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Computing with analog physical systems, including optical ones, has experi-

enced a reawakening in recent years, driven by the rapid expansion of artificial

intelligence. As the size of deep neural networks continues to grow, there is an

increasing demand for more efficient computation methods. Neural-network

computations inherently tolerate lower precision in individual steps, particu-

larly when optimized for certain tasks, making low-precision analog comput-

ing a viable alternative to universal digital electronic computers. Unlike well-

calibrated digital electronic devices, analog physical computing may offer more

uncertainty, especially when operated at low power, but leverages inherent

physical processes to achieve more efficient computation.

In this thesis, I summarize some of my Ph.D. work that explored energy-

efficient computation through optical systems. Initially, we constructed a large-

scale optical setup capable of performing linear operations with large vector

sizes. This setup features substantial spatial parallelism, leveraging the op-

tical energy advantage in computation and making many optical computing

tasks experimentally feasible. Using this setup, we demonstrated an ultra-low-

optical-energy implementation of optical neural networks, previously only pre-

dicted in theory. We also examined the energy scaling advantages for state-

of-the-art large deep learning models, ensuring an asymptotic overall energy

consumption advantage for very large models.



We then ventured beyond the scope of conventional optical computing. We

investigated technologies to generate, control, and detect highly multimode

quantum states, preparing to exploit their extensive quantum features for com-

putational and sensing innovations. We also explored integrating inherent

stochastic physical processes into neural network modeling, achieving signif-

icant performance gains with minimal physical resources. Additionally, we

studied how this method can benefit image sensing problems under very re-

stricted detection energy. These explorations further advance the potential for

efficient computation utilizing low-power stochastic physical systems.



BIOGRAPHICAL SKETCH

In 1996, Shi-Yuan Ma was born in Lu’An, Anhui, China, his hometown. In 2014,

he decided to major in physics. In 2018, he received his B.S. degree in Physics

from University of Science and Technology of China, with a minor in Computer

Science. Also in 2018, he joined the Applied Physics Ph.D. program at Cornell

University. In 2019, he joined Professor Peter McMahon’s group just as it was

taking off at Cornell.

iii



To all Cornell students, Finger Lakes, my family and friends.

iv



ACKNOWLEDGEMENTS

First of all, a huge thanks to my advisor, Professor Peter McMahon, and

the co-founders of the McMahon Lab: Professor Tatsuhiro Onodera, Professor

Logan Wright, and Professor Tianyu Wang, who have all gone on to become

professors themselves now. I feel that the McMahon Lab mindset, such as the

research tastes and way of thinking, has seeped into me over the ∼1800 days,

and will be a permanent part of who I am for the rest of my life.

Peter has always been there for me, offering help and never turning things

down. Honestly, I feel so lucky to have him as my advisor. Thanks to him, I

fell in love in these amazing research directions, which are largely reflected in

this thesis. Without his unwavering support, I wouldn’t have rediscovered my

passion for research and kept it alive till now, and hopefully forever. Hiro is

always available to provide suggestions. He’s super nice and warm-hearted,

always sharing useful views and life experiences. When I first met him, I saw

him as a fellow student, only to gradually realize how experienced and senior

he is. He’s really a cool guy. Logan is truly someone I look up to. He really is

the image of the ideal researcher in my mind. Or more accurately, he made me

realize that image. Throughout the years, there were many times I felt, ”Wow,

Logan did that. I would probably do the same if I were in that position,” and

he’s just there, being himself. Just like a distant, joyful beacon, even if I only

look up and see it occasionally, that glance always makes the current path more

enjoyable, no matter if I end up reaching that light or not. For Tianyu, it’s really

hard to find the proper words to describe his all-encompassing influence on

me. Maybe it’s just like the air. I’ll always proudly be his apprentice in my

career. If I’m lucky enough to achieve anything good in my research journey,

I’ll largely owe that to him, who nurtured me in my early years when I knew

v



basically nothing, like water and soil for a little seed. His relentless drive for

greatness, his extreme perfectionism about some things (like what makes a good

researcher) and wise pragmatism about some other things (like what needs to

be done today), make his character in my mind incredibly rich, and admirable.

Besides, I really appreciate the chats and discussions with my fellow lab-

mates, which I believe are the heart and soul of research. Genuine thanks to my

dear colleagues and friends Jeremie Laydevant, Alen Senanian, Sridhar Prabhu,

Vladimir Kremenetski, Mandar Sohoni, Ben Malia, Valeria Cimini, Ryo Yanagi-

moto, Maxwell Anderson, Fan Wu, Saeed Khan, Federico Presutti, Martin Stein,

and Ruomin Zhu for all the enjoyable and insightful discussions. As I wrote

each name, countless memories surfaced. I’ll keep those with me now rather

than try to squeeze them into words here. I also want to give special thanks to

Professor Zheshen Zhang, whose research I had admired for years before finally

meeting him at my first major conference. His generous treatment—engaging

discussions, taking me for a tour, sharing invaluable life advice—left me incred-

ibly flattered and greatly reignited my passion for research in the later years of

my Ph.D. journey.

In the end, it might be worth noting that the one who completed this dis-

sertation is also the one who is about to conclude a six-year idyllic country life

in the village of Ithaca. In this context, very briefly, I thank everything, includ-

ing but not limited to the snow, stars, water, trees, and bumpy roads in upstate

New York, and everyone, which and who have accompanied me for some pe-

riod during this beautiful once-in-a-lifetime journey, which I will look back on

and feel melancholy about at some point in the future.

vi



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 1
1.1 Optical Computing for Artificial Intelligence . . . . . . . . . . . . 1
1.2 Energy Scaling of Optical Neural Networks . . . . . . . . . . . . . 3
1.3 The Problem of Low Precision in Analog Computing . . . . . . . 4
1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background Information 8
2.1 Neural-Network Computation . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Layer Structure . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Training Process . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Inference Process . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Common Architectures . . . . . . . . . . . . . . . . . . . . 17

2.2 Optical Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Existing Optical Neural Network Platforms . . . . . . . . . 29

2.3 Gaussian Quantum Optics . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Fundamentals of Quantum Optics . . . . . . . . . . . . . . 31
2.3.2 Gaussian States and Operations . . . . . . . . . . . . . . . 33

3 A Large-Scale Free-Space Optical Matrix-Vector Multiplier 36
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Properties of the OLED Display . . . . . . . . . . . . . . . 43
3.3.2 Intensity Modulation with a Phase-Only SLM . . . . . . . 45
3.3.3 Characterization of the Photodetector . . . . . . . . . . . . 46

3.4 System Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1 Alignment of the Optical Imaging System . . . . . . . . . . 50
3.4.2 Correction of Optical Vignette . . . . . . . . . . . . . . . . 53
3.4.3 Pixel Walk-Off and Crosstalk due to Imaging Imperfections 54
3.4.4 System Noise Characteristics . . . . . . . . . . . . . . . . . 57

3.5 Vector-Vector Dot Product Accuracy . . . . . . . . . . . . . . . . . 60
3.5.1 Computing Dot Products Using Incoherent Light . . . . . 64
3.5.2 Characterization of Dot Product Accuracy with Varying

Photon Budget . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Optical Fan-In and Detection Energy Consumption . . . . . . . . 71
3.7 Comparison to the Stanford Matrix-Vector Multiplier . . . . . . . 77

vii



4 Noise-resilient Optical Neural Networks Using < 1 Photon per Multi-
plication 82
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Large-scale Optical Matrix-Vector Multiplication . . . . . . . . . . 83
4.3 ONN Using Sub-Photon Multiplications . . . . . . . . . . . . . . . 87
4.4 Training Protocol of Noise Resilient Optical Neural Networks . . 90
4.5 Workflow for Running Optical Neural Networks for Inference . . 92
4.6 Energy Efficiency of the Optical Neural Network . . . . . . . . . . 95
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Optical transformers 106
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1.1 Optical Neural Network Energy Calculation . . . . . . . . 109
5.1.2 Quantization of Large Language Models (LLMs) . . . . . . 111

5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3 Optical Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Architecture and Task . . . . . . . . . . . . . . . . . . . . . 115
5.3.2 Transformer Computations on Optical Hardware . . . . . 115
5.3.3 Simulation of Optical Hardware . . . . . . . . . . . . . . . 116

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.4.1 Transformer Error Tolerance and Simulation Accuracy . . 119
5.4.2 Optical Scaling Laws . . . . . . . . . . . . . . . . . . . . . . 119
5.4.3 Estimated Energy Usage . . . . . . . . . . . . . . . . . . . . 122

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 127

6 Multimode Photon Counting for Quantum Optical States 130
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1.1 Theory of EMCCD Camera Statistics . . . . . . . . . . . . . 133
6.1.2 Photon Statistics in Multimode Gaussian Quantum Optics 136
6.1.3 Coincidence Detection . . . . . . . . . . . . . . . . . . . . . 153

6.2 Highly Multimode Single-Photon Spectrometer . . . . . . . . . . . 159
6.2.1 Spectrometer Design . . . . . . . . . . . . . . . . . . . . . . 160
6.2.2 Imaging Resolution . . . . . . . . . . . . . . . . . . . . . . . 162
6.2.3 Evaluation of the EMCCD Camera . . . . . . . . . . . . . . 163
6.2.4 Spectrometer POVM and Spectral Discretization . . . . . . 165
6.2.5 Multimode Quantum State Sampling . . . . . . . . . . . . 166
6.2.6 Validation of Photon-Counting Cameras for Quantum

Advantage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3 Highly Multimode Visible Squeezed Light with Programmable

Spectral Correlations Through Broadband Up-Conversion . . . . 170
6.3.1 Background and Overview . . . . . . . . . . . . . . . . . . 170
6.3.2 Upconversion as a Unitary Transformation . . . . . . . . . 173
6.3.3 Influence of Pump Shape on Frequency Conversion . . . . 174

viii



6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7 Quantum-Limited Stochastic Optical Neural Networks Operating at a
Few Quanta per Activation 183
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.2 Physics-Aware Probabilistic Modeling . . . . . . . . . . . . . . . . 187

7.2.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.2.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.3 Numerial Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.3.1 Incoherent Setup for MNIST Classification . . . . . . . . . 191
7.3.2 Coherent Setup with More Complex Architecture . . . . . 198
7.3.3 Additional Classification Tasks . . . . . . . . . . . . . . . . 207

7.4 Experimental Implementation . . . . . . . . . . . . . . . . . . . . . 209
7.4.1 Calibration of the Setup . . . . . . . . . . . . . . . . . . . . 213
7.4.2 Adaptation to Experimental Limitations . . . . . . . . . . . 218
7.4.3 Optical Implementation of the SPD Activations . . . . . . 221
7.4.4 Full-Optical Implementation . . . . . . . . . . . . . . . . . 231

7.5 Additional Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
7.5.1 Robustness to Experimental Errors . . . . . . . . . . . . . . 240
7.5.2 Noise Resilience Compared to Conventional Models . . . 242
7.5.3 Distribution of Expectation Values of SPD Activations . . 245

7.6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . 248

8 Image Sensing with Ultra-Low Optical Energy 251
8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

8.1.1 Compressive Sensing and Single-Pixel Imaging . . . . . . 251
8.1.2 Image Classification with Pattern Illumination . . . . . . . 253
8.1.3 Image Sensing with Limited Optical Energy . . . . . . . . 254
8.1.4 Direct Imaging vs. Image Sensing under Restricted Opti-

cal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
8.2 Task-Specific Incoherent Image Sensing Using Single-Photon De-

tectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
8.2.1 Incoherent Single-Photon Detection (SPD) Neural Sensors 257
8.2.2 Pattern Multiplexing Schemes . . . . . . . . . . . . . . . . 259
8.2.3 Estimation of Optical Energy Budgets . . . . . . . . . . . . 260
8.2.4 Direct Imaging with Set Detected Optical Energy . . . . . 263
8.2.5 Performance Comparison . . . . . . . . . . . . . . . . . . . 264

8.3 Real-Time Sensing of Moving Objects . . . . . . . . . . . . . . . . 267
8.3.1 Constant Illumination Field . . . . . . . . . . . . . . . . . . 268
8.3.2 Continuous Data Collection . . . . . . . . . . . . . . . . . . 268
8.3.3 Demonstration of Real-Time Sensing . . . . . . . . . . . . . 269

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

ix



9 Future Directions 273
9.1 On-Chip Implementation . . . . . . . . . . . . . . . . . . . . . . . 273
9.2 Beyond the Current Capability . . . . . . . . . . . . . . . . . . . . 274
9.3 Fast All-Physical Computing Systems . . . . . . . . . . . . . . . . 274
9.4 Hardware-Software Co-Optimization of Physical Systems . . . . 275
9.5 Optical Quantum Sensing Using Optimized Systems . . . . . . . 277
9.6 Quantum Machine Learning Using Highly-Correlated Quantum

Optical States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

A Modeling of SPDNNs 279
A.1 SPDNNs with Incoherent Optical Setups . . . . . . . . . . . . . . 281
A.2 SPDNNs with Coherent Optical Setups . . . . . . . . . . . . . . . 286

B Example Python Code 289
B.1 Source Code for SPD Activation Functions . . . . . . . . . . . . . 289
B.2 Example Code for Different SPDNN Architechture . . . . . . . . . 292

Bibliography 297

x



CHAPTER 1

INTRODUCTION

Much of the content are adapted from the work presented in Refs. [1, 2, 3, 4].

1.1 Optical Computing for Artificial Intelligence

The development and widespread use of very large neural networks for artifi-

cial intelligence [5, 6, 7] has motivated the exploration of alternative computing

paradigms—including analog processing—in the hope of improving both en-

ergy efficiency and speed [8, 9]. The widespread commercial implementation

of increasingly complex deep neural networks (DNNs) has resulted in rapid

growth in the total energy consumption of machine learning, and in large-scale

deployments, 80-90% of the cost is for inference processing [10]. The rate at

which the energy requirements for state-of-the-art DNNs is growing is unsus-

tainable and urgently needs to be addressed [7]. Both software and hardware

advances are important for reducing energy consumption: DNN models (the

software) can be made more efficient [7], and hardware for executing DNN

models can be made more efficient, by specializing the hardware to the type

of computations involved in DNN processing [11].

Optical implementations of neural networks using analog optical systems

have experienced a resurgence of interest over the past several years [12, 13,

14, 15, 16, 17, 18, 1, 19, 20, 21, 22]. They have been proposed as deep-learning

accelerators that can in principle achieve better energy efficiency and lower la-

tency than electronic processors [23, 15, 24, 25, 26]. For deep learning, optical
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processors’ main proposed role is to implement matrix-vector multiplications

[12, 13], which are typically the most computationally-intensive operations in

DNNs [11].

ADC Memory
ADC Memory

DACDACMemoryMemory

Light sources
/modulators

Optical 
fan-out

Element-wise 
modulation

Memory

Digitization Results 
readoutDetectors

Memory DAC

Fetch 
inputs

Optical 
fan-in

Encode 
inputs

ADC Memory

Amplification
(optional)

Metal wire
Optical transmission

𝑁 input units 𝑁′ output units

Figure 1.1: System block diagram of an integrated optical matrix-vector
multiplier.

Theory and simulations have suggested that optical neural networks

(ONNs) built using optical matrix-vector multipliers (Figure 1.1) can exhibit ex-

treme energy efficiency surpassing even that of irreversible digital computers

operating at the fundamental thermodynamic limit [24]. In order to achieve an

energy advantage, an optical matrix-vector multiplier needs massively parallel ex-

ecution of the scalar multiplications and additions that constitute a matrix-vector

multiplication [25] (we will build one in Chapter 3). It has been predicted that

for sufficiently large vector sizes, matrix-vector multiplication can be performed

with an optical energy cost of less than 1 photon per scalar multiplication, as-

suming the standard quantum limit for noise [24] (we will demonstrate in Chap-

ter 4).
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1.2 Energy Scaling of Optical Neural Networks

Deep learning models’ exponentially increasing scale is both a key driver in ad-

vancing the state-of-the-art and a cause of growing concern about their energy

usage, speed, and practicality. This has led to the development of hardware ac-

celerators and model training/compression/design techniques for efficient and

fast inference on them. Because they still perform all the underlying opera-

tions using the same physical mechanisms, most digital-electronic accelerators

[27, 28, 29, 30, 31] can improve performance by constant factors. While these

may be large factors, they do not change the way costs scale with model com-

pute requirements.

Analog accelerators can be different from digital ones in that the energy cost

of performing computations may fundamentally scale differently than digital

systems. For example, in optics or analog-electronic crossbar arrays, a common

heuristic is that the energy of a matrix-vector product scales linearly with vector

size, rather than the ∼ d2 of digital systems (assuming all dimensions are ∼ d).

This is a key intuition for why alternative analog computing platforms using

optics have been proposed as a new paradigm for better scalability [32, 26, 15,

25, 33, 34, 23]. Ideally, the scaling is asymptotically better than digital systems in

energy per MAC [24, 1, 21, 25]. This is because in existing digital systems there

must be some amount of energy paid per element-wise multiplication, which

does not change with the number of multiplications, so the power must scale

proportionally to the number of MACs (if other overheads are ignored) [24]. By

contrast, the multiplication in optics may be free; the energy cost is in encoding

the data with enough photons such that the output signal-to-noise (SNR) is high

enough for the final answer, regardless of operand size.
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However, these optical neural networks (ONNs) have additional complexi-

ties and limitations of their own such as low precision, noise, and analog/digital

data conversion overheads which depend on the access patterns of the model

running. Thus, advantageously accelerating any neural network architecture

with ONNs is in practice hard, and DNNs without the necessary activation

statistics and model architecture may not achieve this scaling.

1.3 The Problem of Low Precision in Analog Computing

Compared to their digital counterparts, analog processors—including those

constructed using optics—inevitably suffer from noise and often face issues

with imperfect calibration and drift. These imperfections can degrade the accu-

racy of neural network inference performed using such systems [12, 35, 36, 37].

To mitigate the impact of noise, various noise-aware training schemes have been

developed [38, 39, 40, 41, 42, 43, 44, 45]. These schemes treat the noise as a rel-

atively small perturbation to an otherwise deterministic computation, either by

explicitly modeling the noise as the addition of random variables to the proces-

sor’s output or by modeling the processor as having finite bit precision. Noise-

aware training is essential for the successful implementation of analog neural

networks, as the models need to be resilient to the noise and errors inherent in

practical analog devices (e.g., the projects discussed in Chapters 4 and 5).

The work discussed in Chapter 4 [1], along with another study published

shortly after [21], demonstrates state-of-the-art ultra-low optical energy usage

in optical neural networks (ONNs). These efforts have achieved notable results

by using merely hundreds to thousands of photons (SNR ≲ 102) to represent

4



the neuron pre-activation signal prior to photodetection (or equivalently, <1

photon per MAC), facilitated by neural network models specifically trained to

enhance noise robustness. However, they were still in this regime where noise is

a small perturbation. More typically, millions of photons per activation are used

to achieve a sufficient SNR for reliable outcomes [17, 18, 21, 46].

Such demonstrations encounter significant difficulties if each photodetector

receives only a few photons, as the uncertainty in highly stochastic activations

becomes comparable to the signal itself (SNR ∼ 1), making noise mitigation

challenging. In this extreme scenario, these highly stochastic neuron activations

can no longer be regarded as essentially deterministic signals with superim-

posed noise. This situation appears to violate fundamental principles of com-

putation. However, by leveraging recent innovations in machine learning mod-

eling techniques, this seemingly insurmountable challenge can be addressed, as

we will discuss in Chapter 7.

1.4 Outline of the Thesis

The outline of the thesis is as follows:

In Chapter 2, I provide some background information about neural-network

computation, optical neural networks and Gaussian quantum optics.

In Chapter 3, we introduce a large-scale optical matrix-vector multiplier

setup. This setup can perform dot product operations on vectors of up to ap-

proximately half a million elements, thereby leveraging the optical energy ad-

vantage through substantial parallel execution [25].
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In Chapter 4, we demonstrate an optical neural network (ONN) using less

than one photon per multiply-accumulate (MAC) operation while achieving

over 90% test accuracy on MNIST classification. This work marks the first exper-

imental implementation of this kind, previously only proposed in theory [24].

The success is attributed to a neural network model trained to be noise-resilient.

