on T and gmax. The cross sweep is iterated several times
(in this case 3 times, resulting in 4 successive guesses), and the best guess (the one
minimizing the cost function) is used.
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Figure C.8: The resources needed to generate 1000 initial states using our imple-
mentation of the statevector sampling method on up to eight 80-GB NVIDIA A100
GPUs using NVIDIA cuQuantum [55].

162



-0.5

-0.25

0

0.25

0.5

Sk
ew

ne
ss

, 

Noiseless simulation
 = 1

A

0.1 1

10

100

t c
ro

ss

tcross = 4.9 1.49

KPZ (TW GUE)

KPZ (Baik-Rains)

NLFH, CLL

2 Wei       et al
C

lim
t→∞

lim
µ→0
S lim

µ→0
lim
t→∞

S

E

NLFH
KPZ (TW GUE)

KPZ (Baik-Rains)

CLL

0 5 10 15 20
Cycle number, t

-0.5

-0.25

0

0.25

0.5

Ku
rto

si
s,

 

B

0.05 ± 0.02

0 2 4 6 8 10 12
t2/3

0.0

0.0
3

0.0
6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.5

Excluding cycles < 8

D

0 1 2 3 4
t1/3

F

Figure C.9: Data collapse. PanelsA–D are the same as Figure 3 of the main text, but showing
only data from noiseless numerical simulations. The added inset in panel A shows the time
at which the skewness becomes positive as a function of µ, with a fitted power law. The fact
that the fitted exponent is close to −3/2 justifies the scaling in panels C-D. We further justify
this scaling by noting that, among all scaling variables of the form µtγ, γ ≈ 0.65 leads to the
best collapse of the skewness, as measured by the sum of the residuals. In Panels E–F, we
try a scaling exponent of 1/3, which is motivated by the theoretical finding that the dynamics
become diffusive at a time that scales as µ−3 [64]. Although the skewness collapses reasonably
well in both panels C and E, a careful visual comparison shows that the collapse is better in
panel C. The kurtosis does not collapse with either scaling, as expected; the kurtosis cannot
be a function of µtγ for any positive γ because, unlike the skewness, it has time dependence
even when µ = 0.
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Figure C.9 shows that the skewness also appears to collapse reasonably well when

plotted as a function of µt1/3, thus conveying the difficulty of estimating the exponent

of t by eye. In order to do so in an unbiased manner, we define a quantitative measure

of data collapse based on the appropriately normalized sum of fit residuals (where

the fit describes the purportedly universal scaling function). Using µtγ as the scaling

variable, for varying γ, we find that this metric is minimized for γ ∼ 0.65. This

is consistent with our initial observation of µt2/3 seemingly yielding the best data

collapse.
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C.2.6 Sweeps of anisotropy and imbalance

The transport characteristics of the XXZ model are strongly dependent on the

anisotropy parameter, ∆. In particular, ballistic, superdiffusive and diffusive be-

haviors are expected in the regimes where ∆ < 1, ∆ = 1 and ∆ > 1, respectively.

Moreover, the KPZ conjecture was only proposed for the isotropic point (∆ = 1).

In order to get a better sense of the parameter space in which we are operating,

we performed 2D numerical sweeps of the anisotropy ∆ and the initial imbalance µ.

The results are shown in Figure C.10. They illustrate a sign change in the skewness

and kurtosis close to the Heisenberg point, ∆ = 1, as well as a clear change in the

dynamical exponent.
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Figure C.10: Skewness, kurtosis, and dynamical exponents as a function of initial imbalance
µ and anisotropy ∆. The heatmaps show interpolated numerical results, computed using 500
random initial states. The markers plotted on top of the background indicate our experimental
results and those of Ref. [171]. Our experimental values of skewness and kurtosis are averaged
over cycles 15 through 23, and the experimental dynamical exponents are fit to cycles 11
through 23. The background heatmaps are computed for the indicated values of θ, which,
except for θ = 0.17π and the ∆ = 1.59 experimental point, are not the same θ as used in the
experiments; the other experimental points use θ = 0.4π.
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C.3 Further experimental data