While Chapter 4 primarily focuses on optical energy, Chapter 5 expands the

discussion to the overall energy consumption of the entire system, including

both optical and electrical components. We explore the optical implementa-

tion of state-of-the-art large-scale artificial intelligence models and project an

asymptotic overall energy advantage, attributed to the distinct energy scaling

properties of optical systems compared to digital electrical devices.

In Chapter 6, we introduce a highly multimode spectrometer enabled by

parallel single-photon detection, useful for efficiently detecting weak classical

or quantum optical signals. This capability is achieved through careful calibra-

tion of photon-counting cameras and system optimization tailored to specific

quantum optical applications.

In Chapter 7, we present an innovative approach to ONN modeling that dif-

fers from all previous implementations, called physics-aware probablistic modeling.

By integrating actual stochastic physical processes and implementing the mod-

els in a probabilistic manner, this approach significantly reduces the require-

ments for optical energy consumption (or equivalently, signal-to-noise ratios)

in ONN inference. It also has potential compatibility with quantum physical

systems, such as those introduced in Chapter 6.

Building on Chapter 7, Chapter 8 explores a more practical and near-term

6



application of this approach. We demonstrate that by optimizing an operation

in the optical field and accounting for the highly stochastic detection bottleneck

at ultra-low optical energy levels, our approach can enhance image sensing ac-

curacy with minimal detection energy required.

In the final chapter, we summarize potential future directions based on the

work presented in this thesis.
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CHAPTER 2

BACKGROUND INFORMATION

2.1 Neural-Network Computation

Neural networks, inspired by the biological neural networks that constitute an-

imal brains, are a class of models in machine learning and artificial intelligence.

They are designed to recognize patterns and structures in data through a pro-

cess that mimics the way human brains learn and process information. The core

component of neural networks is the layer, each consisting of a linear transfor-

mation followed by a non-linear activation function.

2.1.1 Layer Structure

Consider a neural network that takes an input vector x ∈ Rn. The transformation

in the first layer of the network can be expressed mathematically as follows:

a(1) = σ
(
W (1)x + b(1)

)
(2.1)

For each subsequent layer k (where 2 ≤ k ≤ L), the output of layer k is given

by:

a(k) = σ
(
W (k)a(k−1) + b(k)

)
(2.2)

where:
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• W (k) is the weight matrix for layer k,

• b(k) is the bias vector for layer k,

• a(k−1) is the activated output from the previous layer k − 1,

• σ is the activation function.

The final output y of the network is then:

y = W (L)a(L−1) + b(L) (2.3)

Activation Functions

Activation functions play a critical role in introducing non-linearity into neural

networks, enabling them to learn complex patterns. Common activation func-

tions include:

• Sigmoid: The sigmoid function maps the input to a value between 0 and

1.

σ(z) =
1

1 + e−z (2.4)

• Hyperbolic Tangent (tanh): The tanh function maps the input to a value

between -1 and 1.

σ(z) = tanh(z) (2.5)

• Rectified Linear Unit (ReLU): The ReLU function sets all negative inputs

to zero and leaves positive inputs unchanged.

σ(z) = max(0, z) (2.6)
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2.1.2 Training Process

Training a neural network involves adjusting the network’s weights and biases

to minimize a loss function, which quantifies the error between the network’s

predictions and the actual target values.

Forward Pass

During the forward pass, the input vector x is propagated through the network

layer by layer. Each layer performs a linear transformation followed by a non-

linear activation function, ultimately producing the output vector y. This pro-

cess is described by the equations outlined in the previous section.

Loss Function

The loss function L(y, ytrue) measures the discrepancy between the predicted out-

put y and the true output ytrue. The choice of loss function depends on the type

of problem being solved. Common loss functions include:

• Mean Squared Error (MSE): Typically used for regression problems, MSE

is defined as:

L(y, ytrue) =
1
2
∥y − ytrue∥

2 (2.7)

• Cross-Entropy Loss: Commonly used for classification problems, cross-

entropy loss is defined as:

L(y, ytrue) = −
∑

i

ytrue,i log(yi) (2.8)
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Backward Pass and Gradient Descent

The backward pass, also known as backpropagation, involves computing the

gradients of the loss function with respect to each weight and bias in the net-

work. These gradients indicate the direction and magnitude of change required

to minimize the loss function. The process of updating the network parameters

using these gradients is known as gradient descent.

Gradient Descent Gradient descent is an iterative optimization algorithm

used to minimize the loss function. The key idea is to update the weights and

biases in the direction that reduces the loss. The update rules for the weights

and biases using gradient descent are given by:

Wk ← Wk − η
∂L
∂Wk

(2.9)

bk ← bk − η
∂L
∂bk

(2.10)

where η is the learning rate, a hyperparameter that controls the step size of

the updates.

Stochastic Gradient Descent (SGD) Stochastic Gradient Descent (SGD) is a

variant of gradient descent where the parameters are updated using a single

training example or a small batch of examples, rather than the entire training

set. This introduces noise into the updates, which can help the model escape

local minima and improve generalization.
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The update rules for SGD are:

Wk ← Wk − η
∂Li

∂Wk
(2.11)

bk ← bk − η
∂Li

∂bk
(2.12)

where Li is the loss for the i-th training example or batch.

Adam Optimizer The Adam optimizer combines the advantages of two other

extensions of SGD: Adaptive Gradient Algorithm (AdaGrad) and Root Mean

Square Propagation (RMSProp). Adam computes adaptive learning rates for

each parameter by maintaining running averages of the gradients and their sec-

ond moments. The update rules for Adam are:

mt = β1mt−1 + (1 − β1)gt (2.13)

vt = β2vt−1 + (1 − β2)g2
t (2.14)

m̂t =
mt

1 − βt
1

(2.15)

v̂t =
vt

1 − βt
2

(2.16)

θt ← θt−1 − η
m̂t
√

v̂t + ϵ
(2.17)

where:
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• mt and vt are estimates of the first moment (mean) and second moment

(uncentered variance) of the gradients, respectively,

• β1 and β2 are hyperparameters that control the decay rates of these mo-

ment estimates,

• gt is the gradient at time step t,

• ϵ is a small constant to prevent division by zero,

• m̂t and v̂t are bias-corrected estimates.

Complete Training Process

The complete training process of a neural network can be summarized in the

following steps:

1. Initialization: Initialize the weights and biases of the network, typically

using small random values.

2. Forward Pass: Pass the input data through the network to obtain the out-

put predictions.

3. Loss Calculation: Compute the loss function to measure the error between

the predictions and the true targets.

4. Backward Pass: Perform backpropagation to compute the gradients of the

loss with respect to the weights and biases.

5. Parameter Update: Update the weights and biases using an optimization

algorithm (e.g., SGD, Adam).

6. Iteration: Repeat the forward pass, loss calculation, backward pass, and

parameter update for a specified number of epochs or until convergence.
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During each epoch, the entire training dataset is passed through the net-

work. The process of updating the model parameters for each batch of data

within an epoch is known as an iteration. The training process continues for

multiple epochs, allowing the network to learn and generalize from the training

data.

2.1.3 Inference Process

Inference in a neural network refers to the process of making predictions on

new, unseen data using the trained model. This process is crucial for deploying

the model in real-world applications. Here, we will detail the inference process,

particularly for classification tasks.

Forward Pass for Inference

The inference process involves performing a forward pass through the network

with the new input data x. The network computes the output y by propagating

the input through each layer, using the trained weights and biases. Formally, for

a neural network with L layers, the forward pass can be described as follows:

Given the input vector x, the output of the first layer is computed as:

a(1) = σ
(
W (1)x + b(1)

)
(2.18)

For each subsequent layer k (where 2 ≤ k ≤ L), the output of layer k is given

by:
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a(k) = σ
(
W (k)a(k−1) + b(k)

)
(2.19)

where:

• W (k) is the weight matrix for layer k,

• b(k) is the bias vector for layer k,

• a(k−1) is the activated output from the previous layer k − 1,

• σ is the activation function.

The final output y of the network is then:

y = W (L)a(L−1) + b(L) (2.20)

Classification Tasks

In classification tasks, the goal is to assign an input to one of several predefined

classes. The output layer of a neural network designed for classification typi-

cally has one neuron per class, and the activation function used in the output

layer is often the softmax function. The softmax function converts the output

scores into probabilities, which sum to 1, providing a probabilistic interpreta-

tion of the classification.

The softmax function is defined as follows:

softmax(z)i =
ezi∑
j ez j

(2.21)
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where z is the output vector from the final layer (before applying softmax),

and zi is the i-th element of z.

The class with the highest probability is selected as the predicted class:

ŷ = arg max
i

softmax(z)i (2.22)

where ŷ is the predicted class label.

Example of Inference in a Classification Task

Consider a neural network trained to classify images of handwritten digits (0-9).

Given a new input image x, the network computes the output vector y through

a series of linear transformations and non-linear activations. After applying the

softmax function to the output vector, we obtain a probability distribution over

the 10 possible digit classes.

For instance, if the output vector y after the softmax layer is:

y = [0.1, 0.05, 0.05, 0.1, 0.05, 0.1, 0.1, 0.05, 0.35, 0.05]

the predicted class ŷ would be 8, as it has the highest probability of 0.35.
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2.1.4 Common Architectures

Neural networks come in various architectures, each designed to handle spe-

cific types of data and tasks effectively. This section introduces some of the

most common neural network architectures: perceptrons, multilayer percep-

trons (MLPs), convolutional neural networks (CNNs), and transformers.

Perceptrons

The perceptron is the simplest type of artificial neural network and serves as

a building block for more complex networks. It consists of a single neuron

with learnable weights and biases. The perceptron applies a step function to

the weighted sum of its inputs to produce an output. Mathematically, the per-

ceptron model can be represented as:

y = σ(w · x + b) (2.23)

where:

• w is the weight vector,

• x is the input vector,

• b is the bias,

• σ is the step function, which outputs 1 if the input is greater than a thresh-

old and 0 otherwise.

Perceptrons are primarily used for binary classification tasks.
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Multilayer Perceptrons (MLPs)

A multilayer perceptron (MLP) is an extension of the perceptron that consists

of multiple layers of neurons. MLPs include an input layer, one or more hid-

den layers, and an output layer. Each neuron in a layer is connected to every

neuron in the subsequent layer, forming a fully connected network. MLPs use

non-linear activation functions, such as the sigmoid or ReLU, to introduce non-

linearity into the model, enabling it to learn complex patterns.

Structure

• Input Layer: Receives the input data. The number of neurons in this layer

corresponds to the dimensionality of the input data.

• Hidden Layers: Intermediate layers that apply transformations to the in-

put data. An MLP can have one or more hidden layers, and each hidden

layer can have a varying number of neurons.

• Output Layer: Produces the final output. The number of neurons in this

layer corresponds to the number of classes (for classification tasks) or the

number of output variables (for regression tasks).

Forward Pass For an MLP with L layers, the forward pass can be described as

follows:

1. Input to the first hidden layer:

z(1) = W (1)x + b(1) (2.24)

18



a(1) = σ(z(1)) (2.25)

2. For each subsequent hidden layer k (where 2 ≤ k < L):

z(k) = W (k)a(k−1) + b(k) (2.26)

a(k) = σ(z(k)) (2.27)

3. Output layer:

z(L) = W (L)a(L−1) + b(L) (2.28)

Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are specialized neural networks de-

signed for processing structured grid data, such as images. CNNs use convolu-

tional layers that apply a set of learnable filters to the input data to extract local

features. CNNs are particularly effective for image-related tasks due to their

ability to capture spatial hierarchies.

Structure

• Convolutional Layers: Apply filters to the input data to produce feature

maps. Each filter is convolved with the input to detect specific features.

• Pooling Layers: Reduce the spatial dimensions of the feature maps, typi-

cally using max pooling or average pooling, to retain the most important

information while reducing computational complexity.
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• Fully Connected Layers: After several convolutional and pooling layers,

the output feature maps are flattened and passed through fully connected

layers to make the final prediction.

Convolution Operation In a convolutional layer, the convolution operation

involves applying a set of filters (or kernels) to the input data to produce feature

maps. Each filter is convolved with the input to detect specific features.

Assume the input to the convolutional layer is a 3D tensor x ∈ RH×W×Cin ,

where H is the height, W is the width, and Cin is the number of input channels

(e.g., 3 for an RGB image). Each filter W ∈ RK×K×Cin has dimensions K × K and

spans all input channels Cin.

The convolution operation for a single filter can be expressed as:

zi, j =

Cin∑
c=1

K∑
m=1

K∑
n=1

Wm,n,cxi+m−1, j+n−1,c + b (2.29)

where:

• W is the filter,

• x is the input tensor,

• z is the output feature map,

• b is the bias,

• i and j index the spatial dimensions of the output feature map,

• m and n index the spatial dimensions of the filter,

• c indexes the input channels.
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The filter slides over the width and height of the input tensor, performing

element-wise multiplication and summation (convolution) to produce each ele-

ment of the output feature map.

If there are Cout filters, the output of the convolutional layer will be a 3D

tensor z ∈ RH′×W′×Cout , where H′ and W ′ are the height and width of the output

feature maps, and Cout is the number of output channels (one for each filter).

Activation Functions CNNs commonly use ReLU as the activation function

due to its simplicity and effectiveness in introducing non-linearity.

Pooling Pooling layers down-sample the spatial dimensions of the feature

maps. Common pooling operations include:

• Max Pooling: Selects the maximum value in each patch of the feature map.

• Average Pooling: Computes the average value in each patch of the feature

map.

Example Consider a simple CNN for image classification:

1. Input Layer: Takes a 32x32 RGB image (3 channels).

2. First Convolutional Layer: Applies 16 filters of size 3x3, producing 16

feature maps.

3. First Pooling Layer: Applies max pooling with a 2x2 filter, reducing each

feature map to 16x16.

21



4. Second Convolutional Layer: Applies 32 filters of size 3x3, producing 32

feature maps.

5. Second Pooling Layer: Applies max pooling with a 2x2 filter, reducing

each feature map to 8x8.

6. Fully Connected Layer: Flattens the feature maps and connects to a fully

connected layer with 128 neurons.

7. Output Layer: A softmax layer with 10 neurons for classification into 10

classes.

Transformers

Transformers are a type of neural network architecture originally designed for

natural language processing tasks. Unlike traditional recurrent neural networks

(RNNs), transformers do not rely on sequential data processing and can handle

long-range dependencies more effectively. The key innovation in transformers

is the self-attention mechanism, which allows the model to weigh the impor-

tance of different input tokens dynamically.

Structure A transformer model consists of an encoder and a decoder, each

composed of multiple layers of self-attention and feedforward neural networks.

The encoder processes the input data, and the decoder generates the output

data.

• Encoder: The encoder is a stack of N identical layers, each consisting of

two main components:

– Multi-Head Self-Attention Mechanism
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– Position-Wise Fully Connected Feedforward Network

• Decoder: The decoder is also a stack of N identical layers with an addi-

tional sub-layer for multi-head attention over the encoder’s output. Each

layer consists of three main components:

– Masked Multi-Head Self-Attention Mechanism

– Multi-Head Attention over the Encoder’s Output

– Position-Wise Fully Connected Feedforward Network

Self-Attention Mechanism The self-attention mechanism allows the model

to focus on different parts of the input sequence when producing an output.

It computes a weighted sum of the input values, where the weights are deter-

mined by the similarity between the input values. The self-attention mechanism

is defined as:

Attention(Q,K,V) = softmax
(

QKT

√
dk

)
V (2.30)

where:

• Q (queries), K (keys), and V (values) are matrices derived from the input.

• dk is the dimension of the keys.

Multi-Head Attention Multi-head attention enhances the model’s ability to

focus on different positions. Instead of performing a single attention function,

multi-head attention runs multiple attention functions in parallel. The outputs

are concatenated and linearly transformed:
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MultiHead(Q,K,V) = Concat(head1, . . . ,headh)WO (2.31)

where each head is defined as:

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (2.32)

Here, WQ
i , WK

i , and WV
i are the projection matrices for the i-th head, and WO

is the output projection matrix.

Position-Wise Feedforward Networks After the multi-head attention layer, a

position-wise feedforward network is applied to each position separately and

identically. It consists of two linear transformations with a ReLU activation in

between:

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.33)

Positional Encoding Since transformers do not have a built-in notion of se-

quence order, positional encodings are added to the input embeddings to pro-

vide information about the position of each token in the sequence. Positional

encodings are added to the input embeddings to retain the positional informa-

tion:

PE(pos,2i) = sin
( pos
100002i/dmodel

)
(2.34)
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PE(pos,2i+1) = cos
( pos
100002i/dmodel

)
(2.35)

where pos is the position, i is the dimension, and dmodel is the dimensionality

of the model.

Applications of Transformers Transformers have been highly successful in

various applications, including:

• Language Translation: Models like Google’s BERT (Bidirectional Encoder

Representations from Transformers) and OpenAI’s GPT (Generative Pre-

trained Transformer) have achieved state-of-the-art results in machine

translation tasks.

• Text Generation: Models such as GPT-3 can generate coherent and con-

textually relevant text based on a given prompt.

• Image Processing: Vision Transformers (ViTs) have been applied to image

classification tasks, leveraging the self-attention mechanism to process im-

ages as sequences of patches.

2.2 Optical Neural Networks

Optical neural networks leverage the principles of optics to perform neural net-

work computations. They offer the potential for significant speed and energy

efficiency improvements over traditional electronic neural networks.

25



2.2.1 Basic Principles

Optical neural networks use light to transmit and process information. The typ-

ical working mechanism of optical accelerators can be summarized as follows:

data, such as matrices and vectors, are encoded in light, utilizing some degree

of freedom (e.g., each pixel in a 2D space could represent one element of a vec-

tor). This light is then modulated (e.g., by attenuating the light) to implement

element-wise products. Then the outputs are focused onto detectors, summing

up the element-wise products. In essence, these accelerator systems are like a

digital processor’s cores (and are especially analogous to matrix compute units

found on modern GPUs and accelerators) and process the data in a vectorized

fashion, where at each step a batch of products (and the accumulation) happens

in parallel. The difference is that the sizes that some ONN platform can process

at a time can be significantly larger, such as computing products with vectors

of dimension ≥ 103 at a time in some cases. Many ONN platforms share the

following typical traits:

Optical Shot Noise Optical systems are subject to errors in both the actual

hardware and from photon detection. Detection of optical intensity in particular

is subject to a phenomenon known as shot noise where the detected value is

Poisson distributed: given vectors x and w, with the elements of x encoded as

optical intensity, the output Y is distributed as:

Y ∼ Poisson(w · x) (2.36)

For other encoding schemes such as amplitude or phase encoding, equation
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2.36 should be modified, but the detection is still subject to shot noise.

Device Imprecision and Systematic Errors Systematic errors, on the other

hand, are not noise but rather errors resulting from deficiencies of the hard-

ware. Unlike noise, systematic errors are identical across multiple attempts to

run the same computation. Meanwhile, because data often requires rescaling

for input into analog-optical systems, neural networks running optically may

encounter scaled errors. Many works studying ONNs have characterized the

distribution of errors (prevalence of deviations from ground-truth values) as

Gaussian [17, 21].

Free Data Transport and Reuse Transport and copying of data encoded in

light is free when performed optically. This negates any cost of having to send

data to particular sites to perform computations. Copying may be implemented

in a variety of ways, such as via “fanning out” and “fanning in” data (projecting

multiple copies, and then focusing multiple computation results onto a detec-

tor). However, when splitting a signal in this way, the total amount of light is

divided by the number of copies.

Efficient Photon Usage Shot noise, and therefore an optical dot product’s

signal-to-noise ratio (SNR, which serves as an effective bit precision) is related to

the mean number of photons at the output. The efficiency of photon usage can

therefore grow with increasing multiply-accumulate operations (MACs): the

SNR for the product w · x is
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SNR(Y) =
E[Y]
√

Var[Y]
=
√

w · x =
√

E[Y], (2.37)

which explains this behavior; if the desired output precision does not

change, constant photons are required regardless of dot product size. In other

words, the amount of optical energy needed is proportional to the number of

vector-vector products (due to needing a certain amount of light for each), but

not the amount of compute performed. For example, assume the computation

of a dimension d vector dot-product between two vectors. If the desired effec-

tive precision is roughly 8-bit, then one wishes to detect a maximum of roughly

2552 = 65025 photons at the output. If one still requires a ∼ 8-bit output with a

dot product of size 2d, only this same number of photons is necessary if the 2d-

sized vectors have similar statistics to the d-sized vectors; each element could

be encoded using half the number of photons as before. Work on ONNs has

studied this behavior in a variety of scenarios [24, 25, 1, 21].