C.3.1 Dynamical exponent

In Fig. C.11, we plot both the experimentally observed and numerically simulated

dynamical exponents of the mean and the variance, as a function of the initial im-

balance, µ. At large µ, we find that the dynamical exponent is higher than the su-

perdiffusive value of 3/2. The observed values are consistent with Ref. [104], where

it was found that the dynamical exponent drifts from 3/2 at small initial imbalance

m to approximately 5/3 when m is about 1.
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Figure C.11: The dynamical exponent (A of the mean, and B of the variance) as
a function of the initial imbalance. The KPZ prediction in both cases is 3/2. The
dynamical exponents are extracted from fits over cycles 11-23 for the experiment and
11-18 for the simulation.
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C.3.2 Pure domain walls

In addition to the results presented in the main paper, we also studied the pure

domain wall, µ = ∞. This is a simpler experiment because it does not require

any averaging over initial states. It is also easier for classical simulations; TEBD

simulations converge at least to cycle 23, allowing us to check our experimental

results at later cycles than is possible at finite µ with the simulation techniques used

here. Experiment and simulation results are shown in Figure C.12. Our findings are

largely consistent with expectations (see Section 6.1 of [20] for a review). We observe

an absence of transport in the easy-axis regime (∆ > 1), with the observed transport

in the experiment consistent with amplitude damping and readout errors (see Figure

C.14). In the easy-plane regime (∆ < 1), we observe ballistic transport. In the

isotropic (∆ = 1) case, we observe transport with a dynamical exponent of about

5/3, consistent with the finding of Ref. [104] and differing from the 3/2 dynamical

exponent of KPZ. Figure C.13 compares the skewness and kurtosis at the isotropic

point with the KPZ predictions. While the skewness is close to the KPZ prediction,

it can be seen in the simulation results that it continues to increase above the KPZ

value. The kurtosis approaches the KPZ prediction, but it is not clear that it has

stopped increasing.
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Figure C.12: Experiment and simulation results for the pure domain wall initial state, µ =∞.
The three pairs of fSim angles shown are (θ, ϕ) = (0.4π, 0.8π) (orange squares), (θ, ϕ) =
(0.4π, 0.1π) (purple triangles), and (θ, ϕ) = (0.17π, 0.6π) (green circles). The simulation
results for cycles 19-23 are computed using TEBD.
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Figure C.13: Experiment and simulation results for the pure domain wall initial
state, µ =∞ with (θ, ϕ) = (0.4π, 0.8π), i.e. ∆ = 1. Horizontal dashed lines indicate
the KPZ prediction for a wedge-shaped initial state (see Table C.2). We show these
values for comparison only. The fact that the dynamical exponent is larger than 3/2
(see Fig. C.12C) already indicates the lack of KPZ scaling. Further, the skewness
continues to increase above the KPZ prediction.
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Figure C.14: Comparison of experimental results for the pure domain wall simulation
(µ =∞), (θ, ϕ) = (0.17π, 0.6π), ∆ = 1.6, with noiseless and noisy simulations. The
noisy simulations include only the effects of amplitude damping (T1) and readout
error, with T1 extracted from the measured algorithmic relaxation time and the
readout error rates benchmarked on the device. Compare with Figure C.5, which
shows similar results for µ = 0.5.
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Figure C.15: Sources of noise in the ∆ = 0.16, µ =∞ experiment. Similar to Figure
C.14 but for (θ, ϕ) = (0.4π, 0.1π). In this case, dephasing does have a noticeable
effect on the variance.
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C.4 The Kardar-Parisi-Zhang universality class

In 1985, Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang [86] set out to study

the general properties of stochastically growing interfaces, examples of which include

flame fronts and tumors. They abstracted these situations to a height function h(x⃗, t)

that obeys

∂h

∂t
= ν∇2h+

λ

2
(∇h)2 + η(x⃗, t), (C.12)

where η(x⃗, t), at each position and time, is an independent zero-mean Gaussian

random variable with variance proportional to a parameter D. This is the stochastic

Burgers equation for the slope ∇h. The ∇2h is a diffusive term, and the (∇h)2

is a nonlinearity. In general, an equation describing a growing interface may have

higher powers of the slope, such as (∇h)4, but these are irrelevant to the large-

scale physics in the renormalization group (RG) sense. Indeed, in 1+1 dimensions

(d = 1), the KPZ equation [Eq. (C.12)] has divergences that must be regularized,

e.g., by putting it on a spatial lattice or imposing a maximum cutoff wavenumber Λ

in Fourier space. Kardar Parisi, and Zhang considered an RG flow in which (1) high-

wavenumber modes are integrated out (Λ→ e−lΛ), (2) space and time are rescaled so

that the new smallest length scale is labeled by the same numerical value as the old

smallest length scale (x⃗ → e−lx⃗, t → e−zlt), and (3) the height function is rescaled

(h → e−(d+χ)lh). This procedure can be thought of as coarse graining and zooming

out, while changing units so that it appears as though the zoom-out did not occur.

Kardar, Parisi and Zhang showed that Eq. (C.12) is a fixed-point of this RG flow,

for specific choices of the scaling exponents and parameters. In 1+1 dimensions in
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particular, if z = 3/2, χ = 1/2, and λ2D/ν3 = 2, then Eq. (C.12) is invariant under

the rescaling and coarse graining procedure. Further, this fixed point is stable; if

λ2D/ν3 > 2, then it will flow down to 2 under the coarse graining. Conversely, if

λ2D/ν3 < 2, then it will flow up to 2.

Kardar, Parisi, and Zhang therefore proposed a new universality class (the KPZ

universality class) into which their equation falls. They conjectured that a variety of

other systems, such as ballistic deposition (e.g., snow falling and sticking together),

and the Eden model (a random growth model), are in this universality class, based

on scaling exponents observed in earlier numerical experiments [134, 54].

The KPZ equation and universality class have since been studied in great de-

tail. For example, Kurt Johansson [80] studied the asymmetric exclusion process,

a model in this universality class, for an initial state corresponding to a wedge-

shaped h(x, t = 0), and found that a quantity corresponding to the regularized

height function, 2h(0, t)− h(∞, t)− h(−∞, t), follows the Tracy-Widom (TW) dis-

tribution for the largest eigenvalue in the Gaussian Unitary Ensemble (GUE) at late

times. Prähofer and Spohn [138] generalized this result, using a mapping from the

polynuclear growth model, which is in the KPZ universality class, to random permu-

tations and from there to random Gaussian matrices to again identify the asymptotic

probability distribution of the regularized height function. The precise distribution

depends on the initial conditions, and there are three cases that are relevant for us:

(1) flat, meaning h(x, 0) = 0, (2) stationary, meaning that h(xi, 0) = h(xi−1, 0)+ηi,

where ηi is randomly ±1 with equal probabilities, and (3) wedge-shaped, meaning
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that h(x, 0) = −|x|/δ. The wedge-shaped initial condition leads to the same dis-

tribution as the curved initial condition studied by Prähofer and Spohn [69] and is

unaffected by nonzero variance in h(xi, 0), unlike the flat initial condition, which be-

comes the stationary initial condition with the addition of fluctuations. Prähofer and

Spohn found that the asymptotic probability distributions of the regularized height

function in these three cases are (1) GOE Tracy-Widom, (2) Baik-Rains, and (3)

GUE Tracy-Widom, in agreement with [80]. The corresponding values of skewness

and kurtosis are listed in Table C.2.

Spin chain initial state KPZ initial condition Asymptotic probability distribution Skewness Kurtosis

Flat GOE TW 0.294 0.165

µ = 0 Stationary Baik-Rains 0.359 0.289

µ > 0 Wedge GUE TW 0.224 0.093

Table C.2: Asymptotic probability distribution of the regularized KPZ height func-
tion [138], for the three initial conditions described in the text. The conjecture that
the Heisenberg spin chain is in the KPZ universality class implies that the asymptotic
transferred magnetization has the same distribution as the regularized KPZ height
function. Therefore, the conjecture predicts an asymptotic skewness of 0.359 and an
asymptotic kurtosis of 0.289 for the µ = 0 state. Note that although we included
µ > 0 in the first column, the infinite-time dynamics of the Heisenberg chain in this
case have been shown to be diffusive rather than KPZ [99, 64].