This efficient scaling is not a guarantee—the required number of photons

may be influenced by a model architecture’s activation/weight distributions,

encoding schemes, precision requirements, etc [47]. Related to the previous ex-

ample, if the operands of the 2d-size dot-product have different statistics (ie.

the vectors have larger dynamic ranges), or if more precision in the answer is

desired for larger dot products, then differing amounts of photons are required

for encoding the inputs.
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2.2.2 Existing Optical Neural Network Platforms

The key similarity among ONN platforms with these traits is that they can reuse

data: they accept a vector as input, but only convert it from digital signal to opti-

cal signal once to compute full matrix-vector products in the optical domain (as

opposed to reloading the same data from digital-electronic memory repeatedly

every time it is needed in the matrix-vector multiplication). While this reuse is

achieved in different ways the concept is the same: ONN accelerators can take

advantage of free data transport with optics, shot-noise-limited optical energy

usage, and methods for reusing optical data to realize an energy-efficiency ad-

vantage. Here we list some examples of platforms include (for more details, see

Refs. [15, 23]):

• Modulator arrays [48, 49, 17, 50]: Input data is fed into a grid-like struc-

ture and routed to rows of resonators, phase-change materials, or similar

elements that modulate the light, realizing a matrix-vector multiplication.

Data is typically reused via the branching of the waveguides to the rows

of modulating elements.

• Mach-Zehnder Interferometer (MZI) meshes [51, 12, 52, 53]: Input data is

fed into a cascaded arrangement of MZIs that redistribute optical energy

and information, computing a matrix-vector multiplication. The depth of

the circuit allows for data flowing through to be reused [54] for all stages

of the computation of the matrix-vector product at all depths.

• Spatial-Light-Modulator-based (SLM) ONNs [55, 56, 1]: Data is fanned

out, fed through a spatial light modulator that realizes element-wise scalar

multiplications, and is then fanned in to compute matrix-vector multipli-
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cations. Weights may be kept in place to be used with many input vectors,

which are copied via fan out.

• Fourier-domain convolution engines [57]: Input data is fed through pas-

sive optical components resulting in the spatial Fourier transform; oper-

ations applied in the Fourier domain (such as multiplication by weights)

thus correspond to performing a convolution. The application of weights

in the Fourier domain is equivalent to reusing a spatial-domain kernel at

every pixel of an image.

• Diffractive networks [13, 57, 18, 58, 59]: Inputs pass through a series of

diffractive elements, realizing a matrix-vector multiplication. The diffrac-

tive elements can distribute the input data in a fashion similar to MZI

meshes that leverages optical depth [54], and weights can often be kept in

place or are fixed at fabrication time.

• Wavelength-multiplexed vector dot-product engines [16, 21, 60]: Inputs

are encoded and modulated as a pulse train through EOMs, realizing

vector-vector dot products by collecting element-wise multiplications at

detectors. Systems can employ wavelength multiplexing so that multiple

data is processed at the same time, allowing for matrix-vector multiplica-

tion. Copying data with added delay allows for convolutions [16].

2.3 Gaussian Quantum Optics

Gaussian quantum optics is a fundamental area of quantum optics that deals

with quantum states of light whose statistical properties are described by Gaus-

sian functions. It provides a powerful framework for understanding and ma-
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nipulating quantum states of light. Its applications in quantum information

processing, quantum communication, and quantum metrology highlight its sig-

nificance in advancing quantum technologies.

2.3.1 Fundamentals of Quantum Optics

Quantum optics is the study of the quantum mechanical properties of light. It

involves the quantization of the electromagnetic field and the interaction of light

with matter at the quantum level.

Quantization of the Electromagnetic Field

The quantization of the electromagnetic field treats the field as a collection of

quantized harmonic oscillators. The electric field operator Ê(t) in one dimension

can be expressed as:

Ê(t) = i
∑

k

√
ℏωk

2ϵ0V

(
âke−iωkt − â†keiωkt

)
(2.38)

where:

• âk and â†k are the annihilation and creation operators, respectively, for the

mode k,

• ωk is the angular frequency of mode k,

• ϵ0 is the vacuum permittivity,

• V is the quantization volume.
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Coherent States

Coherent states are the quantum states of the electromagnetic field that most

closely resemble classical light. They are eigenstates of the annihilation operator

â:

â |α⟩ = α |α⟩ (2.39)

where α is a complex number. Coherent states have a minimum uncertainty

product and their quadrature components have equal variances.

Squeezed States

Squeezed states are quantum states of light where the uncertainty in one

quadrature component is reduced below the vacuum state level at the expense

of increased uncertainty in the conjugate quadrature. A squeezed vacuum state

can be represented as:

|ξ⟩ = Ŝ (ξ) |0⟩ (2.40)

where Ŝ (ξ) is the squeezing operator defined as:

Ŝ (ξ) = exp
(
1
2

(ξ∗â2 − ξâ†2)
)

(2.41)

with ξ = reiθ being the complex squeezing parameter.
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Thermal States

Thermal states describe the statistical mixture of number states according to the

Bose-Einstein distribution. The density operator for a thermal state is given by:

ρ̂th =
1

n̄ + 1

( n̄
n̄ + 1

)â†â

(2.42)

where n̄ is the average photon number.

2.3.2 Gaussian States and Operations

Gaussian states are fully characterized by their first and second statistical mo-

ments: the mean value vector and the covariance matrix.

Mean Value Vector and Covariance Matrix

The mean value vector d and covariance matrix V for a quantum state are de-

fined as:

di = ⟨R̂i⟩ (2.43)

Vi j =
1
2
⟨R̂iR̂ j + R̂ jR̂i⟩ − ⟨R̂i⟩⟨R̂ j⟩ (2.44)

where R̂ = (q̂, p̂)T is the vector of quadrature operators.
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Quadrature Basis and â, â† Basis

The quadrature operators q̂ and p̂ are defined as:

q̂ =
1
√

2
(â + â†) (2.45)

p̂ =
1

i
√

2
(â − â†) (2.46)

In the quadrature basis, the annihilation and creation operators â and â† can

be expressed as:

â =
1
√

2
(q̂ + ip̂) (2.47)

â† =
1
√

2
(q̂ − ip̂) (2.48)

These representations are useful for different types of quantum optical cal-

culations. The quadrature basis is often used in the context of Gaussian states

and their covariance matrices, while the â, â† basis is commonly used in number

state and coherent state calculations.
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Symplectic Transformations

Symplectic transformations are linear transformations that preserve the com-

mutation relations between quadrature operators. They can be represented by

symplectic matrices S such that:

SΩST = Ω (2.49)

whereΩ is the symplectic form matrix. Gaussian operations, such as squeez-

ing, displacement, and beam splitting, correspond to symplectic transforma-

tions on the covariance matrix and the mean value vector.

This relation allows us to switch between the two representations depending

on the context and the convenience for specific calculations.

Wigner Function

The Wigner function is a quasi-probability distribution function that provides a

complete description of the quantum state in phase space. For a Gaussian state,

the Wigner function W(R) is given by:

W(R) =
exp

(
−1

2 (R − d)T V−1(R − d)
)

(2π)n
√

det(V)
(2.50)

where R is the phase space vector.
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CHAPTER 3

A LARGE-SCALE FREE-SPACE OPTICAL MATRIX-VECTOR

MULTIPLIER

Much of the content in this chapter is adapted from the work presented in Refs.

[1, 4].

3.1 Background

The key to realizing an energy advantage in an optical matrix-vector multiplier

is to maximize the sizes of the matrices and vectors that are to be multiplied.

With large operands, there are many constituent scalar multiplication and accu-

mulation operations that can be performed in parallel completely in the optical

domain, and the costs of conversions between electronic and optical signals can

be amortized [25]. Optics provides several different ways to implement op-

erations in parallel, including using wavelength multiplexing [17, 16], spatial

multiplexing in photonic integrated circuits [12, 17, 61, 33, 52, 62], and spatial

multiplexing in 3D free-space optical processors [13, 63, 64, 65, 66, 57, 67, 68, 56,

69, 18].

To date, across all multiplexing approaches and architectures, demonstra-

tions of analog ONNs have involved small vector-vector dot products (as a

fundamental operation in implementing convolutional layers [17, 16] and fully

connected layers [56]) or matrix-vector multiplications (for realizing fully con-

nected layers [12]): the vectors have been limited [70] to sizes of at most 64.

This is substantially below the scale (vector sizes >103) at which sub-photon-

per-multiplication energy efficiency is predicted to be feasible [24, 25]. This is
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the fundamental reason that the optical energy consumption in recently demon-

strated optical processors is still several orders of magnitude higher than that

of theoretical predictions (10−14-10−13 versus 10−18 J per scalar multiplication)

[24, 25, 16, 56, 70]. One ONN architectural approach that is promising for near-

term explorations of large-scale ONN operation is to perform spatial multiplex-

ing in 3D free space, since a 2D cross section can contain [71], for example, >106

modes in an area of 1 mm2. While the potential for large-scale operation exists

based on the available parallelism in free-space spatial modes, this potential has

not yet been realized.

In this chapter, we report on our experimental implementation of a 3D free-

space optical processor that can perform matrix-vector multiplications at large

scale (with vector sizes of up to 0.5 million). The large scale has enabled us to

demonstrate the computation of matrix-vector products and vector-vector dot

products each using less than 1 photon per scalar multiplication.

3.2 Overview

Here we demonstrate an optical processor to compute analog matrix-vector

multiplications at a scale that permits ultra-low optical energy consumption.

Our proof-of-concept processor was realized in free space to achieve large vec-

tor size by leveraging the large number of spatial modes for multiplexing. By

shaping the vectors and corresponding weights into 2D blocks (Figure 3.1a), our

device can compute up to ∼ 0.5 million scalar multiplications and additions in

a matrix-vector multiplication fully in parallel in a single pass of light through

the setup. In the special case where the matrix is a vector of size ∼ 5 × 105 (so
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Figure 3.1: The working principle of the optical matrix-vector multiplier
(a) The schematic of our optical matrix-vector multiplier de-
sign (a vector size of 4 is used for illustration purposes). The
multiplier computes the matrix-vector product yi =

∑4
j wi jx j in

three steps: the top row illustrates the mathematical operations
equivalent to matrix-vector multiplication, and the bottom row
shows the corresponding physical implementation of each op-
eration. Each element of the vector x⃗ is color-coded to show the
correspondence between the mathematical and physical oper-
ations. OLED: organic light-emitting diode; SLM: spatial light
modulator. (b) Visualization of optical computation of matrix-
vector multiplication with the image of a handwritten digit as
the input vector.
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the matrix-vector product is a vector-vector dot product), we obtained an aver-

age error of ∼ 6% (or a precision of 4 noise-equivalent bits [25]) in dot-product

computation at ∼ 0.001 photons per scalar multiplication. Even though our

demonstration was made with free-space optics, it was designed to illustrate the

key scientific points in Refs. [25, 24]: the energy consumption of optical matrix-

vector multiplicaiton can be amortized with large vectors sizes. Our findings

are generalizable to a wide variety of both integrated and non-integrated ONN

implementations.

3.3 Experimental Setup

The optical vector-vector dot product multiplier setup consists of an array

of light sources, a zoom lens imaging system, an intensity modulator, and a

photodetector (Figure 3.2). We used an organic light-emitting diode (OLED)

display of a commercial smartphone (Google Pixel 2016 version) as the light

source for encoding input vectors. The OLED display consist of a 1920 × 1080

pixel array, with individually controllable intensity for each pixel (for details,

see 3.3.1). A reflective liquid-crystal spatial light modulator (SLM, P1920-500-

1100-HDMI, Meadowlark Optics) was combined with a half-wave plate (HWP,

WPH10ME-532, Thorlabs) and a polarizing beamsplitter (PBS, CCM1-PBS251,

Thorlabs) to perform intensity modulation as weight multiplication (for details,

see 3.3.2). The SLM has a pixel array of dimensions 1920 × 1152, with indi-

vidually controllable transmission for each pixel. A zoom lens system (Re-

solv4K, Navitar) was used to image the OLED display onto the SLM panel

(for details, see 3.4.1). The intensity-modulated light field reflected from the

SLM was further de-magnified and imaged onto the detector, by a telescope
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formed by the rear adapter of the zoom lens (1-81102, Navitar) and an objective

lens (XLFLUOR4x/340, Olympus). An additional band-pass filter (BPF, FF01-

525/15-25, Semrock) and polarizer (LPVISE100-A, Thorlabs) were inserted into

the telescope (Figure 3.2) in order to reduce the bandwidth and purify the polar-

ization of the light reflected by the PBS, resulting in more precise results. During

alignment and troubleshooting, we used a camera (Prime 95B Scientific CMOS

Camera, Teledyne Photometrics) as a multi-pixel detector (Figure 3.3a). For sen-

sitive measurements under extremely low photon fluxes, we used a multi-pixel

photon counter (MPPC, C13366 series GA type, Hamamatsu Photonics) as a

bucket detector (Figure 3.3b) (for details, see 3.6). When it was necessary to

further reduce the optical power, an additional neutral density filter (ND=0.4,

NE2R04B, Thorlabs) was placed in front of the zoom lens to attenuate light.
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Figure 3.2: Experimental layout for the optical vector-vector dot product
multiplier setup. a, The schematic of the optical setup. An
illustration of the element-wise multiplication is also shown.
In this example, nine copies of an input vector of handwritten
digits, all ‘3’—which our setup accepts as 2D images—are in-
tensity modulated by different weight vectors, which are each
encoded as a 2D block on the spatial light modulator. Images
of the vectors before and after the intensity modulation were
taken by a camera placed at the detector location. (PBS: po-
larizing beam splitter; HWP: half-wave plate; BPF: band-pass
filter; SLM: spatial light modulator) b, Photos of the core setup
corresponding to the schematic are shown in panel (a).
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Figure 3.3: Photos of the entire setup. a, The setup configured with a
CMOS camera as a multi-pixel detector. b, The setup config-
ured with an MPPC as a sensitive bucket detector.
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3.3.1 Properties of the OLED Display

We chose an OLED display, which is made up of spatially and temporally in-

coherent light sources, to encode input vector x⃗ for several reasons. OLED

pixels feature a high extinction ratio and high dynamic range in intensity,

which are ideal for characterizing the accuracy of vector-vector dot products.

A commercial-grade integrated OLED panel with a high pixel count is readily

available at a low cost, which made it possible to encode very large vectors that

were essential for demonstrating vector-vector dot products on our setup. Even

though OLEDs are unable to encode phase information like coherent sources

(e.g., lasers), our setup design based on optical imaging is compatible with both

coherent and incoherent light.

Compared to other options of integrated incoherent light sources (e.g.,

liquid-crystal display, LCD), OLED pixels can be turned off completely, while

LCD screens are always backlit with LED panels and thus always transmit some

residual light. The true darkness of OLED pixels allowed us to achieve high dy-

namic range in intensity modulation and to reduce noise caused by background

light pollution. Finally, the OLED display pixels used in this experiment were

conveniently point-shaped and arranged in the same square lattice array as the

SLM pixels (Figure 3.4a), which facilitated pixel-to-pixel alignment (see 3.4.1),

and enabled us to unambiguously quantify the number of spatial modes, each

performing one analog scalar multiplication. In contrast, commercial LCD pix-

els are typically arranged in bars, which require optical image transformation

before they can be aligned to SLM pixels.

The OLED display used in our study had three different colors of pixels: red,

blue, and green. We used only the green pixels, which form a 1080×1920 square
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Figure 3.4: Properties of the organic light-emitting diode (OLED) dis-
play. a, An image of the green OLED pixels taken under an
inspection microscope. The pixels form a square lattice with
a pixel pitch of 57.5 µm. Scale bar, 200 µm. b, Emission spec-
trum of the green OLED pixels. The shaded area indicates the
transmission band of the BPF (> 90% transmission). c, The 7-
bit linear look-up table (LUT) calibrated to control the OLED
display intensity.

lattice array (∼2 × 106 total pixels) as shown in Figure 3.4a. The pixel pitch was

measured to be 57.5 µm. The maximum power of each pixel was measured to

be ∼1 nW, emitted in a very wide angle (> 60 degrees). Since the light emitted

from the OLED screen had a rather broad spectrum, we used a band-pass filter

(FF01-525/15-25, Semrock) to reduce the bandwidth in order to improve coher-

ence for more precise and stable phase modulation by the SLM (Figure 3.4b).

The intensity of each individual pixel can be controlled independently with 256
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(8-bit) control levels. However, since the actual output intensity was not lin-

ear with the pixel control level, we calibrated a linear look-up table (LUT) that

contains 124 distinct intensity levels (∼7 bits, Figure 3.4c).

3.3.2 Intensity Modulation with a Phase-Only SLM

We converted a phase-only SLM into an intensity modulator with a half-wave

plate (HWP) and a polarizing beam splitter (PBS). The SLM pixels are made of

birefringent liquid crystal layers, whose refractive index can be tuned by ap-

plying voltage across them. By controlling the refractive index of extraordinary

light, the SLM pixels introduce a phase difference ϕe − ϕo between the extraor-

dinary and ordinary light, whose polarizations are perpendicular to each other.

When a PBS and HWP were placed in front of a reflective SLM, the light field

passed the components twice, once during the trip towards the SLM and once

after being reflected by the SLM (Figure 3.2a). One of the functions of PBS was

to separate the output from the input light: the input light (incident to the SLM)

was horizontally polarized and transmitted by the PBS, while the output light

(reflected from the SLM) was vertically polarized, and therefore reflected by the

PBS. The other function of the PBS is to convert the polarization state of the

output light to its amplitude: the light modulated by the SLM was in general

elliptically polarized, controlled by the phase difference ϕe − ϕo. The amplitude

of the light field (and intensity in this case too) was modulated by selecting only

the vertical component of the SLM-modulated light at the output port of the

PBS. The HWP was placed with its fast axis rotated 22.5 degrees from the ex-

traordinary axis of the SLM such that the intensity transmission could be tuned

from 0 to 100%. Figure 3.5a shows the calculated relationship between the inten-
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sity transmission and phase difference ϕe − ϕo. The maximum extinction ratio

of the transmission intensity was measured to be ∼50 (Figure 3.5b). The SLM

consists of 1920 × 1152 ∼ 2.2 × 106 pixels, each of which can be independently

controlled for intensity modulation with a 256 (8-bit) LUT (Figure 3.5c). Alter-

natively, instead of using a phase-modulation SLM, the intensity modulator can

be more compactly implemented with a monolithic LCD panel in a transmission

geometry.

Figure 3.5: Intensity modulation with a spatial light modulator (SLM).
a, Simulation results of output intensity as a function of phase
difference ϕe − ϕo. α is the angle between the half-wave plate
(HWP) fast axis and the extraordinary axis of the SLM. b, The
8-bit LUT of the SLM for intensity modulation. The minimum
transmission was measured to be ∼0.02 times the maximum
transmission, which is equivalent to an extinction ratio of ∼50.

3.3.3 Characterization of the Photodetector

For single-photon detection, we used a multi-pixel photon counter (MPPC) as

a bucket detector. We chose an MPPC for its high signal-to-noise ratio (SNR),

large measurement range, and moderately high bandwidth. The MPPC is com-

posed of an array of Geiger-mode photodiodes with high intrinsic gain, which
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enables the photodiodes to detect single-photon events. The detection of each

photon results in a spike-shaped impulse response in the output voltage of the

detector, with a sharp rising edge and an approximately exponentially decaying

tail (Figure 3.6a).

Figure 3.6: Time and frequency characteristics of the multi-pixel photon
counter (MPPC). a, The impulse response of single-photon de-
tection averaged over 500 trials. b, The frequency response and
Power Spectral Density of the MPPC.