Prähofer and Spohn [137] further used the polynuclear growth model to solve for

the two point correlation correlation function,

C(x, t) = ⟨(h(x, t)− h(0, 0)− t⟨∂th⟩)⟩ , (C.13)

assuming stationary initial conditions, which imply that C(x, 0) = D
ν
|x|. The slope-

slope correlation function can then be obtained as

⟨∂xh(0, 0)∂xh(x, t)⟩ =
1

2
∂2xC(x, t). (C.14)
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C(x, t) takes the form

C(x, t) = t2/3g
(
const · x/t2/3

)
, (C.15)

where g(y) is a universal scaling function. Defining the scaling function f(y) =

1
4
g′′(y), which is proportional to the slope-slope correlation function, Prähofer and

Spohn obtained exact numerical solutions for f(y), which they found to behave as

f(y) ∼ e−0.295|y|3 for large y, falling off faster than a Gaussian.

Evidence for anomalous transport in the Heisenberg spin chain at nonzero tem-

perature was first found in the late 1990s. Sachdev and Damle [145, 39] explained

diffusive (z = 2) nonzero-temperature transport in the easy-axis (∆ > 1) XXZ

model even though quasiparticles propagate ballistically, whereas other works [183,

139] found ballistic (z = 1) behavior at finite temperature in the easy-plane (∆ < 1)

regime, suggesting anomalous transport at ∆ = 1.

The first numerical evidence for anomalous transport in the infinite-temperature

∆ = 1 Heisenberg spin chain was provided in 2011 by Ref. [169]. The z = 3/2

exponent was demonstrated numerically in 2017 [104], in partially polarized domain

wall initial states similar to those studied in our work, which approach the infinite-

temperature state as µ→ 0. The 3/2 exponent alone was not enough for the authors

to propose that the Heisenberg spin chain is in the KPZ universality class, as it

could have other explanations. In 2019 [106], however, they found numerically, for

both the continuous-time Heisenberg model and the Floquet version studied here,

that the two-point spin-spin correlation function at infinite temperature precisely

matched the KPZ prediction for the slope-slope correlation function, Eq. (C.14),
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including the deviations from Gaussian at the tails. They therefore proposed that the

infinite-temperature spin-1/2 Heisenberg model is in the KPZ universality class, with

σz
i ↔ ∂xh(xi), and that the infinite-temperature initial condition on the spin chain

side corresponds to the stationary initial state (see Table C.1) on the KPZ side. In

their work, they used the finite-µ domain wall states studied here as a computational

tool for obtaining the two-point correlation function at infinite temperature.

A number of works have proposed theoretical explanations for the observed z =

3/2 dynamical exponent in the Heisenberg spin chain (e.g., [77, 62, 41, 63, 21, 43],

see [20] for a review). The picture that emerges from these theoretical explanations

is that the z = 3/2 dynamical exponent and the two-point correlation function are

universal for 1D integrable quantum systems with a non-Abelian global symmetry

[77, 43, 178], which, in the spin-1/2 Heisenberg model, is SU(2).

The z = 3/2 dynamical exponent has also been observed in several experiments

[171, 150, 88]. Ref. [171], for example, studied the transferred magnetization, which,

assuming σz ↔ ∂xh, corresponds to 2h(0, t) − h(∞, t) − h(−∞, t) for domain-wall

initial states with several initial imbalances µ. They confirmed the KPZ predictions

that the mean and variance of the transferred magnetization both grow as t2/3.

They also measured the skewness which, in a nonzero-µ domain wall initial state,

is expected to asymptote to 0.2241 (see Table C.2). They measured 0.33 ± 0.08,

where the uncertainty is one standard deviation, a result consistent with the KPZ

prediction. They also confirmed that breaking either integrability or SU(2) symmetry

causes the dynamics to become either ballistic (z = 1) or diffusive (z = 2). However,
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they measured the skewness for a domain wall with a very large initial imbalance

(µ = 1.5), whereas the KPZ dynamics are expected to emerge at small µ.

However, there is a problem with the conjecture that the infinite-temperature

(µ = 0) Heisenberg model is in the KPZ universality class. As Refs. [99, 123] point

out, the probability distribution of the transferred magentization in this state must

be symmetric; excitations are just as likely to move from the right side of the chain

to the left as from the left to the right. Therefore, all of the odd moments of this

distribution must be zero. This differs from the Baik-Rains distribution, which has

a nonzero skewness of 0.359 [138]; see Table C.2.

If one reversed the order of limits, first taking t → ∞ and then µ → 0, the

resulting transferred magnetization distribution may be skewed because even an in-

finitesimal domain wall breaks the mirror symmetry of the µ = 0 state. However,

this does not resolve the issue because the late-time behavior at nonzero µ has been

shown to be diffusive rather than KPZ [99, 64]. Ref. [21] would suggest otherwise,

namely, that KPZ dynamics emerge even for µ > 0. In that work, the Heisenberg

spin chain is coarse-grained and the global SU(2) symmetry is promoted to a gauge

symmetry, with a dynamical gauge field specifying the direction of the local Bethe

vacuum in each lattice cell. A long-wavelength torsional mode of the gauge field is

shown to obey a stochastic Burgers equation when the quasiparticle occupancy is

uniform across cells, a condition that also holds for the µ > 0 domain-wall states.

However, this work does not connect the dynamics of the torsional mode with the

dynamics of σz
i , the variable that is has been observed to play the role of ∂xh. A
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summary of the different regimes discussed here and ways in which they differ from

the KPZ universality class is shown in Table C.3.

There are other ways of taking the limit, illustrated in Fig. C.16. So far, we

have considered taking µ → 0 first (purple line) or t → ∞ first (red line), neither

of which can result in KPZ dynamics. Taking a simultaneous limit can avoid these

theoretical arguments. In particular, diffusive dynamics are expected to emerge at a

time that scales as 1/µ3 [64]. Therefore, if t is scaled with µ in such a way that it

remains less than 1/µ3, for infinitesimal µ, but still approaches infinity, the theoretical

arguments against KPZ are avoided and the experiment has a chance of providing

new information. In Fig. C.16, the orange curve, µ ∼ t−1/3 indicates the threshold for

diffusive dynamics; any curve approaching the origin that remains above the orange

curve will result in diffusion. The purple curve results in symmetrically-distributed

transferred magnetization, unlike the KPZ prediction, which is skewed. The green

curve is an example of a way of taking the limit that is not ruled out theoretically.

Although there is no prior theoretical motivation for taking the limit in any order

other than µ → 0 first, the collapsing behavior observed in Fig. C.9 suggests that

the skewness may be a function of µt2/3, which is constant along the µ ∼ t−2/3 curve.

Further, from Fig. C.9 and Fig. 3 of the main text, if µt2/3 is fixed to a large number

(at least about 10), the skewness appears to be consistent with that of the TW

GUE probability distribution. However, we experimentally find a kurtosis of about

−0.05± 0.02 (Fig. 3 of the main text and Fig. C.9), inconsistent with the TW GUE

kurtosis of 0.09. This rules out KPZ dynamics on the timescale of the experiment.

It does not rule out KPZ dynamics at much later times, but we do not see evidence
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for these dynamics either.

Therefore, the challenge is to explain why the dynamical exponent and two-

point correlation function, at infinite temperature, look like KPZ, universally across

integrable 1D quantum systems with a global non-Abelian symmetry, and yet other

observables, such as the skewness of transferred magnetization when µ = 0, differ.

In response to this challenge, Refs. [99, 98] proposed and studied a classical Landau-

Lifshitz (CLL) model and Refs. [21, 123] a non-linear fluctuating hydrodynamics

(NLFH) model. Both systems predict a symmetric distribution for the transferred

magnetization. CLL predicts an excess kurtosis close to 0, whereas NLFH model

predicts 0.14. Although CLL agrees nicely with the findings reported in this work,

it is an example of another system with similar behavior rather than an explanation

of why these features should appear in the Heisenberg spin chain.
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SU(2)? Dynamical exponent Skewness in Heisenberg Skewness in KPZ Universality of Heisenberg

h(x, t = 0) p (M) S

µ = ∞ (pure DW),

t finite
No

Source z

Numerics [104, 105] 5/3

Fig. C.12C 5/3

∼ 0.3 (Fig. C.13A) Wedge TW GUE 0.224
KPZ not conjectured:

t finite, SU(2) broken

µ = ∞, t → ∞ No
log-enhanced diffusion

(z = 2) [117, 156]
Wedge TW GUE 0.224

KPZ not conjectured:

SU(2) broken

µ finite, t finite No

Source µ z

Ref. [171] 0.22 1.54

Ref. [171] 1.5 1.49

Ref. [171] 1.8 1.45

Fig. C.11, sim 0.5 1.49

Fig. C.11, exp 0.5 1.59

Fig. C.11, sim 1.0 1.59

Fig. C.11, exp 1.0 1.75

Ref. [171] (µ = 1.5): 0.3

This work: function of µt2/3

Consistent with Ref. [171].