When the photon flux rate is extremely low (<107 photons per second), the

detected photons can be enumerated by counting the number of spikes (Figure

3.7a). The maximum measurable photon flux rate is limited by the bandwidth of

the detector (Figure 3.6b) and potentially the dead time after each photon detec-

tion. To increase the maximum measurable photon flux (or optical power), the

MPPC detector was spatially multiplexed with a 60×60 photodiode array (with

50 µm×50 µm pixel pitch), the outputs of which are then pooled into a single

analog voltage trace. When the photon flux far exceeds the MPPC bandwidth

(≫107 photons per second), the pulses induced by individual photons overlap

in time and can no longer be resolved (Figure 3.7b). In this scenario, we mea-

sured the average output voltage, which maintains an excellent linear relation-

ship with the average optical power impinging on the detector. The MPPC out-

put voltage was calibrated against the power reading of a semiconductor power
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meter (818-UV-L-FC/DB, Newport), and the calibration result closely agreed

with the manufacturer’s specifications of the MPPC (Figure 3.7d). Therefore, we

were able to use the detector as a fast power meter to measure instantaneous op-

tical power from pW up to several nW (Figure 3.7d). In this experiment, optical

power ¿6 pW was measured by converting the output voltage of the MPPC to

the optical power impinging on the detector. Compared to regular semiconduc-

tor power meters without intrinsic gain—which can also measure ∼pW levels

of optical power—the MPPC can maintain a high SNR for a much higher band-

width (∼3 MHz, Figure 3.6b), since its signal is amplified to overcome the noise

integrated over the larger bandwidth.

When the MPPC is used as a power meter, the minimum power that can be

measured is determined by the analog noise floor (including dark counts, ther-

mal noise, and other electronic noises), which was measured to be equivalent

to 1.25 pW optical power at the full bandwidth (Figure 3.7c). The dark count

of the MPPC was measured to be ∼104 photons per second (¡10 fW), which ac-

counted for less than 1% of the total noise. Therefore, the detector can in prin-

ciple measure optical power even below the analog noise equivalent power of

1.25 pW by means of photon counting. In our experiments, the photon counting

measurement was conducted only to verify that the detector could indeed re-

solve single-photon events, and to determine the minimum valid optical power

it could measure (∼10 fW). Since the optical powers involved in our experiments

were higher than the analog noise floor (∼1.25 pW), they were all measured via

the direct readout of detector’s output voltage.
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Figure 3.7: Photon detection and optical power measurement with the
MPPC. a, Single-photon detection under low photon flux. Dif-
ferent colors indicate instances of independent measurement
trials. b, Instantaneous optical power measurement under high
photon flux. c, The detector noise floor, which determines the
lowest measurable optical power when the MPPC is used as
a power meter. The left panel shows examples of indepen-
dent measurements of the baseline analog noise; the right panel
shows the noise distribution and statistics. d, The linear rela-
tionship between the average MPPC output voltage and the av-
erage optical power impinging on the detector. Calibration of
the optical power (plot group “Measurement”) was performed
independently with a semiconductor power meter.
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3.4 System Calibration

3.4.1 Alignment of the Optical Imaging System

In order to maximize the vector-vector dot product multiplication size—and

thus maximize the energy benefits of optical processing—we aligned as many

pixels as possible from the OLED display to the SLM. Three conditions must be

satisfied for this pixel-to-pixel alignment:

1. The OLED display must be imaged onto the SLM with a precise de-

magnification factor to match the pitch of OLED pixels to that of the SLM

pixels.

2. The imaging resolution needs to be high enough such that the image of

each OLED pixel on the SLM must be no larger than the size of an SLM

pixel. This is to prevent crosstalk.

3. The image of each OLED pixel must be aligned to the corresponding pixel

on the SLM, which requires fine adjustment of the translation, rotation,

pitch, and yaw of each device involved.

To match the pixel size of the OLED pixel image to the SLM pixel size, the zoom

lens was set at a de-magnification of 9.2 µm/57.5 µm = 0.16. This zoom factor

was achieved when the zoom lens (Resolv4K 1-80100, Navitar) was configured

with a 0.25× lens attachment (1-81201, Navitar) and 1× rear adapter (1-81102,

Navitar). The zoom factor of the zoom lens could be mechanically tuned con-

tinuously to precisely match the OLED and SLM pixel pitch. Under this con-

figuration, the spot size in the object plane of the zoom lens (the OLED side) is
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40.85 µm in diameter (Rayleigh criterion) according to the manufacturer’s spec-

ifications. This spot size is smaller than the OLED pixel pitch size of 57.5 µm.

Meanwhile, the spot size in the imaging plane (the SLM side) is specified to

be 6.52 µm in diameter (Rayleigh criterion), which is also smaller than the SLM

pixel pitch size of 9.2 µm. In fact, the performance of the zoom lens system was

close to the diffraction limit, and the images of OLED pixels on the SLM plane

were well separated (Figure 3.8). Therefore, the setup achieved the correct de-

magnification factor and possessed adequate resolution, and both conditions (1)

and (2) were satisfied.

To align each OLED pixel to the corresponding SLM pixel, mechanical align-

ment was performed using the following method (Figure 3.8). First, identical

images of the same size were displayed on both the OLED display and SLM.

The bright pixels on the OLED display corresponded to pixels of full transmis-

sion on the SLM. The dark pixels on the OLED display corresponded to the

pixels of zero transmission on the SLM. Therefore, the SLM functioned like a

mask, with its light-transmitting parts identical in shape and size to the bright

image on the OLED display. After intensity modulation by the SLM, the im-

age on the OLED can only be preserved without any clipping if and only if the

OLED and SLM pixels are exactly aligned to each other, and with the correct

orientation (Figure 3.8).

The maximum number of pixels that could be aligned was determined by

the imaging error on the side of the field-of-view (FOV) of the zoom lens. Ac-

cording to the specifications of the zoom lens, at most 3.6 million OLED pixels

in a square array can be aligned to the SLM. However, this estimation assumes

diffraction-limited performance across the entire FOV. In practice, we managed
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to align 711 × 711 ∼ 0.5 million pixels. There were three reasons for the deterio-

ration of pixel-to-pixel alignment towards the side of the FOV:

1. Vignette: The optical transmission drops off towards the edge of the FOV,

which causes up to a ∼90 % decrease in intensity for the 711× 711 pixel ar-

ray. As a result, the pixels around the center of the FOV must be dimmed

in order to keep all pixels at the same brightness, as required for the com-

putation of large dot products.

2. Image Distortion: nonlinear image distortion (such as barrel, or pin cush-

ion, or other higher-order distortions) lead to a non-uniform local zoom

factor of the OLED pixel image. Although linear image distortions can be

corrected by mechanical alignment, nonlinear distortions cannot be com-

pletely fixed by alignment. Even slight distortions can cause pixels to

slowly drift away from each other until eventually there is misalignment

towards the side of the FOV.

3. Aberration: The aberration of the zoom lens increases towards the edge of

its FOV and causes the focal spots to deviate from the diffraction-limited

spot size. This causes the expansion of the OLED pixel image on the SLM

plane, which couples part of the optical energy emitted from each OLED

pixel into the surrounding SLM pixels that have incorrect transmissions

for weight encoding.

The non-uniform transmission caused by the vignette could be fixed by making

a pixel-wise LUT of the OLED display, which is described in 3.4.2. While there is

no easy solution to nonlinear image distortion and aberration, we characterize

them in 3.4.3.
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The image of OLED pixels The image of SLM pixels

The alignment between OLED and SLM pixels

a b

c

Figure 3.8: Pixel-to-pixel alignment between the OLED and SLM pix-
els. a, The image of a viewfinder pattern on the OLED dis-
play. The scale bar measures the distance on the SLM panel,
200 µm. b, The image of the identical viewfinder pattern mod-
ulated by the SLM. The entire SLM panel was uniformly illu-
minated by an ambient light source. The SLM performed in-
tensity modulation which functioned as a mask with a hollow
of the viewfinder shape. c, Visualization of the alignment be-
tween the OLED and SLM pixels.

3.4.2 Correction of Optical Vignette

To enable computation of large dot products, we corrected for intensity fall-off

towards the edge of the FOV, caused by optical system vignettes as discussed

in 3.4.1. The correction was especially important for optical fan-in (discussed in
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3.6), since each pixel, regardless of its position in the FOV, should contribute the

same amount of optical energy to the detector, if set at the same pixel value.

Correction was performed by making an attenuation map that compensates

for different transmissions of pixels at different locations. We first configured

the OLED to display at the maximum pixel brightness uniformly across the en-

tire FOV, and then captured an image of the OLED display at the detector plane.

Due to the vignette effect of the optical system, the intensity distribution was

not uniform at the detector plane (Figure 3.9, top left panel). A region of interest

(ROI) was then chosen, in which we sought to achieve uniform intensity for all

OLED pixels. The minimum intensity in the ROI was set as the target intensity

value (circled areas in the top left panel of Figure 3.9). The brightness of other

OLED pixels was reduced iteratively until the intensity of their images matched

that of the target value. The result of the correction is shown in Figure 3.9, top

right panel, where uniform intensity was achieved in an ROI of size 720 × 720.

Meanwhile, an attenuation map was established to determine the percentage

by which each OLED pixel should be attenuated in order to achieve a uniform

output intensity.

3.4.3 Pixel Walk-Off and Crosstalk due to Imaging Imperfec-

tions

We examined two aspects of the optical system’s imaging quality: walk-off of

pixel alignment due to image distortion, and degradation of focal spots due to

aberration (both discussed in 3.4.1). To visualize these effects, we captured an

image of a sparse 2D grid of pixels displayed on the OLED screen. The grid
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Figure 3.9: Correction of Non-uniform Transmission of the Optical Sys-
tem. The original intensity distribution is shown in the top left
panel (“Original”), with intensity falling off towards the edges
of the region of interest (ROI). The correction procedure re-
duced the intensity of pixels near the center to match the target
value near the darkest corner (720, 720) in the selected ROI. The
image after correction is shown in the top right panel (“Cor-
rected”). The bottom panel shows intensity along the diagonal
pixels of the ROI (solid white lines) before and after correction.

was composed of blocks with an edge length of 80 pixels, with only the pixel

at the center of each block was turned on. Figure 3.10a shows how the imaging

quality of single pixels changed across an ROI of 720 × 720 pixels. For example,

images of a single pixel tended to be sharp and focused near the center of the
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Figure 3.10: Imaging quality of the OLED pixels. a, Images of the OLED
pixels in a region of interest (ROI) of size 720 × 720. Only
the pixels on the grid points of a 2D grid (with edge length
of 80 pixels) were switched on. The OLED display was first
imaged onto the SLM, and then relayed to the detector plane
where the images were captured by a camera. The intensity
inside each block was normalized to the maximum pixel value
in the block. b(c), The 7 × 7 crosstalk kernels near the center
(corner) of the FOV. Each entry denotes the percentage of op-
tical power coupled into each individual SLM pixel, with all
the power supposed to couple to the central pixel.

FOV, while images of pixels towards the corner of the FOV spread out into a

streak along the radial direction. This is probably due to coma aberration, which

is common to most imaging systems (Figure 3.10a). Meanwhile, the walk-off

of pixel alignment could be observed by the deviation of the focus from the

center of each block (Figure 3.10a). As discussed in 3.4.1, pixel walk-off due

to linear image distortion can be corrected with careful mechanical alignment,
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while nonlinear distortion cannot be eliminated. Based on Figure 3.10a, the

pixel walk-off was insignificant for the ROI of 720×720. Incidentally, the largest

possible ROI for optical matrix-vector multiplication was determined by the

trade-off between optical power transmission and imaging quality distribution

(Figure 3.9 and Figure 3.10a). Since the imaging quality was better on the right

side, the ROI was shifted slightly to the right of the brightest part of the intensity

distribution.

Pixel walk-off and crosstalk both resulted in errors in weight modulation,

due to the coupling of optical energy into neighboring SLM pixels with incorrect

modulation weights. These effects were quantified and modeled as so-called

crosstalk kernels, which are similar to convolution kernels but vary gradually

in space. Figure 3.10b, c show the intensity distribution of a focal spot near

the center (corner) of the FOV in a 7 × 7 block of SLM pixels, with the central

pixel denoting the SLM pixel that the bright OLED pixel should align to. When

both input vectors and weights were natural images (whose pixel value vari-

ation was smoother, and usually constitute the first layer of neural networks

for image classification), the error caused by walk-off and crosstalk was less se-

vere. For applications in optical neural networks (ONNs), such imaging errors

were modeled during the training process by random affine transforms and 2D

convolution to enhance the model’s resilience to imaging errors (4.4).

3.4.4 System Noise Characteristics

We examined temporal fluctuations of each part of the system and describe

hindrances in approaching shot noise-limited performance. Overall, when the
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OLED was set at a constant brightness and the SLM at a constant transmission

across all pixels, the SNR of optical power measurements were about half the

shot noise-limited SNR (Figure 3.11). Sources of excess noise, in addition to shot

noise, include intensity fluctuation of the OLED display, phase instability of the

SLM, and the intrinsic noise of the detector. At high optical power, noise from

external sources dominates the SNR measurement; as the power decreases, shot

noise becomes a dominant source of noise. At extremely low optical power, the

intrinsic noise of the detector is mainly responsible for deviations from the shot

noise-limited performance.

Figure 3.11: The signal-to-noise ratio (SNR) as a function of photon flux,
as measured by the MPPC. The integration window was
150 ns under analog mode.

There are three main components causing intensity fluctuations in OLED

displays: raster scanning during screen refreshing, pulse width modulation for

brightness control, and the thermal noise of OLEDs. When a stationary image

was shown on the OLED display, no perceivable raster scanning pattern was

observed in high-speed videos of the display. There were occasional black scan-

ning stripes and short bursts of flashing, which are likely to have been caused
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by some refreshing mechanism. The OLED display did not seem to use pulse

width modulation to adjust brightness until very low brightness settings were

reached (below ∼35 %). Therefore, we avoided setting pixels to low values, and

instead used neutral density filters to attenuate light for extremely low-light

measurements. The intensity fluctuation of the light source was mitigated by

the high attenuation of the imaging system. Due to the large emission angle

of OLED pixels (> 60 degrees), most of the optical power was not collected by

the zoom lens, which has a small collection angle. It was estimated that only

∼0.7 % of light was collected by the zoom lens (Figure 3.12). The high loss con-

verted the thermal state of the OLED light closer to a coherent state by coupling

vacuum states to it [72], which improved the SNR and brought the ratio closer

to the shot noise limit. It should be noted that even though the light collection

efficiency was low for the zoom lens, the transmission from before the SLM to

the detector (where the computation took place) was quite high at ∼22 % (Figure

3.12). Thus, optical energy efficiency can be drastically improved if the OLED

and zoom lens are replaced with a stable coherent source and an optical system

with high transmission in a customized setup.

The phase fluctuation of the SLM stems from the constant switching of volt-

age across the liquid crystal layers. This fluctuation could be measured by mon-

itoring the intensity fluctuation of the laser diffraction pattern generated by a

phase grating on the SLM. According to the manufacturer, the SLM used in this

experiment oscillated at 53 kHz, with a measured peak-to-peak power ripple of

0.24% for the first-order diffraction spot. Compared to OLED intensity fluctua-

tions, instabilities caused by the SLM are relatively minor.

The intrinsic noise of the detector (e.g., thermal noise or dark counts) con-
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tributed to excess noise that was only apparent when the optical power to be

measured was extremely weak. As discussed in 3.3.3, the detector’s intrinsic

noise was negligible for high optical power (≫1 pW). The analog noise floor

becomes significant for low optical power at ∼1 pW, which necessitates photon

counting for even lower photon flux.

From To Transmission
Stage 1 Stage 2 0.007
Stage 2 Stage 3 0.07
Stage 3 Stage 4 0.22 
Stage 1 Stage 4 0.00011

Figure 3.12: The pptical power transmission at each stage of the setup.
A breakdown of the transmission of each stage of the experi-
mental setup is listed in the inset table of the figure.

3.5 Vector-Vector Dot Product Accuracy

To understand how well our system performed in practice in the regime of low

optical power consumption, we characterized its accuracy while varying the

number of photons used. In our first characterization experiments, we com-

puted the dot products of randomly chosen pairs of vectors (Figure 3.13a; Sec-

tion 3.5.2). The results from our characterization with dot-product computa-
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tions apply directly to the setting of matrix-vector multiplications with generic

matrices because our setup computes matrix-vector multiplications as a set of

vector-vector dot products. For a dot-product computation, the answer is a

scalar, so only a single detector was used: the optical signal encoding the dot-

product solution was measured by a sensitive photodetector capable of resolv-

ing single photons (Section 3.3.3), and the number of photons used for each dot

product was controlled by changing the detector integration time and by insert-

ing neutral-density filters immediately after the OLED display.

To demonstrate our setup could perform computations using less than 1

photon per scalar multiplication for large vector sizes, we measured the numer-

ical precision of dot products between vectors each of size ∼0.5 million. With

0.001 photons per scalar multiplication, the error was measured to be ∼6% (Fig-

ure 3.13b; see Section 3.5.2 for the details of RMS-error calculation); the dom-
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Figure 3.13: Vector-vector dot products computed with high accuracy
and high effective numerical precision using as few as 0.001
photons per scalar multiplication. a, Simplified schematic of
optical setup for computation of vector-vector dot products,
and characterization procedure. N-pixel images were used as
test vectors by interpreting each image as an N-dimensional
vector. The setup was used to compute the dot products be-
tween many different random pairs of vectors, with each com-
putation producing a result ymeas (top and center rows; exam-
ple experimental measurement of element-wise multiplica-
tion w⃗◦ x⃗ was captured with a camera before optical fan-in for
illustrative purposes). For each vector pair, the dot-product
ground truth ytruth was computed on a digital computer (bot-
tom row). The error was calculated as ymeas − ytruth. b, The
root-mean-square (RMS) error of the dot product computa-
tion as a function of the average number of detected photons
per scalar multiplication. The vector length N was ∼0.5 mil-
lion (711×711), which is sufficiently large that we observed an
RMS error of <6% even when only 0.001 photons per mul-
tiplication were used, and an RMS error of <1% when 0.1
photons per multiplication were used. The insets show er-
ror histograms (over different vector pairs and repeated mea-
surements) from experiments using 10 and 0.001 photons per
multiplication, respectively. The error bars in the main plot
show 10× the standard deviation of the RMS error, calculated
using repeated measurements. c, The RMS error as a function
of the vector size N, equal to the number of scalar multiplica-
tions needed to compute a vector-vector dot product. For each
vector size, the RMS error was computed using five different
photon budgets, ranging from 0.001 to 10 photons per scalar
multiplication. The shaded column indicates data points that
are also shown in b. The error bars show 3× the standard de-
viation of the RMS error, calculated using repeated measure-
ments.
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inant contribution to this error was from shot noise at the detector (Section

3.4.4). As we increased the number of photons used, the error decreased un-

til it reached a minimum of ∼0.2% at 2 photons per multiplication or higher

(Figure 3.13b). We hypothesize that the dominant sources of error at high pho-

ton counts (>2 photons per multiplication) are imperfect imaging of the OLED

display pixels to SLM pixels, and crosstalk between SLM pixels. We note that

the experimental runs to test the performance of the system when using 0.001

photons per multiplication (which resulted in ∼6% error) were performed with

a detector integration time of ∼100 ns. This shows that matrix-vector multiplica-

tions can be performed with <1 photon per multiplication at a rate of at least 10

MHz, although this is merely an experimentally demonstrated lower-bound: in

principle, with sufficiently fast modulators and detectors, the system should be

able to perform matrix-vector multiplications at rates >10 GHz [25]. To enable

comparison between the experimentally achieved analog numerical precision

with the numerical precision in digital processors, we can interpret each mea-

sured analog error percentage (Figure 3.13b) as corresponding to an effective

bit-precision for the computed dot product’s answer. Using the metric noise-

equivalent bits [25], an analog RMS error of 6% corresponds to 4 bits, and 0.2%

RMS error corresponds to ∼9 bits.

We also verified that we could compute dot products between shorter vec-

tors when using low numbers of photons per scalar multiplication (Figure

3.13c). For photon budgets ranging from 0.001 to 0.1 photons per multipli-

cation, the numerical error was dominated by shot noise for all vector sizes

tested. When the number of photons used was sufficiently large, the error was

no longer dominated by shot noise, which is consistent with the single-vector-

size results shown in Figure 3.13b. For every photon budget tested, dot prod-
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ucts between larger vectors had lower error; we attribute this to dot products

between larger vectors involving the effective averaging of larger numbers of

terms.

3.5.1 Computing Dot Products Using Incoherent Light

Our setup can only perform dot products between vectors with non-negative

elements, because xk is encoded with the intensity of each spatial mode, and

wk is encoded with the transmission of each spatial mode. However, dot prod-

ucts between vectors of signed elements can always be reduced to those be-

tween non-negative-valued vectors with minimal digital processing overhead

[64]. For a general vector with signed elements x⃗signed, where each element

xsigned
k ∈ [xsigned

min , xsigned
max ], xsigned

min , xsigned
max ∈ R, a non-negative vector x⃗′ can be ob-

tained by adding bias terms and rescaling:

x⃗′ =
x′max − x′min

xsigned
max − xsigned

min

x⃗signed +
xsigned

max x′min − xsigned
min x′max

xsigned
max − xsigned

min

1⃗, (3.1)

where 1⃗ = (1, 1, · · · , 1) is a constant vector of size N. It can be verified that x′k is

tightly bounded between [x′min, x
′
max] with x′max ≥ x′min ≥ 0. Therefore, two vec-

tors with signed elements w⃗signed and x⃗signed can be converted to non-negative

vectors w⃗′ and x⃗′, and the dot product w⃗signed · x⃗signed equals to the linear com-

bination of w⃗′ · x⃗′, w⃗′ · 1⃗, 1⃗ · x⃗′ and a constant term. All three dot products are

between vectors of non-negative elements. The dot product between 1⃗ and any

vector equals the summation of all of the vector elements, which were computed

optically like any other dot product.
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In machine learning applications, the input vector x⃗′ is either the input to the

neural network or the neural activation of the previous layer, both of which are

non-negative values after the ReLU nonlinear activation function. Therefore,

since x⃗signed is already non-negative with xsigned
min = 0,

w⃗ signed · x⃗ signed = c1 w⃗′ · x⃗′ + c2 1⃗ · x⃗′. (3.2)

For simplicity, both x⃗′ and w⃗′ can be normalized to the range [0, 1], and

the coefficients in Eq. 3.2 can be solved as: c1 = (wsigned
max − wsigned

min )xsigned
max ,

c2 = wsigned
min xsigned

max . The normalized vectors x⃗′ and w⃗′ were loaded onto the OLED

display and the SLM, respectively, according to the hardware LUTs (e.g., Fig-

ure 3.4c and Figure 3.5b). In reality, the SLM could not achieve zero transmis-

sion which led to a minimum modulation xsigned
min = ϵ = 0.02 (Figure 3.5b). In

other words, w′k was normalized to the range [ϵ, 1] instead of [0, 1]. In this case,

c1 =
1

1−ϵ (w
signed
max − wsigned

min )xsigned
max , c2 =

1
1−ϵ (w

signed
min − ϵwsigned

max )xsigned
max .

In summary, the dot product between two vectors with signed elements can

be converted to two dot products between non-negative vectors, which can be

first computed purely with optics, and then combined with only 2 digital mul-

tiplications and 2 digital additions. In other words, the price of conversion is a

doubling of the amount of optical computation with a constant digital overhead,

independent of vector size N.

For matrix-vector multiplication, the computational overhead can be further

reduced, since 1⃗ · x⃗′ remains the same for the dot product between x⃗ and any

row vector of the matrix. As a result, 1⃗ · x⃗′ only needs to be computed once

optically and can be reused afterwards. In other words, to compute a matrix of
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size N′ × N multiplied with a vector of size N, in addition to the N′ optical dot

products (which constitute NN′ MACs), only one additional optical dot product

(1⃗ · x⃗′) is required. Thus, the amount of digital overhead is on the order of O(N′).

3.5.2 Characterization of Dot Product Accuracy with Varying

Photon Budget

Generation of Test Datasets

To generate a test dataset representative of general dot products, we randomly

generated vector pairs x⃗ and w⃗ based on natural scene images from the STL10

dataset. Each vector was generated from a single color channel of one or more

images patched together, depending on the target vector size (each image of size

L × L contributes N = L2 elements to the vector). We chose natural images since

they are more representative of the inputs in image classification with globally

inhomogeneous and locally smooth features. To adjust the sparsity of the vec-

tors, different thresholds were applied to the image pixel values such that the

dot product results cover a wider range of possible values. This was achieved by

shifting the original pixel values (float point numbers normalized to the range

0-1) in the entire image up or down by a certain amount, unless the value was

already saturated at 1 (the maximum) or 0 (dark). For example, a shift of -1

would make the whole image dark. A shift of +0.2 would make all the pixel val-

ues that were originally larger than 0.8 saturated, and would increase all other

pixel values by 0.2. This method allowed us to tune the overall intensity of the

modulated images without losing the randomness of the distribution.
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The computation of dot products on the setup followed the same steps of

element-wise multiplication and optical fan-in. Figure 3.14 shows a few more

examples of element-wise multiplication, similar to Figure 3.13.

Figure 3.14: Example measurement of element-wise multiplication be-
tween random vectors. The top two rows show the corre-
sponding input vectors on the OLED display and the weight
vectors on the SLM. The bottom row displays modulated light
captured by a camera. The input and weight vectors were
generated from images in the STL10 dataset of size 64× 64 (or
64 × 64 = 4, 096 elements). Individual pixels are visible in the
captured images.

Data Collection Scheme and Photon Budget Control

In order to study how dot product accuracy changes with photon budget, we

used a sensitive detector (MPPC) to measure the integrated optical energy. The

optical energy consumed for each dot product computation was controlled by

tuning the detector integration times (e.g., Figure 3.11 had an integration time of
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150 ns). To get enough statistics for noise distribution under low optical power,

each detector readout measurement was repeated T times for each vector pair

w⃗ and x⃗. To get error statistics representative of general vector pairs, we also

repeated the measurement for S randomly generated vector pairs of different

sparsity from randomly chosen images, as discussed in 3.5.2 and Figure 3.14).

We call this set of vector pairs the calibration dataset, and collected a total of S ×

T data points. Detector readout vi, j denotes the jth ( j = 1, 2, . . . ,T ) measurement

made on the ith (i = 1, 2, . . . , S ) vector pair. For each vector pair, the mean

value of the detector readouts v̄i = 1/T
∑T

j=1 vi, j was calculated for large enough

T to eliminate the noise. The detector readouts were quantified either in optical

energy, or in number of photons, which is optical energy divided by the photon

energy (i.e., ∼0.4 aJ at 525 nm). To enable energy efficiency comparisons between

different vector sizes, the total optical energy, or number of photons, detected

for each dot product was further divided by the number of multiplications in

the dot product.

Calibration of Detector Readouts

A calibration model f was made to convert the average detector readout v̄i to the

dot product result ymeas,i as ymeas,i = f (v̄i). The calibration involved plotting the

ground truth of the dot product ytruth,i = x⃗i · w⃗i versus v̄i, followed by fitting the

data points to a linear curve using a least-squares criterion. Figure 3.15 shows

an example of data points measured on vector pairs of length N = 505521. The

calibration curve f is plotted in the dashed red line. The range of ytruth was

normalized to [0, 1] by rescaling x⃗′ and w⃗′, based on their definitions in Eq. 3.1,

with a multiplicative factor 1/
√

N. With the calibration model, we could read
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Figure 3.15: A calibration curve converting detector readouts to dot
product results. The mean detector readout (v̄i, x axis) is plot-
ted against the corresponding ground truth (ytruth,i, y axis) for
every vector pair in the calibration dataset. The unit of detec-
tor readout is either the number of photons (bottom axis) or
the number of photons per multiplication (top axis). The vec-
tor length was 711 × 711 (N = 505, 521). The calibration curve
(red dashed line) was obtained using a least-squares fit to the
data points. The shaded area indicates 3 standard deviations
of the repeated measurements. The average number of pho-
tons per multiplication of the data points in the plot is 0.0025.

out the dot product result based on the detector readout value. In principle,

the calibration only needed to be performed once with the calibration dataset,

unless the setup changed (e.g., adding extra attenuation) or has drifted over

time.

Quantification of Single-Shot Dot Product Computation Error

After obtaining the calibration curve, we generated another random vector pair

test dataset in order to quantify the error statistics of dot product computation

performed by our setup. Error was defined as the difference between the mea-
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Figure 3.16: Dot product error analysis at 4 typical photon budgets. The
dot products were computed with vector size N = 711× 711 =
505, 521). The average number of photons per multiplication
(indicated at the top of each plot) was controlled by the in-
tegration time of the MPPC detector, and averaged over the
entire test dataset. For each vector pair, the measurement
ymeas,i, j was repeated multiple times, and all the data points
were plotted. The ground truth ytruth,i is plotted against the
corresponding measurements ymeas,i, j. The histogram of errors
ytruth,i−ymeas,i, j is shown in each inset. The overall accuracy rep-
resentative of the dataset is characterized by the root-mean-
square error (RMSE), which is also similar to the value of the
standard deviation of the error distribution. The color code is
the same as that in Figure 3.13.

sured result and ground truth ytruth − ymeas. Suppose we have S vector pairs

in the data set and each is repeated T times. For each detector readout vi, j

(i = 1, 2, . . . , S , j = 1, 2, . . . ,T ), Errori, j = ytruth,i − ymeas,i, j, where ymeas,i, j = f (vi, j).

Unlike calibration, here we used single-shot readouts vi, j rather than the mean
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value v̄i.

For each vector pair x⃗i and w⃗i, the root-mean-square (RMS) error for different

measurement trials was calculated as RMSEi =

√
1
T

∑T
j=1 Error2

i, j, which can be in-

terpreted roughly as the most likely error one would get from a single-shot com-

putation for vector pair index i. The total RMS error across different vectors in

the dataset was calculated as RMSE =
√

1
S

∑S
i=1 RMSE2

i =

√
1

S T

∑
i, j Error2

i, j, which

could be interpreted as the most likely error one would get from a single-shot

computation by randomly selecting a vector pair from the entire test dataset.

Histograms of the errors of the test dataset are shown in Figure 3.16 insets.

The scatter plots in Figure 3.16 show how well the computed dot product

results matched the ground truth, under different photon budgets. The average

number of photons detected during these experiments were different, since they

were determined by detector integration time. With higher photon budgets, the

error decreases as the noise contribution to the error decreases. For a higher

photon budget (>1 photon per multiplication), the RMS error stops decreasing

and is instead limited by systematic error due to imperfections in the setup. The

four scatter plots in Figure 3.16) correspond to the total RMSE data point of the

same color in Figure 3.13b.

3.6 Optical Fan-In and Detection Energy Consumption

We discussed how optical fan-in plays an important role in noise reduction dur-

ing optical dot-product computation. Noise reduction is possible through the

aggregation of a large number of terms in the element-wise vector-vector prod-

uct. Since the signal-to-noise ratio is almost determined by the total photons re-
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quired for a desired output, as vector size increases, the number of photons per

multiplication decreases. Therefore, for extremely large vector sizes, it is possi-

ble to use even less than one photon per multiplication. In this section, we focus

on other technical aspects of the optical fan-in operation, including its work-

ing principles, additional reasons why it has energy consumption benefits over

digital accumulation operations, and generalization to other ONN platforms.

In this experiment, the optical fan-in operation carries out the summation

in vector-vector dot product computation by focusing optical spatial modes

onto the active area of a detector. More generally, equivalent operations (e.g.,

weighted optical fan-in, weighted sum of neural activation) exist universally

in different spatial-domain optical processing schemes, including the Stanford

matrix-vector multiplier [64], volume holography [65], 4 f convolution [63, 57],

and diffractive neural networks [18, 13]. In these schemes, each detector unit

reads out the amount of optical energy contained in multiple superimposed

spatial modes. The intensity or amplitude of each spatial mode can represent

a scalar of some up-stream element-wise product between vectors. Therefore,

the energy benefits achieved with optical fan-in are potentially applicable to

different spatial domain optical computing schemes, and the energy advantage

would improve with the number of spatial modes summed on each single de-

tector provided the noise of each spatial mode is statistically independent of

each other.

Compared to digital summation, which sums the readouts from different de-

tector pixels with digital electronic circuits, optical fan-in implements summa-

tion through the accumulation of photoelectrons generated in the same piece of

detector material. Optical fan-in reduces energy consumption by skipping the
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digital summation circuits and reducing the number of pixels, along with their

associated amplification circuits. Furthermore, compared to analog electronic

summation via pooling of all the photoelectrons generated across a large-area

detector, optical fan-in allows all the photoelectrons to be generated in the vicin-

ity of a small-area detector simply by focusing light. In such a way, the energy

associated with charging and discharging the detector can be further reduced

by shrinking the size as well as the capacitance of the detector. Incidentally, to

achieve this effect, the operation of optical fan-in does not require the combina-

tion of spatial optical modes.

Optical fan-in not only results in energy savings during the accumulation

operation, but also reduces the energy costs of digital memory used for stor-

ing intermediate results. In the operation of typical neural networks, memory-

associated energy costs often account for the majority of the total energy cost,

exceeding even the energy spent on arithmetic operations [11]. Despite attempts

to improve energy efficiency in digital electronic processors through the tailor-

ing of data flow to machine-learning tasks [11] or incorporation of more on-chip

memory [73], there is still a significant amount of memory that can theoretically

be further reduced. For example, in systolic arrays, vector-vector dot products

are computed by adding wixi (i = 1...N) term-by-term to a partial sum, with each

term requiring N dedicated memory units in order to read and write a partial

sum only once. Digital electronic adders usually have a small number of input

operands, and cannot perform the summation of a large number of terms with-

out saving the intermediate results. In comparison, optical fan-in can physically

implement summation of a large number of terms (103-105) in a single step,

which exempts the use of any intermediate memory units, potentially leading

to substantial energy savings.
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In this experiment, optical fan-in was performed by an objective lens, which

projected a de-magnified image of the SLM onto the active area of the MPPC.

The de-magnification factor from the SLM to the detector was 0.276×, and the

total de-magnification factor from the OLED display to the detector was ∼

0.0442×. In other words, each OLED pixel of original pitch 57.5 µm was imaged

to a size of 2.54 µm on the detector. Therefore, the entire 711 × 711 pixel array

could be projected onto the detector within a square of size 1.806 mm×1.806 mm,

which fits comfortably within the 3 mm × 3 mm active area of the MPPC. Dur-

ing ideal optical fan-in, all spatial modes associated with a single dot product

should be integrated by a single piece of detector material. In this experiment,

since the MPPC consists of multiple photodiodes, the spatial modes were not all

able to be focused onto a single photodiode (however, it should be noted that

the photocurrents of these pixels were still summed as analog signals to form a

single output, and no digital operations were involved). Each photodiode cov-

ered (50 µm/2.54 µm)2 ∼ 388 spatial modes for in-pixel summation. Even with

so many spatial modes, no saturation was observed. This is because the photon

flux was extremely low for each spatial mode, and thus the simultaneous arrival

of multiple photons was rare. The photoelectrons generated by different pho-

todiodes were superimposed as a single analog voltage signal at the detector

output.

The energy consumption of optical fan-in can be calculated based on the

power consumption of the detector, and can be viewed as the energy cost of

analog summation/accumulation. In this experimental setup, the MPPC works

at a typical wall-plug power of 1.1 W. Each photodiode consumes, on average

0.3 mW, after dividing the wall-plug power by the total number of the photodi-

odes (3,600). During a short detector integration time of 100 ns, each photodiode
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consumes 0.3 mW × 100 ns = 30 pJ per readout cycle. Dividing this by the num-

ber of spatial modes captured by each photodiode yields the energy consumed

for each addition. In this experiment, the minimum detector energy consump-

tion of adding one spatial mode to the dot product sum was calculated to be

30 pJ/388 = 77 fJ.

In principle, the energy budget for each addition can be further reduced via

a number of means: improving the optical fan-in implementation, using smaller

focal spots or lower detector gain, and increasing the number of spatial modes

for in-pixel summation. Here, we review in detail the effects of each strategy:

1. The focal spot can be reduced to λ/2 in air, based on the diffraction limit

(Abbe’s resolution limit with a numerical aperture of 1), which makes each

spatial mode occupy (λ/2)2 = (532 nm/2)2 = 0.071 µm2 area on the detector.

The energy consumption for each addition scales with area, thus reducing

the focal spot by half would require only 77 fJ × (0.532 µm/2/2.54 µm)2 =

0.84 fJ. In addition, the area of each spatial mode can be further reduced by

focusing light in materials with refractive index larger than 1 (e.g., glass).

2. In this experiment, the photodiodes were operated with a high gain

(Geiger mode) to provide extremely high SNR for single photon detection.

In practice, a lower gain could provide two benefits. First, a lower gain can

further reduce the energy cost per addition. A lower gain can also prevent

saturation of the detector, and allows the accumulation of more terms in

a dot product, which is essential for an optical energy advantage. Ideally,

the detector volume should be minimized to reduce capacitance, which in

turn reduces thermal noise and potentially allows for a high voltage across

the detector, i.e. exempting the use of amplifiers [24, 74], Meanwhile, the
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number of carriers scales with the detector volume, which results in a lim-

ited full-well capacity for a small detector volume. A high gain results in

each photoelectron being amplified into many electrons and quickly de-

pletes the carriers in the detector volume. For this reason, the gain of the

detector should be reduced until just enough to amplify the signal to over-

come thermal noise. For a detector area of only one spatial mode (assum-

ing λ/2 focal spot size of 525 nm), the RMS value of thermal noise electrons

is calculated as
√

kTC =
√

4.14 × 10−21 J × 27.5 aF = 3.38 × 10−19 C = 2.1e−

at room temperature [24, 74]. At a detection level of 1 photon per spatial

mode, a moderately low gain can be applied such that the number of elec-

trons generated by each photon is just large enough in comparison to the

number of noise electrons. Such an optimization strategy has also been

mentioned in Ref. [47].

3. The SNR of photon detection can also be improved by increasing the num-

ber of spatial modes for in-pixel summation. Even though both detec-

tor area and capacitance scale with the number of spatial modes to be

summed (N), the overall noise scales with
√

N while the total signal pho-

tons scale with N. For example, with 0.5 signal photons (without any de-

tector gain) and 2 noise electrons per spatial mode, the SNR = 0.25 for

each spatial mode; with 10,000 spatial modes, the SNR can be enhanced

to 0.25 ×
√

10, 000 = 25. Therefore, even in the thermal noise-limited (as

opposed to shot noise-limited) detection scheme, it is possible to antici-

pate less than 1 detected photon for each accumulation in the dot product

computation, for sufficiently large vector size.

Through a combination of the optimization measures mentioned above, the

energy consumption for optical fan-in can be reduced to the level of 100 aJ
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per addition, which is substantially more efficient than digital electronic imple-

mentation of accumulation operations (e.g., an 8-bit digital addition with two

operands costs ∼ 10 fJ [75], and reading/writing each intermediate partial sum

costs additional 10s fJ, at least).

The energy analysis of the optical fan-in operation can be generalized be-

yond the accumulation of incoherent spatial modes. When multiple frequency or

temporal modes are impinging onto the same detector, the total optical energy

measured by the detector still equals the sum of the optical energy in each indi-

vidual (frequency or temporal) mode [24, 25, 16, 17, 47], even if coherent light

is used — this is due, of course, to energy conservation. More concretely, the

energy of frequency and temporal modes can sum up in the same fashion as in-

coherent spatial modes, because light pulses of different wavelengths or pulses

arriving at different times at the same detector do not interfere with each other.

In principle, the energy cost associated with summing temporal or frequency

modes should be no more than summing spatial modes, since the detector size

(capacitance, and thermal noise) no longer needs to scale with the number of

modes, as discussed before in this section. More detailed discussion on the en-

ergy scaling on these different ONN platforms can be found in, for example,

Ref. [47, 74, 24].