Wedge TW GUE 0.224
KPZ not conjectured:

t finite, SU(2) broken

t → ∞, then µ → 0 Subtle∗

Source z

Numerics [99] 2

Theory [64] 2

Consistent with 0.224

(Figs 3, C.9 with µt2/3 → ∞)
Wedge TW GUE 0.224 Not KPZ: Wrong z

µ = 0 (∞-temp state),

t → ∞
(µ → 0, then t → ∞)

Yes

Source 1/(2β)

Numerics [104, 106] 3/2

Theory [77, 62, 41, 63, 21, 43] 3/2

Fig. C.11B, sim 1.4

Fig. C.11B, exp 1.6

Zero by symmetry Stationary Baik-Rains 0.359 Not KPZ: Wrong S

Table C.3: Regimes of the 1D spin-1/2 Heisenberg model, starting in µ-parametrized domain wall states
(Eq. 3 of the main text). From the left, the first column indicates the regime, i.e., the initial imbalance µ
and the time t. The second column indicates whether the initial state is SU(2)-symmetric. The third column
lists the dynamical exponent in this regime. The fourth column indicates the skewness of the transferred
magnetization. Column 5 shows the corresponding initial condition of the KPZ height function, assuming that
σz ∼ ∂xh. Column 6 states the asymptotic probability distribution of the regularized KPZ height function
for the given initial condition (see Table C.2); the regularized height function corresponds to the transferred
magnetization if σz ∼ ∂xh. The seventh column states the skewness of the probability distribution in the sixth
column (see Table C.2). Finally, the eighth column lists reasons why the particular case is not in the KPZ
universality class. In the second-to-last row, “subtle” refers to the fact that a state with infinitesimal µ breaks
the SU(2) symmetry by an infinitesimal amount. Such states would be appropriate for studying spontaneous
symmetry breaking, where the symmetry might be broken by an infinitesimal external field.
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0 1/t
0

KPZ?

first, t

second,
0

first,
0

second, t

t 2/3

t 1/3

Figure C.16: Different ways of taking the limits t→∞ and µ→ 0, i.e. of approach-
ing the point where KPZ is conjectured. Taking the limit along any curve above
the orange curve results in diffusive dynamics [64]. This includes the red curve,
which corresponds to taking time to infinity first. The purple curve results in a
symmetrically-distributed transferred magnetization, differing from the KPZ predic-
tion, which is skewed [123, 98, 99]. The green curve shows an example of a way to
take the limits simultaneously. Although this way could exhibit a skewness and a
dynamical exponent consistent with KPZ, its predicted kurtosis disagrees with our
observations for the times considered in our experiment.
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C.5 Unifying fSim conventions

C.5.1 Placement of the phase angle

In our work, we use the following definition of the fSim gate:

UfSim =



1 0 0 0

0 cos(θ) i sin(θ) 0

0 i sin(θ) cos(θ) 0

0 0 0 e−iϕ


, (C.16)

which is a fully general number-conserving two-qubit gate up to single-qubit Z rota-

tions. Another natural choice would be to split the phase between the |00⟩ and |11⟩

states:

U ′
fSim =



e−iϕ/2 0 0 0

0 cos(θ) i sin(θ) 0

0 i sin(θ) cos(θ) 0

0 0 0 e−iϕ/2


. (C.17)

This latter definition, which is more directly related to the trotterized Heisenberg

Hamiltonian, is related to ours by

U ′
fSim = e−iσz

1ϕ/4e−iσz
2ϕ/4UfSim = UfSime

−iσz
1ϕ/4e−iσz

2ϕ/4. (C.18)

It is not immediately obvious that our experiment is insensitive to whether we use

UfSim or U ′
fSim, but this turns out to be the case. The transferred magnetization is

independent of whether one uses U ′
fSim or UfSim as long as the number of cycles t
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is at most NQ/2. We verified this similarly to how we verified that the transferred

magnetization is independent of NQ as long as t ≤ NQ/2 in Table C.1. For example,

with µ = 0.5, and (θ, ϕ) = (0.4π, 0.8π), a density matrix simulation on four qubits

gives a kurtosis after two cycles of −0.30867052, to this many digits, regardless

of whether one uses UfSim or U ′
fSim, and an 8-qubit simulation gives a kurtosis of

−0.12588028 at cycle 4 regardless of which fSim gate one uses. The choice matters

starting at cycle NQ/2+1, but we are not interested in times past NQ/2 because we

have already seen (Table C.1) that finite size effects appear there.

Similarly, the transferred magnetization is unchanged, even past time NQ/2, un-

der either θ → −θ or ϕ→ −ϕ.

C.5.2 Comparison to the η, λ parameterization

Following Ref. [107], it can be shown that Floquet application of the gate unitary,

1 0 0 0

0 sin η
sin(λ+η)

sinλ
sin(λ+η)

0

0 sinλ
sin(λ+η)

sin η
sin(λ+η)

0

0 0 0 1


, (C.19)

gives the desired Heisenberg Hamiltonian evolution with ∆ = cos(η) in the limit

λ → 0. Here, λ is imaginary and η is real in the gapless (∆ < 1) regime, while λ

is real and η is imaginary in the gapped (∆ > 1) regime. We will here consider the

latter case; however, a similar derivation applies for ∆ < 1 as well.
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Setting this equal to eiϕ/2U ′
fSim (Eq. C.17), we require that:

ieiϕ/2 sin(θ) =
sinλ

sin(λ+ η)
(C.20)

Comparing the magnitudes and phases of the two sides of this equation, one finds,

respectively:

tan2(θ) = −sin2(λ)

sin2(η)
,

tan

(
ϕ

2

)
=
i tan(λ)

tan(η)
.

(C.21)

Eliminating λ and using ∆ = cos(η), we have:

∆2 tan2(θ) = tan2(ϕ/2)
(
1 + (1−∆2) tan2(θ)

)
, (C.22)

∆ =
sin(ϕ/2)

sin(θ)
(C.23)
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[10] Tomislav Begušić and Garnet Kin-Lic Chan. Fast classical simulation of evi-

dence for the utility of quantum computing before fault tolerance. 2023. arXiv:

2306.16372 [quant-ph].

[11] Ewout van den Berg, Zlatko K. Minev, and Kristan Temme. “Model-free

readout-error mitigation for quantum expectation values”. In: Physical Review

A 105.3 (2022). doi: 10.1103/physreva.105.032620.

[12] Ewout van den Berg et al. “Probabilistic error cancellation with sparse Pauli–

Lindblad models on noisy quantum processors”. In: Nature Physics (2023).

doi: 10.1038/s41567-023-02042-2.

[13] B. Bertini et al. “Transport in Out-of-Equilibrium XXZ Chains: Exact Pro-

files of Charges and Currents”. In: Physical Review Letters 117 (20 2016),

p. 207201. doi: 10.1103/PhysRevLett.117.207201.

[14] H. Bethe. “Zur Theorie der Metalle”. In: Zeitschrift für Physik 71.3 (1931),

pp. 205–226. doi: 10.1007/BF01341708.

187

https://doi.org/10.1021/acs.chemrev.9b00829
https://doi.org/10.1103/physrevb.100.094434
https://arxiv.org/abs/2306.16372
https://doi.org/10.1103/physreva.105.032620
https://doi.org/10.1038/s41567-023-02042-2
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1007/BF01341708


[15] Sergio Boixo et al. “Characterizing quantum supremacy in near-term devices”.

In: Nature Physics 14.6 (2018), pp. 595–600. doi: 10.1038/s41567-018-

0124-x.

[16] Sergey Bravyi et al. “Mitigating measurement errors in multiqubit exper-

iments”. In: Physical Review A 103 (4 2021), p. 042605. doi: 10 . 1103 /

PhysRevA.103.042605.

[17] Sergey B. Bravyi and Alexei Yu. Kitaev. “Fermionic Quantum Computation”.

In: Annals of Physics 298.1 (2002), 210–226. doi: 10.1006/aphy.2002.6254.

[18] Adam R. Brown et al. “Quantum Gravity in the Lab. I. Teleportation by Size

and Traversable Wormholes”. In: PRX Quantum 4 (1 2023), p. 010320. doi:

10.1103/PRXQuantum.4.010320.
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