3.7 Comparison to the Stanford Matrix-Vector Multiplier

Our setup can be viewed as a generalization of the classical Stanford matrix-

vector multiplier, whose operation can be summarized in three steps: fan-out,

element-wise multiplication, and fan-in (Figure 3.17). The major difference be-
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Figure 3.17: The comparison between the classical Stanford matrix-
vector multiplier and our 2D-block scheme. The top row
shows how the classical Stanford Matrix-vector Multiplier
performs matrix-vector multiplication in a sequence of three
steps of optical fan-out, element-wise multiplication, and op-
tical fan-in. The bottom row shows how the 2D-block scheme
performs the same corresponding operations.

tween our setup and the Stanford matrix-vector multiplier lies in the geometric

arrangement of the input vector and its corresponding weights (the weight vec-

tor) in 2D blocks instead of 1D arrays, which lead to different physical imple-

mentations. Compared to 1D arrays, the 2D-block arrangement of both input

and weight vectors offer advantages in scalability, especially for vector-vector

dot products with a large vector size.

The 2D-block arrangement is especially suitable for applications in image

78



classification, where the input data are usually 2D images of high dimensions.

For natural-scene images, and the weights trained for them by neural networks,

(e.g., see Figure 4.3), the pixel values usually do not vary drastically in local ar-

eas except for few high-contrast boundaries. Preserving smooth local features

in the 2D form reduces errors resulting from minor shifting or blurring of the

input and weight vectors. Therefore, our setup is more tolerant of minor errors

in instrumentation, such as imperfect imaging or crosstalk between SLM pixels

(Figure 3.18a). In comparison, flattening the vectors and weights into 1D arrays,

as required by the Stanford matrix-vector multiplier, would break the smooth-

ness of local features, which can result in more severe errors (e.g., the crosstalk

level between the neighboring SLM pixels increases with the level of contrast

between them).

The 2D-block arrangement also reduces the amount of crosstalk between dif-

ferent input or weight vectors tiled next to each other (Figure 3.18b). For each

block, crosstalk occurs to the pixels in contact with adjacent blocks. When a vec-

tor of size N is wrapped into a square, the total number of pixels on its perimeter

equals 4
√

N (Figure 3.18b top panel). If the vector were instead shaped into a 1D

array, it would share a boundary of a total of 2N pixels with neighboring arrays

(Figure 3.18b bottom panel). For a large vector of size N, 2D blocks can poten-

tially reduce the amount of crosstalk by over an order of magnitude more than

1D arrays, due to the difference in scaling of
√

N (Figure 3.18b). Even though a

gap can be introduced between the regions corresponding to different vectors, it

would also reduce the fill factor as well as the computational throughput. There-

fore, through decreasing the surface-to-volume ratio, the 2D-block arrangement

can effectively reduce crosstalk between different vectors with a high fill factor

on both OLED and SLM panels.

79



It should be noted that in the classical Stanford matrix-vector multiplier both

optical fan-out and fan-in are implemented with cylindrical lenses as reverse

processes of each other. In the 2D-block arrangement, this symmetry is bro-

ken because the optical fan-out process needs to create copies of the same block,

while the optical fan-in focuses all elements in each block. In our demonstration,

we performed the fan-out operation digitally by displaying different copies of

the same vector on the OLED display, which was sufficient for the purpose of

demonstrating sub-photon scalar multiplication. For the 2D-block scheme, it is

possible to implement optical fan-out with several techniques, including imag-

ing with a microlens array [76, 55] or beam splitting using an array of beam

splitters [77]. The optical fan-out operation would allow a very low number

of photons in each spatial mode: the optical fan-out splits the photons emitted

from a reasonably weak light source and distribute each portion of the pho-

tons into many spatial modes, with each mode performs a scalar multiplication.

In addition, since each spatial mode is the result of many vacuum modes be-

ing coupled to the original spatial mode populated by a single light source, the

noise of each spatial mode can be reduced to be quite close to shot noise, even

if the light source intensity is not perfectly stable.
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Figure 3.18: Comparison between the 2D-block and 1D-array represen-
tation of the input vector and weight matrices. a, Error
reduction effects of 2D-block representation of natural-scene
images. The smooth local features intrinsic to the image data
and corresponding weight matrices mitigate the crosstalk be-
tween neighboring pixels caused by imperfections in imaging
(e.g., degradation of focal qualities) or instrumentation (e.g.,
crosstalk between SLM pixels). Reshaping 2D images into 1D
arrays breaks the continuity intrinsic to these images. b, The
2D-block representation reduces the crosstalk between neigh-
boring vector and weight blocks. The 2D blocks share sub-
stantially shorter boundaries with each other (∝

√
N) com-

pared to 1D arrays (∝ N), which helps to reduce crosstalk
between different vector and weight blocks, or to reduce the
gaps between them for a higher fill factor on the SLM.
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CHAPTER 4

NOISE-RESILIENT OPTICAL NEURAL NETWORKS USING < 1

PHOTON PER MULTIPLICATION

Much of the content in this chapter is adapted from the work presented in Wang

et al. [1]. My major contributions to this work included designing and performing the

experiments, analyzing the data, and preparing the paper alongside the other co-authors.

4.1 Background

Theoretical studies [25, 24] show that the energy consumption of optical matrix-

vector multiplication can be orders of magnitude lower than what is possible

in electronics. It has been predicted that, for sufficiently large vector sizes, the

optical energy cost of each scalar multiplication can be amortized in matrix-

vector multiplication to achieve a level as low as less than 1 photon per scalar

multiplication [24]. With this optical matrix-vector multiplier we reported in the

last chapter, we can construct an optical neural network (ONN) that performs

image classification using less than 1 photon per scalar multiplication, matching

theoretical predictions. However, even if the theory work has promised this

possibility, there are technical challenges to tackle down the presence of noise

and errors in this situation. We will introduce how to train and implement these

noise-resilient ONNs in the later sections of this chapter.
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4.2 Large-scale Optical Matrix-Vector Multiplication

The optical processor we designed and constructed uses the following scheme

to perform matrix-vector multiplications y = Wx⃗. Each element x j of the input
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Figure 4.1: A 3D free-space optical matrix-vector multiplier that uses
less than one photon per scalar multiplication performed.
a, The role of optical matrix-vector multiplication in execut-
ing the forward-pass (inference-mode) operation in a fully con-
nected neural network. The matrix multiplications involved in
propagating each layer forward are performed optically and
the element-wise nonlinear activation functions are performed
electronically. Each neuron in the middle (hidden) layer is
color-coded to show the correspondence between the mathe-
matically abstract neurons in (a) and their optical implementa-
tion in (b). b, A step-by-step illustration of how optical matrix-
vector-multiplication can be performed by decomposing the
matrix-vector operation Wx⃗ into blocks of vector-vector dot
products that are implemented as scalar multiplications per-
formed in parallel, followed by summations (accumulations)
performed in parallel. The depiction is for a 4×4 matrix and a 4-
dimensional vector, but the concept extends naturally to matri-
ces of arbitrary dimension. The top row shows mathematically
abstract operations, and the bottom row shows the correspond-
ing physical operations with optics. “◦” denotes element-wise
multiplication between two matrices or vectors of the same
size. Individual scalar multiplications are realized optically by
encoding one operand (x j) in the intensity of a single spatial
mode (depicted as a beam for illustrative purposes), and the
other operand (wi j) in the transmissivity of a single pixel of a
modulator: propagation of the beam through the modulator’s
pixel yields the scalar multiplication, whose result wi jx j is en-
coded in the intensity of the transmitted light. Each summa-
tion

∑
j wi jx j is performed optically by focusing multiple spatial

modes onto a single detector. c, An illustration of how optical
matrix-vector multiplication can consume less than 1 photon
per scalar multiplication when for a large vector size. A single
lens is used to sum the intensities of the spatial modes encod-
ing the element-wise products wi jx j between the ith row of W
and the vector x⃗. For a vector of size N, there are N spatial
modes whose intensities are summed. If N is sufficiently large
then even if each individual spatial mode contains ϵ <1 pho-
ton on average, the total number of photons impinging on the
detector will be ϵ ≫ 1, allowing high signal-to-noise-ratio mea-
surement of the summation result yi =

∑
j wi jx j.
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vector x⃗ is encoded in the intensity of a separate spatial mode illuminated by a

pixel of a light source, and each matrix element wi j is encoded as the transmis-

sivity of a modulator pixel. We used an organic light-emitting diode (OLED)

display as the light source and a spatial light modulator (SLM) for intensity

modulation. Matrix-vector multiplications were computed in three physical

steps: 1) Fan-out: The input vector’s elements were spatially arranged into a

2D block (Figure 4.1b, top left). The 2D block representing x⃗ was replicated a

number of times equal to the number of rows in the matrix W, and then tiled on

the OLED display as shown in Figure 4.1b (top row). 2) Element-wise Multipli-

cation: Each OLED pixel encoding a single vector element x j was aligned and

imaged to a corresponding pixel on the SLM, whose transmissivity was set to

be ∝ wi j. This performs the scalar multiplication wi jx j (Figure 4.1b bottom mid-

dle). 3) Optical Fan-in: The intensity-modulated pixels from each block were

physically summed by focusing the light transmitted by them onto a detector.

The total number of photons impinging on the ith detector is proportional to the

element yi of the matrix-vector product y = Wx⃗ (Figure 4.1b bottom right). We

can interpret each yi as the dot product between the input vector x⃗ and the ith

row of the matrix W.

This design computes all the scalar multiplications and additions involved

in a matrix-vector multiplication in parallel in a single pass of light through

the setup. The encoding of vector elements in optical intensity constrains the

setup to performing matrix-vector multiplications with matrices and vectors

that have non-negative elements. However, we can use the system to perform

matrix-vector multiplications with matrices and vectors that have signed ele-

ments (elements that can take both positive and negative values) by using off-

sets and scaling to convert the calculations to matrix-vector multiplications in-
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volving only non-negative numbers [64].

Our 2D-block design can be, and was, implemented with spherical-lens sys-

tems, which are well-corrected for errors in large-field-of-view imaging. The

setup enabled us to align an array of 711×711 pixels on the OLED display to

an array of 711×711 pixels on the SLM (Sections 3.4.1, 3.4.2, and 3.4.3), allow-

ing 711×711=505,521 scalar multiplications to be performed in parallel. Our

experimental setup was, with a single pass of light through the setup, capable

of performing matrix-vector multiplications with matrices having arbitrary di-

mensions, subject to the total number of matrix elements being no larger than

505,521. In the special case of the matrix merely being a vector, our setup per-

formed a single vector-vector dot product with vectors sizes up to 505,521.

The ability to perform dot products between very large vectors with our

block-encoded design enabled us to achieve extremely low optical energy con-

sumption. For each vector-vector dot product that the system computes, the

summation of the element-wise products is performed by focusing the spatial

modes corresponding to the element-wise products onto a single detector. If

the vectors have size N, then N spatial modes are incoherently summed on the

detector.

Consequently the detector’s output, which is proportional to the dot-

product answer, has a signal-to-noise ratio (SNR) that scales as
√

N under the

shot-noise limit [25]. If the vector size is sufficiently large then even if the indi-

vidual spatial modes each have an average photon number far less than 1, the

total number of photons impinging on the detector can be much greater than 1,

and so precise readout of the dot-product answer is possible (Figure 4.1c).
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4.3 ONN Using Sub-Photon Multiplications
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Figure 4.2: MNIST handwritten-digit classification demonstrated with
an optical neural network using less than one photon per
scalar multiplication. a, Illustration of the neural-network ar-
chitecture for handwritten-digit classification that we imple-
mented as an ONN. The neural network is composed of a se-
quence of fully connected layers: an input layer consisting of
28×28 neurons encodes the image to be classified (left); two
hidden layers consisting of 100 neurons each (middle), and an
output layer containing 10 neurons (right). The activation of
each neuron is illustrated as green brightness for the exam-
ple of an input image containing the digit 3 (vertical bars, top
panel). The weights of the connections between neurons for all
four layers are shown (grayscale square arrays, bottom panel);
each square array shows the weights from all the neurons in
one layer to one of the neurons in the next layer. b, Classifi-
cation accuracy tested using the MNIST dataset as a function
of optical energy consumption (middle panel), and confusion
matrices of each corresponding experiment data point (top and
bottom panels). The optical energy per inference is defined as the
total optical energy received by the photodetectors during exe-
cution of the three matrix-vector multiplications comprising a
single forward pass through the entire neural network.

Having characterized the accuracy of our experimental setup for performing

multiplication operations with random vectors, we set out to demonstrate its

use as the core of an experimental ONN implementation. We realized an ONN

comprised of fully connected layers where the matrix-vector multiplications be-

tween each layer were performed optically using our experimental setup, and

where the nonlinearity was applied electronically (using a digital processor) be-

tween each layer.

Our main goal was to determine the extent to which our ONN could toler-

ate multiplication inaccuracy resulting from the use of a very limited photon

budget. Our approach was to run a trained neural network with our setup

and measure the classification accuracy as a function of the number of photons
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used. We used handwritten-digit classification with the MNIST dataset as our

benchmark task and trained a four-layer fully connected multi-layer perceptron

(MLP) (Figure 4.2a) with a back-propagation procedure designed for use with

low-precision inference hardware (quantization-aware training—QAT [78]; see

Section 4.4).

We evaluated the first 130 test images in the MNIST dataset under 5 different

photon budgets: 0.03, 0.16, 0.32, 0.64, and 3.2 photons per scalar multiplication

(Figure 4.2b, center panel, orange dots). We found that using 3.2 photons per

multiplication led to a classification accuracy of ∼99% (Figure 4.2b, top-right

panel), which was almost identical to the accuracy (99%) of the same trained

neural network run on a digital computer. In the sub-photon regime, using

0.64 photons per multiplication, the ONN achieved >90% classification accu-

racy (Figure 4.2b, top-middle panel). The experimental results agree well with

the results from simulations of the same neural network being executed by an

ONN that is subject to shot noise (Figure 4.2b, center panel, dark-blue line). To

achieve an accuracy of 99%, the total optical energy detected for each inference

of a handwritten digit was ∼1 pJ (Figure 4.2b). For the weight matrices used

in these experiments, the average SLM transmission was ∼46%, so when con-

sidering the unavoidable loss at the SLM, the total optical energy needed for

each inference was ∼2.2 pJ. For comparison, 1 pJ is close to the energy used for

only a single scalar multiplication in electronic processors [73], and our model

required 89,400 scalar multiplications per inference (see Section 4.5).
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4.4 Training Protocol of Noise Resilient Optical Neural Net-

works

For handwritten digit classification (MNIST database), we trained a 4-layer neu-

ral network with full connections (i.e., a multilayer perceptron, MLP). The in-

puts are 8-bit grayscale images of size 28 × 28 = 784 total pixels, followed by

two fully-connected hidden layers, each comprising 100 neurons with ReLU as

the nonlinear activation function. The output layer has 10 neurons, with each

neuron corresponding to a digit from 0 to 9. The neural network was imple-

mented and trained in PyTorch (1.7.0). To improve the robustness of the model

to numerical error, we employed several techniques during training:

1. Quantization-aware training (QAT): The activation of neurons were quan-

tized to 4 bits and weights to 5 bits to adapt to the numerical precision

of the setup. For example, for vector size of 784, we found the SNR of

dot products is equivalent to ∼4-bit numerical precision. Even though the

SLM could be controlled with 8-bit numbers, we decided to quantize its

weight to 5 bits, which matched better with its extinction ratio of 50 and

did not seem to have any negative impact on MLP accuracy. To reduce

the numerical sensitivity caused by quantization (e.g., in the regular near-

est neighbor scheme, 0.49 is rounded down to 0, while 0.51 is rounded

up to 1), we used random digitization between the adjacent levels, which

was observed to improve the model robustness against random noise. We

found that a few (6-12) warm-up training epochs with full 32-bit float pre-

cision helped to protect the model from aggressive quantization in the ini-

tial stage, after which the application of quantization noise was less likely
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to derail the training process, but still helped to fine-tune the parameters.

2. Data augmentation with random image transform and convolution: To

improve model tolerance to potential hardware imperfections, we imi-

tated similar kinds of errors on input images. For example, the misalign-

ment was modeled as random rotation (within ±5◦) and translation (±4%

of image size in any direction), mismatched zoom factor as random zoom-

ing (±4% of image size), and intra-pixel crosstalk as a mild convolution

with a 3 × 3 blurring kernel. We observed that these measures not only

helped to improve model immunity to imaging error, but also improved

overall model accuracy and robustness to photon noise by reducing over-

fitting with regularization. The data augmentation was only performed on

the input layer rather than all hidden layers, due to computational com-

plexity and the observation that hidden layers were usually more sparse,

making crosstalk between neighboring pixels was less of an issue.

3. Optimizing training parameters: We used a stochastic gradient optimizer

for training with a learning rate typically between 0.03 and 0.05, and a

momentum between 0.7 and 1. Learning rate decay was applied every 20

epochs with a decaying rate between 0.3 and 0.5. The training parameters

were randomly generated within the range for different trials of training,

and fine-tuned by using the package Optuna [79].

The training of each model took 100 epochs. Several hundred models were

trained, each with slightly different randomly generated training parameters.

Afterwards, each model was executed with simulated shot noise at different

photon budgets (code available at: https://github.com/mcmahon-lab/

ONN-QAT-SQL), and then the model yielding the best accuracy at low photon

budgets was chosen to be run on the ONN setup.
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It is important to note that the quantization of neuron activations was only

performed during training on a digital computer, but not during the inference

stage on the ONN. We observed that even though the models were trained

with noise, they still performed better when run with full precision. There-

fore, the trained weights and neural activations were loaded with the maximum

allowable precision for the hardware (i.e., 7 bits for the OLED display, and 8

bits for the SLM). The training code can be found in this GitHub repository:

https://github.com/mcmahon-lab/ONN-QAT-SQL.

The neural network model was completely trained on a digital computer,

without any customization to the optical setup. There was no in situ re-training

of any model parameter, nor any addition of extra digital layers to assist with

the optical setup. To be clear, such digital assistance is extremely useful for

bridging the gap between hardware and software in real-world applications.

However, they were not used for this study because they would have affected

the one-to-one correspondence between optical and digital operations, and

therefore our ability to unambiguously quantify the number of optical opera-

tions — and the amount of optical energy used — for each optical operation.

4.5 Workflow for Running Optical Neural Networks for Infer-

ence

The trained neural network (MLP 784-100-100-10 as described in 4.4) was exe-

cuted for inference with our optical vector-vector dot product multiplier in the

following steps:
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1. Starting from the input layer, the matrix-vector multiplication involved

in the forward propagation from the current layer to the next layer was

computed optically by each dot product, according to the procedure de-

scribed in 3.5.1. The matrix weights loaded onto the SLM were exactly the

same as those in the neural network trained on the digital computer. The

number of photons per multiplication in matrix-vector multiplication was

controlled by adjusting the number of detector samples to sum.

2. The bias terms and the nonlinear activation function were applied digi-

tally to the matrix-vector multiplication result, and these parameters fol-

lowed exactly as those in the trained neural network, without any mod-

ification or retraining. The resulting neuron activations were used as the

input vector to the matrix-vector multiplication that leads to the next layer

(go back to step 1) unless there is none (go to step 3).

3. At the output layer, the prediction was made based on the highest score.

For step 1, since the inputs and neural activations were both non-negative

due to our choice of ReLU nonlinearity, only the weight matrices needed to

be shifted and normalized. The element-wise multiplication of the first layer

is visualized in Figure 4.3b, with the weight matrix displayed on the SLM

visualized in Figure 4.3a for comparison. Each matrix-vector multiplication

yi =
∑

j Wi jx j was decomposed into vector-vector dot products w⃗i · x⃗, where

w⃗i = Wi j ( j = 1, 2, ...) encodes the (synaptic) weights from neuron i in the pre-

vious layer to neuron j in the next layer, and x⃗ = x j ( j = 1, 2, ...) encodes the

neural activations of the previous layer. Each modulated handwritten-digit im-

age shown in Figure 4.3b illustrates the element-wise product w⃗i ◦ x⃗. To obtain

the answer to the matrix-vector multiplication, element-wise modulated spatial

modes in each block (i.e., w⃗i ◦ x⃗) were summed up by optical fan-in as described
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in 3.6, which is equivalent to summing all the pixels in each block shown in the

image taken by the camera in Figure 4.3. The degree of optical fan-in equals the

vector size or the number of neurons in the previous layer (i.e., 784 for the first

layer, 100 for the second layer etc.). The 1⃗ · x⃗ =
∑

j x j term in Eq. 3.2 was com-

puted by adding an additional input vector block and setting the corresponding

SLM pixels’ transmissivity to the maximum in order to encode 1⃗ (e.g., Figure

4.3b, last row in the image. An entire row was used for illustration purposes

and redundancy, while in fact only one additional block was needed for the en-

tire layer.). The integrated optical energy was translated to the answer of the dot

product based on a calibration curve, which was made by fitting the measured

optical energy to the ground truth of the dot products using the first 10 samples

of the MNIST test dataset in a fashion similar to that described in Section 3.5.2.

For each forward propagation of the neural network, 784 × 100 + 100 × 100 +

100×10 = 89, 400 multiplications and 89,400 additions were performed optically.

The total digital assistance for each forward propagation include 100+100+10 =

210 additions for applying the 1⃗· x⃗ term (to shift the dot product between vectors

of non-negative elements in order to obtain the dot product between vectors of

signed elements), 100+ 100+ 10 = 210 additions for applying digital biases, and

100 + 100 = 200 applications of ReLU nonlinear activation functions (involving

only simple operations, such as comparing each element to 0 and setting an

element to 0 if it is smaller than 0).
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4.6 Energy Efficiency of the Optical Neural Network

The total number of optical operations is calculated as the number of operations

involved in each matrix-vector multiplication from one neural network layer to
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Figure 4.3: An example of the matrix-vector multiplication results of the
first fully-connected Layer of the ONN. a, Visualization of
the weights of the connection between the first and the second
layer of neurons; the pixel values in each square array indi-
cate the weights from all the neurons in the first layer to one
of the neurons in the second layer of neurons. The weights
were implemented as light transmission on the SLM (1 for full
light transmission and 0 for no light transmission.). b, The im-
ages show the results of element-wise multiplication between
an input vector (28 × 28 = 784 elements) and each row of the
matrix of the first fully-connected layer (100×784) of our ONN
model, as captured by a camera. The last row computed

∑
j x j,

which was used to offset the output vector for negative ele-
ments. Only the output of the first layer is shown.

the next. For an input layer of width N (also referred to as N neurons in this

layer) and an output layer width N′, the total number of scalar multiplication

equals NN′ and the total number of scalar addition is (N − 1)N′. According to

4.5, the four layers of the ONN have width 784, 100, 100, and 10, respectively.

For each forward propagation through the neural network, the total number of

optical multiplications — defined as scalar multiplication between a pair of non-

negative real numbers — is 784× (100+1)+100× (100+1)+100× (10+1) = 90,384

(the additional +1 term in each output layer width is due to the calculation of

one additional dot product 1⃗ · x⃗ as an offset term, see 4.5). The total number of

optical additions, defined as the addition of a pair of non-negative numbers, is

(784−1)×(100+1)+(100−1)×(100+1)+(100−1)×(10+1) = 90,171. The total digital

electronic operations for each forward propagation includes 100+100+10 = 210

16-bit additions for applying the 1⃗ · x⃗ term (to shift the dot product between

vectors of non-negative elements in order to obtain the dot product between

vectors of signed elements), 100 + 100 + 10 = 210 16-bit additions for applying

digital biases, and 100 + 100 = 200 applications of ReLU nonlinear activation
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functions (involving, essentially, a comparison between each element and 0, and

then setting the element to 0 if it is less than 0). The total count of all operations,

including optical and electronic, for a single forward pass of the neural network,

is summarized in Table 4.1.

Optical operations account for 100% − 621/180, 555 = 99.66% of the total

amount of operations involved in a single forward pass of the neural network

to classify a full-resolution 28 × 28 handwritten-digit image (also referred to

as per inference). More importantly, we did not use any additional trainable

digital layer to read out results from or adapt to the physical setup. This prac-

tice is necessary for the accurate quantification of optical-operation energy ef-

ficiency. It is a well-known fact in machine learning that a single linear layer

can already achieve 91.6% classification accuracy on the benchmark dataset of

MNIST (http://yann.lecun.com/exdb/mnist/), and a straightforward

implementation of reservoir computer or extreme learning machine with a ran-

dom neural network and a single digital trainable output layer can achieve even

98% accuracy [80]! In the case of optical reservoir computing, the optical layer

performs a huge amount of computation with high efficiency, but the compu-

tation is almost random and has limited programmability. As a result, a digital

output layer is required to extract useful results from optical computation that

are relevant to the task at hand. In order to isolate the contributions of digital

electronic operations from those of optical operations, we restrained ourselves

from using any trainable digital operations to adapt to the experimental setup

in this work. The neural network model run on the ONN setup was isomor-

phic [23] to the one run on a digital computer: each optical operation replaced a

corresponding digital operation in the trained neural network model that could

otherwise be executed on a digital computer, without changing any parame-
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ter (e.g., matrix weights). The absence of any extra trainable digital parameter

forced the ONN to solely rely on its optical operations: each optical operation

needed to be engineered to be highly effective and faithful to the neural network

model in order to contribute to the correct classification result.

The optical energy per operation was quantified according to the following

scheme: after optical fan-in, all the spatial modes involved in a vector-vector dot

product were focused on a bucket detector (MPPC). The detected optical energy

per dot product was measured by integrating optical power over a period of

time. The number of photons detected per multiplication was then calculated

as:

# of photons detected per multiplication =

Detected optical energy per dot product
# of multiplications per dot product × Single photon energy at 525 nm

The total detected optical energy for each layer during the execution of the

ONN for one inference was calculated with the following equation:

Total detected optical energy per layer =

Detected optical energy per dot product × # of dot products per layer

The integration time of the detector was typically chosen in the range of 1 µs

to 60 µs, in order to keep the number of photons per multiplication approxi-

mately constant across different layers. A few different values of the number of

photons per multiplication were chosen in order to observe how the classifica-

tion accuracy of the ONN changes with photon budget. The top section of Table
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4.2 shows the average detected optical energy per dot product for each layer of

the ONN. The middle section of Table 4.2 shows the detected photons per mul-

tiplication by each layer of the ONN, including a weighted average across the

entire ONN. The weighted averages were derived by weighting with the total

number of multiplications in each layer (listed in Table 4.1). The bottom section

of Table 4.2 shows the total detected optical energy for each layer and the entire

ONN during one inference, which is also plotted against the top horizontal axis

in Figure 4.2b.

When studying the energy efficiency of ONNs, attention should also be paid

to the total number of optical operations required to achieve certain level of

performance on the benchmark task, in addition to the energy efficiency of each

operation [81]. This is because the number of operations of different neural net-

work models to solve the same benchmark problem is generally different, but

ultimately the energy efficiency should be determined by the total amount of

energy to solve the problem instead of the energy consumption of each opera-

tion. Take MNIST as an example again, ∼ 106 digital operations are regularly

needed to reach 98 ∼ 99% classification accuracy with multi-layer perceptrons

(http://yann.lecun.com/exdb/mnist/). The total number of optical plus

electronic operations shown in this work (Table 4.2) falls well within this range.

This indicates that the high optical energy efficiency per operation shown in

this work readily translates to a high optical energy efficiency per inference (see

Table 4.2 bottom section), after multiplying with the total number of operations

in the neural network model. The 100-fJ level detected optical energy per infer-

ence is several orders of magnitude smaller than the total energy consumption

per inference of digital electronic processors that are highly optimized for en-

ergy efficiency on the same benchmark tasks (103 times smaller than Ref. [82]
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with binary weights and activations, ∼ 105 smaller than Ref. [83, 84]). Admit-

tedly, once the optical loss and non-optical energy is included in the total energy

consumption of ONNs, the gap between the energy consumption of optical and

digital electronic processing would decrease. Nevertheless, the low detected

optical energy per inference shown in this work indicates optical processors

have the potentials to achieve quite large advantage over electronic processors

in terms of the whole-system energy efficiency provided that the entire system

including optical and non-optical parts are sufficiently optimized.

The power consumption of each experimental instrument is listed in Table

4.3 for the completeness of experimental details. Note that the whole-system en-

ergy efficiency derived from these power consumption does not carry any signif-

icant implication on the overall energy efficiency of the ONN, since none of the

devices was customized for optimized power consumption or refresh rate. For

one example, based on the amount of digital operation needed, the laptop can

be probably replaced by a digital processor that consumes orders of magnitude

lower power. For another example, the maximum data throughput rate in this

experiment was limited by the refresh rate of OLED at 60 Hz, which was made

to adapt to human eye, most likely the speed can be increased several orders of

magnitude as well if the device were optimized for optical computing purposes.

Due to the large non-optical energy consumption overhead in the hardware

that is irrelevant to the ONN computation, the total power consumption of the

setup was constant at ∼65 W (Table 4.3), regardless of the speed of computation.

The maximum achievable computational speed is (7112 multiplications/frame+

(7112 − 1) additions/frame) × (60 frames/second) ∼ 6.07 × 107 operations/s. At

this computing rate, the energy efficiency is (6.07 × 107 operations/s)/65 W =

0.93 × 106 operations/J. Since the experimental setup was built for the purpose
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Layer1→ 2
(784-100)

Layer2→ 3
(100-100)

Layer3→ 4
(100-10)

Whole
network

Number of input neurons
(dot-product vector size) 784 100 100 —

Number of output neurons
(total number of dot products) 100+1 100+1 10+1 —

Total optical multiplications 79,184 10,100 1,100 90,384
Total optical additions 79,083 9,999 1,089 90,171
Digital addition of the
offset term 1⃗ · x⃗ (FP16) 100 100 10 210

Digital addition of
model biases (FP16) 100 100 10 210

Digital ReLU nonlinear
activation functions 100 100 0 200

Digital max/softmax
for a 10-D vector 0 0 1 1

Total number of optical operations 158,267 20,099 2,189 180,555
Total number of digital operations 300 300 21 621

Table 4.1: The number of all operations during the execution of the ONN
for one inference

of studying the optical energy efficiency of ONNs with large-scale optical dot

products, rather than as a full engineering solution optimized for competitive

performances, the computational speed and energy efficiency reported above

should be interpreted as experimental conditions instead of as the specification

of a final engineering product. For interested readers, a comparison of the com-

putational speed and energy efficiency of several cutting-edge ONNs can be

found in Ref. [18].

4.7 Discussion

Here we have presented experimental results that support the notion that opti-

cal neural networks can in principle [23, 15, 24, 25] have a fundamental energy
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Photons (optical energy) per dot product
Layer 1→ 2

(784-100)
Layer 2→ 3

(100-100)
Layer 3→ 4

(100-10)
Classification
accuracy (%)

26.7 (10.1 aJ) 3.2 (1.2 aJ) 3.4 (1.3 aJ) 11.5

126.3 (47.8 aJ) 15.9 (6.0 aJ) 16.1 (6.1 aJ) 53.8

253.5 (95.9 aJ) 32.0 (12.1 aJ) 31.5 (11.9 aJ) 70.0

520.7 (197 aJ) 62.6 (23.7 aJ) 64.0 (24.2 aJ) 90.0

2439 (923 aJ) 314.5 (119 aJ) 306.6 (116 aJ) 99.2

Photons (optical energy) per scalar multiplication

Layer 1→ 2
(784-100)

Layer 2→ 3
(100-100)

Layer 3→ 4
(100-10)

Weighted average Classification
accuracy (%)

0.034 (0.013 aJ) 0.032 (0.012 aJ) 0.035 (0.013 aJ) 0.034 (0.013 aJ) 11.5

0.161 (0.061 aJ) 0.159 (0.060 aJ) 0.161 (0.061 aJ) 0.16 (0.06 aJ) 53.8

0.323 (0.122 aJ) 0.319 (0.121 aJ) 0.316 (0.120 aJ) 0.32 (0.12 aJ) 70.0

0.665 (0.252 aJ) 0.627 (0.237 aJ) 0.638 (0.241 aJ) 0.66 (0.25 aJ) 90.0

3.109 (1.176 aJ) 3.144 (1.190 aJ) 3.070 (1.162 aJ) 3.11 (1.19 aJ) 99.2

Optical energy per inference
Layer 1→ 2

(784-100)
Layer 2→ 3

(100-100)
Layer 3→ 4

(100-10)
Whole network Classification

accuracy (%)

1.00 fJ 0.12 fJ 0.013 fJ 1.14 fJ 11.5

4.83 fJ 0.61 fJ 0.067 fJ 5.50 fJ 53.8

9.68 fJ 1.22 fJ 0.13 fJ 11.0 fJ 70.0

19.9 fJ 2.40 fJ 0.27 fJ 22.6 fJ 90.0

93.2 fJ 12.0 fJ 1.28 fJ 107 fJ 99.2

Table 4.2: Breakdown of the average detected optical energy consumption,
by layer, during the execution of the ONN for one inference
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Table 4.3: Power consumption of each experimental device

Device Power (W)

OLED display ∼ 0.5

SLM + HDMI driver 18.5

MPPC detector 1.1

Digital laptop computer ∼ 45

Total ∼ 65

advantage over electronic neural-network implementations. We showed that

ONNs can operate in a photon-budget regime in which the standard quantum

limit (i.e., optical shot noise) governs the achievable accuracy. In particular, we

achieved high classification accuracies using our ONN even when restricted to

a photon budget of less than one photon per scalar multiplication. We used a

standard neural-network model architecture and standard training techniques,

so did not specialize the model to our hardware, nor did we need to perform any

re-training to run the model on our hardware setup. This successful separation

of software and hardware development shows that our ONN could be used as

a drop-in replacement for other more conventional neural-network-accelerator

hardware [11] without the need for any major changes to the machine-learning

software workflow.

Our results have been enabled by several key design choices. The 2D-block

design presented in this work, which can be seen as a generalization of the Stan-

ford matrix-vector multiplier (Section 3.7) that avoids cylindrical lenses and their

practical limitations, takes full advantage of the number of parallel modes in

3D free space, allowing extremely large numbers of scalar multiplications to be

performed in parallel—up to ∼0.5 million in our experimental realization. This
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enabled us to implement a fully parallelized optical matrix-vector multiplier for

matrices having size up to 711×711. The same optical setup could be, and was,

used to compute vector-vector dot products with vectors of size up to ∼0.5 mil-

lion, which is many orders of magnitude larger than the vector sizes used in

previous demonstrations of optical processors [17, 61, 56, 85]. The use of 2D

blocks was also an important contributor to the achieved accuracy, since this

layout reduces the impact of crosstalk between pixels (Section 3.7).

We have shown that the optical energy used to perform each scalar multipli-

cation can be <1 × 10−18 J in a functional ONN performing MNIST handwritten-

digit classification. The ONN demonstrated in this work was of moderate size,

comprising layers with at most 784 neurons, and even better energy efficiency

can be achieved for neural networks with wider layers [24]. Our results support

an estimate that an ONN with appropriate system-level design could have an

advantage of at least two orders-of-magnitude over electronic DNN accelera-

tors, using a total energy across the entire system of only 1 × 10−16 J per scalar

multiplication, even when operating at GHz speeds.

Our proof-of-principle results for sub-photon-per-multiplication ONN oper-

ation should readily translate to other ONN architectures, including those us-

ing coherent light, provided that they involve summation of a sufficiently large

number of modes (be they spatial, frequency, or temporal modes) [24, 25].

One critical step towards building practical ONNs with high overall energy

efficiency is to design scalable optical fan-out and fan-in using miniaturized pas-

sive components. Optical fan-out is crucial to realizing sub-photon scalar mul-

tiplications: an optical fan-out stage [64] would be used to spread photons from

a single light source across a number of spatial modes larger than the number of
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photons emitted (in the experiments reported in this paper, less than 1 photon

per mode was achieved by applying attenuation, which, while enabling our sci-

entific demonstration, is not suitable as an ultimate engineering solution). Both

optical fan-out and optical fan-in can be implemented, for example, with lens

arrays [76, 55]; demonstrating an ONN using highly scalable optical fan-out/in

stages, integrated with high-efficiency modulators [86, 87] and detectors [88], is

an important next step.

More broadly, the ability to perform low-precision matrix-vector multiplica-

tions more efficiently could find application beyond neural networks, including

in other machine-learning algorithms [89] and for combinatorial-optimization

heuristics [90, 91, 92].
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CHAPTER 5

OPTICAL TRANSFORMERS

Much of the content in this chapter is adapted from the work presented in Anderson

et al. [2]. My major contributions to this work included designing and performing the

experiments, analyzing the data, and preparing the paper alongside the other co-authors.

In the previous chapter, we introduced an ONN implementation with very

low optical energy. However, only the optical energy was considered. In this

chapter, we further explore the potential overall energy advantages of ONN im-

plementations for artificial intelligence models, particularly for very large mod-

els.

5.1 Background

In recent years, Transformer models [93] have emerged as a pivotal advance-

ment in natural language processing (NLP) and beyond, revolutionizing the

field with their ability to capture intricate dependencies and patterns in sequen-

tial data. The widespread excitement and unprecedented hype surrounding

ChatGPT [94] underscore the transformative potential of these models, captur-

ing the imagination of both the public and the scientific community. It has been

found in particular that Transformer architectures significantly improve when

sized up to billions or even trillions of parameters [95, 96, 97, 98, 99, 100, 101],

causing an exponential growth of deep learning compute usage [102, 103].

These large-scale Transformers achieve ever more impressive results in not only

natural language processing, but also in other domains such as computer vision

[104, 105], graphs [106], and in multi-modal settings [107, 108, 109, 110, 111, 112],
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making them a popular but expensive solution for many tasks—digital hard-

ware’s energy efficiency (ie. per-flop or per-inference cost) has not kept up with

the growing FLOP requirements of state-of-the-art deep learning models [103].

They also have transfer learning capabilities [113, 114, 115, 95, 116, 104], allow-

ing them to easily generalize to specific tasks, in some cases in a zero-shot setting

where no further training is necessary [95, 110, 117].

Analog accelerators, such as optical accelerators, promise significant energy

and speed advantages for neural network computation. However, due to their

complexities and limitations, they have not yet been demonstrated with state-

of-the-art large-scale artificial intelligence models. Consequently, the claimed

energy advantages remain unproven. A Transformer model typically consists of

millions of parameters, with their size rapidly increasing over the years (GPT-

3 [95] has 175 billion, GPT-4 [101] has 1.76 trillion parameters). These figures

far exceed the capabilities of current analog optical implementations. Previous

work has considered deep learning models such as MLPs and convolutional

networks on benchmark tasks like MNIST [63, 1], and simulations of convo-

lutional models such as AlexNet [118] on more difficult datasets such as Ima-

geNet [24]. This is important in understanding the viability of these systems

for low-power and edge applications, but also begs the question of how well

newer, larger models perform on optical systems. Here we study Transformers

running on ONN hardware to understand the operation of ONNs at compute

scales that are orders of magnitude larger than previously considered.

In this chapter, we use our free-space optical multiplier (as introduced in

Chapter 3) to demonstrate Transformer operations in optical experiments and

for our simulations. This system has many of the same characteristics as other
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Figure 5.1: Can Transformers benefit from running on optical hardware?
Left: Optical Neural Networks (ONNs) have been proposed
as an alternative computing platform that can achieve asymp-
totic energy-efficiency advantages over digital computers run-
ning neural networks. There are various ONN platforms that
all aim to efficiently implement matrix operations. Right: We
hypothesize that Transformers’ architecture allows for ONN-
enabled benefits that scale. But energy-efficiency advantages
with ONNs are not a guarantee; their behavior is affected by
model architecture, statistics, and resilience to the noise/im-
precision of analog hardware. Thus, while there are many im-
plementations of general-purpose optical matrix accelerators
(such as those depicted in the inset), there are still model-
dependent challenges/tradeoffs in realizing their purported
advantages. We seek here to answer the question of how much
today’s enormous Transformer models can benefit from this
technology.

ONN implementations, and we aim to draw conclusions that could generally

be useful for those working with other ONN designs (Section 2.2.2, see also

Figure 5.1). While the individual implementation details are complex, what is

most important are the shared traits: free data transport, analog noise/error

(including optical shot noise), and linear operation computation (i.e. ability to

perform matrix products). Using these high-level assumptions we aim to model

the behavior and efficiency of Transformers running on ONNs in general.
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5.1.1 Optical Neural Network Energy Calculation

Streaming Weights or Weights-In-Place There are two approaches for load-

ing weights.Weights-in-place schemes involve loading them once, and re-using

them for many inputs. Alternatively, systems can employ streaming weights

where at every computation the required weight matrix is loaded. Streaming

weights systems may be advantageous in situations where both operands of

a matrix product are changing, such as in attention, or when weights are too

large to be maintained by a weight-stationary device all at once; in such cases

the weights would need to be reloaded for a weights-in-place system which are

typically not optimized for doing so.

Estimating ONN System Energy Consumption ONNs’ energy consumption

is modelled as follows: the energy cost is broken down into the optical costs of

performing MACs and the electrical costs of loading/detecting data, which are

usually dominant. Consider a product between two matrices, A ∈ Rn×d, B ∈ Rd×k.

Such a product results in loading (detecting) nd+dk (nk) scalars, and performing

ndk MACs. If the energy to electrically load (detect) a scalar is Eload (Edet), and to

perform a MAC optically is Eoptical, then the total energy is:

E = (nd + dk)Eload + nkEdet + ndkEoptical (5.1)

For weights-in-place systems, one of the operands’ loading costs can be

assumed to be free, but in some systems maintenance of the weights which

can be modelled as a small cost per MAC (given a certain throughput rate),

Emaintain. Data access costs typically remain dominant due to the high costs of
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DAC/ADC. The calculation is then as follows:

E = ndEload + ndkEmaintain + nkEdet + ndkEoptical. (5.2)

This illustrates how ONNs may have asymptotic energy advantages over

digital computers. Notice that regardless of the number of reuses, all data is

only loaded once in Equation 5.1 (and partial products are accumulated at a

detector before converting and storing the data digitally). Meanwhile, Eoptical

ideally scales as 1/d. These properties make energy cost disproportional to the

number of MACs, ndk (assuming negligible Emaintain for 5.2, which it typically

is, and in some architectures it is zero). In other words, Edigital

EONN
∼ min(n, d). For

weights-in-place operations, the energy advantage scales as Edigital

EONN
∼ d because

the weights may be reused for free.

In general, many ONN accelerators share the same approach to data pro-

cessing: data is read from memory, converted to optical signal, operated on by

an optical system, converted back to digital, and stored. Estimates for energy

costs follow the typical breakdown [1, 24, 119]: The energy Eload is broken down

into three components, related to the energy of the cost of reading from memory

Eread, digital-to-analog conversion (DAC) EDAC, and modulation to generate the

light Emod:

Eload = Eread + EDAC + Emod. (5.3)

Detection energy consumption Edet can broken down in a similar fashion, where

Edet = Edetector + Eamp + EADC + Ewrite (5.4)
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represent the costs of detecting a signal, amplifying the detected signal, per-

forming analog-to-digital conversion, and writing to memory respectively. Of-

ten, the goal is to amortize these data-access-related costs via the data reuse

when computing with large operands.

Importance of Neural Network Architecture In practice, achieving an effi-

ciency advantage with ONNs is dependent on the neural network architec-

ture being run. Data access (storage) from digital memory occurs before (af-

ter) digital-analog (analog-digital) conversion, so the costs for loading/storing

from digital hardware are only paid once, since the optically-encoded data is

freely transported/copied. Thus, the more compute to be performed per data

access (ie. how large matrix-vector products are, which depends on the DNN

architecture), the more efficient the ONN. Also, the precision requirement must

not change when the model being run is scaled. If this is true, then under shot

noise, only the same mean number of photons at the output of a dot product is

necessary, no matter how large the computation is.

5.1.2 Quantization of Large Language Models (LLMs)

Optical hardware’s low precision raises the question of whether scaled-up mod-

els could be quantized sufficiently to run. Thankfully, continual research in LLM

compression has progressively shown that larger models do not have increas-

ing precision requirements. For example, [120] found that larger Transformers

can be compressed more easily, to the degree that it is more worthwhile to train

large ones and compress them over training smaller ones of the target size. Fur-

thermore, [121] and [122] demonstrated running Transformers at scale with int8
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precision, and the recent work of [123] proposes that 4-bit is optimal for nearly

all model scales, except for the largest tested (175B parameters) where 3-bit was

sometimes found to work better. Some approaches utilize quantization-aware

training [124](QAT), where a model is fine-tuned while subject to quantization,

to make it robust at low precision.

5.2 Overview

Here we demonstrate how Transformers run on ONN systems, and estimate

the potential benefits of doing so. To first verify that Transformers may run on

these systems despite their imprecision, we sampled operations from a Trans-

former and ran them on a real spatial light modulator (SLM) based experimen-

tal system, and used the results to create a calibrated simulation of the optical

hardware, with the systematic error, noise, and imprecision of weights/inputs

we observed. Transformers running on the simulated hardware could perform

nearly as well as those running digitally, and could be far more efficient. We

summarize our key contributions as follows:

• We demonstrated linear Transformer operations (the bulk of a Trans-

former’s computation) running with sufficient accuracy on real optical

hardware and in a matching simulation, despite errors and noise on hard-

ware supporting fewer than 8 effective bits of precision.

• Via simulation, we established scaling laws for optical Transformer per-

formance versus optical energy usage, and optical energy usage versus

model size. We found that Transformers accelerated optically achieve

performance that is consistent with the ideal 1
d -energy-per-MAC scaling
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possible on analog hardware, and that Transformer architectures are large

enough to benefit significantly.

• Based on our simulations and experiments we estimated an orders-of-

magnitude energy consumption advantage of full ONN accelerators ver-

sus state-of-the-art GPUs, exceeding 103 for near-future model sizes.

• We discussed how Transformers’ suitability for optical acceleration is re-

lated to their architecture, and more generally how specific elements of

DNN architecture affect the function of ONN systems running them.

• We identified the hardware and systems design challenges that future

work on building ONN accelerators should target.

While our experiments and simulations were based on specific hardware as a

representative example, our scope here is more general. We are interested in

understanding how optical energy scaling and noise relate to Transformer per-

formance and architecture. As such nearly all our findings apply broadly to

linear optical processors (and hopefully future ones), irrespective of their un-

derlying hardware implementation details (Figure 5.1, left).

5.3 Optical Transformers

Transformers are models for processing sequential data based on multi-head at-

tention. Transformers consist of two-layer feed-forward blocks and multi-head

attention (5.2) operations. Multi-head attention computes relationships between

sequence elements by deriving query, key, and value sequences Q,K,V and com-

puting dot products with a softmax nonlinearity in-between [93]. Transformers
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Figure 5.2: Optical Transformer evaluation: prototype hardware; simu-
lator model; Transformer architecture. Bottom: typical Trans-
former architecture, but with ReLU6 activation. Top Left:
experimental spatial light modulator (SLM)-based accelerator
setup. From some layers—marked with a laser icon—we sam-
pled dot products to run on real hardware. Top Middle: Linear
operations, in light blue, run on a simulated accelerator with
noise/error. Lookup tables (LUT) allow simulation using our
setup’s supported weight/activation values. Top right: our
model of energy consumption for optical accelerators, based
on assumptions and results from our experiment/simulations.
The model accelerator system consists of random-access mem-
ory (RAM), a analog/digital conversion (DAC/ADC), light
modulation (MOD), amplification (AMP).

also leverage modern design elements such as additive residual skip connec-

tions [125] and normalization layers [126]. A defining feature of Transformers

is that entire sequences may be processed in matrix-matrix products in parallel

(instead of one token/input at a time).

We designed models that are intentionally similar to other Transformers,

with the goal of simulating their behavior (informed by some experimental mea-

surements) and energy consumption on optical hardware. A summary of our

approach and model is in Figure 5.2.
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5.3.1 Architecture and Task

We created optical Transformer models with a GPT2-like [115] architecture that

replaces the GELU [127] activation with ReLU6, which is known to improve

low-precision model performance [128, 129, 130]. For language modelling, we

used the raw Wikitext-103 dataset [131]. The models we simulated have 12 lay-

ers (consisting of multi-head attention and feed-forward blocks), operate on a

context length of 1024 tokens, use 12 attention heads, and have embedding di-

mension d varying from 192 to 1536.

5.3.2 Transformer Computations on Optical Hardware

We ran experiments using a real Transformer’s (we used the base-sized model

with d = 768) weights in order to characterize the behavior of an ONN sys-

tem. We adopted as a representative example of an optical accelerator a spatial

light modulator (SLM) based system which computes vector-vector dot prod-

ucts [1]. Vectors are encoded on a display, and copies are shone through the

SLM which has varying transmission corresponding to some data (ie. a weight

matrix). The outputs of this operation—element-wise products—are collected

at detectors as the resultant dot products (Figure 5.2, top left). We then collected

calibration curves, mappings from the detected output light intensity to the ac-

tual neuron floating-point values. To do this, we ran many random dot products

on the hardware and collected pairs of detected values and digitally-computed

ground-truth values. We then fit the relationship linearly. We used high photon

counts and averages over repeated experiments to eliminate shot noise, leaving

any deviation from the linear fit as the hardware’s systematic error.

115



There are differences between the precision limitations of real devices and

linearly-spaced quantization schemes often used for DNNs - While these de-

vices are commonly controlled by digital signals with evenly spaced discrete

levels, the resultant output of these devices tends to be unevenly spaced be-

cause of their intrinsic nonlinear response or finite extinction ratios. We used

lookup tables (LUT)s to model this kind of hardware error that is common to

many optoelectronic devices. The LUTs were collected for the organic LED dis-

play and spatial light modulators (SLMs) by measuring levels of one device

with the other at full transmission/emission. We incorporate these LUTs into

both training and simulation. Backpropagation is carried out using the straight-

through estimator just as for QAT, but unlike QAT once the rounding operation

produces the quantized uint8 representations, the numbers are directly used to

index the LUTs to produce the activations instead of dequantizing.

5.3.3 Simulation of Optical Hardware

Informed by our experiments, we constructed a simulation of the optical hard-

ware. By simulating the hardware behavior directly we model how any arbi-

trary operation would behave if run on the physical setup when it is infeasible

to run large models experimentally. We aimed to emulate the noise, error, and

precision that we observed in order to understand how well full Transformers

would perform when running on optical hardware.

Hybrid Scheme Pure optical systems cannot easily compute activation or nor-

malization functions. Thus we assumed LayerNorm, ReLU activations, and

residual skip connections are performed digitally at full precision. Thankfully,
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even in smaller models, linear computations are the overwhelming majority

(Section 5.4.3).

Non-Negative Weights and Inputs (“4-Pass” Multiplication) An important

limitation is that our display and SLM only support non-negative values. The

constraint of having all-positive data is present in many but not all optical neu-

ral network systems.We worked around this by decomposing products into

sums/differences of products with non-negative operands. Consider a prod-

uct between matrices W and X. If we let W+ (X+) and W− (X−) be matrices with

only the positive and negative elements of W (X) respectively, then:

WX = W+X+ − |W−|X+ −W+|X−| +W−X− (5.5)

Data Scaling On the real system, we define a maximum activation/weight

value as 1.0 and minimum as 0.0. To simulate operation, the inputs and weights

of every simulated NN layer are scaled to this range, and then rescaled back

afterwards.

Device Quantization Real hardware may only have certain number of rep-

resentable levels. To emulate this behavior, we fine-tuned pretrained models

using QAT and applied the following in simulation:

• For optics-simulated layers, we applied quantization to int8 (256 levels).

Then, instead of dequantizing, we used the integer values directly as in-

dices into the LUTs that we gathered experimentally.
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• We also quantized weights, but with the SLM LUT. We clamped smaller

values to 0.02 in the simulation, as our SLM does not have a high extinc-

tion ratio, and the smallest transmission is 0.02.

• Accumulation can be high precision, but we used int8 quantization for

outputs, since analog-digital conversion (ADC) is expensive in practice.

• We used both deterministic and stochastic rounding when quantizing,

with similar results.

Systematic Errors Issues like cross-talk, misalignment, defects in ONNs give

rise to systematic errors. We simulated such a constraint by adding Gaussian

noise to simulated model outputs, scaled relative to the mean sizes of the out-

puts, as this was the noise behavior we observed experimentally (it is related to

the rescaling of data between 0 and 1).

Optical Encoding and Shot Noise We modeled optical encoding by subject-

ing layer outputs to simulated shot noise (Figure 5.2), which differs from the

systematic error model. Outputs were scaled by a number such that the aver-

age photon number per feature (photons/MAC) was some target value. Each

of these features was used as the mean of a Poisson distribution, which we

sampled. These outputs were then scaled back down to represent neuron val-

ues. In the simulations for optical scaling we used vanilla 8-bit QAT (no LUTs

or systematic error, which can overwhelm shot noise) to cleanly demonstrate

the optical scaling properties—which are model-dependent and not hardware-

dependent—of Transformers.
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5.4 Results

5.4.1 Transformer Error Tolerance and Simulation Accuracy

We determined experimentally that Transformer operations are able to run on

real hardware without severely degraded performance from systematic errors.

The bottom four panels of Figure 5.3 are histograms of the experimental dif-

ferences from correct values. The simulated noise distributions (dotted lines)

match well with the experimental data, which confirms that they are an accu-

rate representation of the real systematic error behavior. Figure 5.3 (top) is a

map of the performance of the simulated model over different configurations

of the mean-relative (in percent) noise at every layer of feed-forward and atten-

tion blocks. The model performs well with significant noise (experimental noise

levels marked with stars), within 1 perplexity from noise-free performance un-

less the noise is very high. While 8-bit precision was used for QAT, the optical

Transformer can perform inference at lower precision, as implied by its error

tolerance.

5.4.2 Optical Scaling Laws

Optical Transformers achieve language modelling performance close to their

digital counterparts’ when shot-noise-limited at photon budgets where optical

energy is negligible. The perplexities on the Wikitext-103 validation set of var-

ious optical Transformer models simulated with different total photon usage

(amount used for input data) are shown in Figure 5.4 (left). The curves illustrate

a tradeoff: larger models need larger photon totals to function well, and there
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Experiment

Experimental 
Error

Simulated 
Noise

First FF
σ = 2.09%

First Attention
σ = 5.65%

20.25

Last FF
σ = 1.31%

Last Attention
σ = 5.99%

Figure 5.3: Comparison of experimental and simulated noise models
and simulated Optical Transformer noise tolerance. Top:
Simulated performance (Wikitext-103 validation perplexity
(PPL)) versus percent mean-relative simulated noise in feed-
forward (FF) and attention (Attn) layers. Systematic errors
from experimental data marked with a star. Bottom: compari-
son of simulated noise model to error from experimental data.
The Gaussian shape of the simulated error behavior matches
experiment accurately.
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Constant photons/MAC 

Constant dot-product total (1/d photons per MAC)

8-bit PPL

Equivalent to 8-bit PPL 

Figure 5.4: Simulations of Optical Transformer behavior with varying
photon usage. Left: Wikitext-103 validation-set perplexity
(PPL) versus embedding dimension d and total photons used
for a single forward pass/inference. 8-bit digital model per-
formance is shown with dashed lines. Middle: perplexity de-
grades from ideal with fewer photons-per-MAC; the plot ex-
hibits truncated power-law scaling. Right: Scaling of number
of photons needed for an Optical Transformer to achieve the
same perplexity as an 8-bit digital-electronic processor, versus
model size.

are different optimal model choices based on the photon budget. We define

photons/MAC as the total photon budget (amount at input) divided by total

MACs. The percentage difference from the performance at 10K photons/MAC

(Figure 5.4, middle)—chosen to represent an ideal high-precision scenario—is

roughly power-law scaled in photons/MAC for all models with truncation near

10K; better performance can be had with more photons, but with diminishing

returns, and the performance matches or exceeds that of the 8-bit digital models’

when the photon budget is not too low (∼ 102).

The models use fewer photons/MAC as they scale, achieving the theoreti-

cal efficient scaling where the total per-dot-product photons needed is constant.

To study how photon usage scales, we determined how many photons it takes

to reach the performance of 8-bit digital models. These values, in Figure 5.4

(right), decrease nearly as 1
d —the total photons needed per dot product is con-
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stant (bottom dashed line). The Transformer architecture clearly takes advan-

tage of efficient optical scaling with larger model sizes, suggesting that required

output SNR does not increase with scale. This is consistent with other work

which found that Transformers compress/quantize well at scale [120]. Mean-

while, the already low photon usage of the largest model suggests that models

larger than our simulations (¿10B parameters) may use ¡1 photon/MAC. This

sub-photon operation works in optical systems [1, 21] and is in essence no dif-

ferent at all from operation at higher photon counts (since the number summed

at detection is still high). These empirical scaling results are tied to our specific

configurations and training strategies.

5.4.3 Estimated Energy Usage

The efficient photon scaling trend we observed in Section 5.4.2 suggests that

Transformers running on optical hardware could achieve significant energy ef-

ficiency advantages over running on digital hardware. To understand the effi-

ciency of Transformers on optical hardware, we designed an ONN system based

on current hardware that is like our experimental setup, with our measured pre-

cision and photon scaling (see: Figure 5.2, top right). It is an inference system

with in-place weights which are loaded once and reused forever, activations

read from and written to SRAM for every layer, a 10 GHz light modulator ar-

ray, and an optical “core” which can perform 10M multiplications per cycle (this

can be thought of as a 10 megapixel SLM). The photon-per-MAC scaling versus

model dimension is taken to be the 1/d scaling which we found was possible

in our simulations, and we assumed that the model operates with 5-bit input

precision, 8-bit weight precision, and 7-bit output precision, as determined by
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Figure 5.5: Estimated energy usage of Transformer models on optical
hardware for a single forward pass/inference. Hypothetical
future model designs are labelled FUTURE-*. Trend for energy
usage in optical systems (blue) computed based on real mod-
els only. Inset: energy advantage of running on optics over
estimated NVIDIA A100 usage. The advantage grows with the
model compute. M = 106, G = 109, T = 1012, q = 1015 parame-
ters.

our study of low precision performance.

Our approach to energy estimation is as follows: the system is thus assumed

to have the behavior and components as described in Section 5.1.1; we use Equa-

tions 5.1 and 5.2 to calculate the energy cost for every linear operation in Trans-

former models, with Eoptical ∼ 1/d. This includes both the model’s linear layers

(Equation 5.2, as weights are assumed to be kept in place) and the matrix-matrix

products among activations in the attention operation (Equation 5.1, which in-

cludes the cost of loading both operands, as there are no static weights). The cost

of digitally-run operations, such as softmax, ReLU, and other element-wise op-

erations, is assumed to be the cost of storing and loading all operands in mem-
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ory. None of the digital operations have the ∼ d2 scaling of the optically-run

linear operations, so energy-efficiency advantages are still possible.

As models grow, running Transformers on optical hardware has a large and

asymptotic efficiency advantage over running on digital hardware. In Figure 5.5

we chart estimates of the forward pass energy required for various models1, in-

cluding a hypothetical family of large, dense Transformer models designed in a

similar fashion, which we label FUTURE-*. For comparison, we also chart var-

ious digital systems [27] in different performance regimes, and a hypothetical

“next generation” GPU that can use ∼10 fJ/MAC. For small models, the optics-

based system uses about the same energy, but eventually gains an advantage

that scales asymptotically with the number of MACs. For the larger models,

MT-NLG-530B and FUTURE-4q, the optics-based approach would have ∼140×

and ∼8500× energy advantages over the current state-of-the-art GPU (NVIDIA

A100) respectively.

In summary, we found that as models get larger the feed-forward layers re-

quire most of the computation, but that the energy of data access in attention

is still very expensive due to the detection of many attention matrices across

heads. Meanwhile, the costs of the digital operations become relatively small,

≤ 20% of the total energy for large models, and therefore not a significant bot-

tleneck. 2

1The recent PaLM [132] models used a modified architecture. For simpler comparison, we
make our estimates using a model with GPT-like architecture but with the PaLM model dimen-
sions, which we call PaLM-Like.

2Trends in the design of real models have increasingly favored optics over time. Specifically,
attention loads/stores a n × n attention matrix for each of the h attention heads. Models with
more MLP compute per attention head have a larger overall ratio of computation to energy
usage; larger d

h is more efficient. The largest GPT2 [115] uses d
h = 64; GPT3 [95], 128; MT-NLG-

530b [133], 160; and PaLM [132], 384.
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5.5 Discussion

The results given in Section 5.4.3 on optical Transformers’ efficiency have impli-

cations for the design of future ONN hardware/software systems. In particular,

we found that ONNs constructed with the following traits would be ideal:

• An efficient ONN system for Transformers must perform data copying af-

ter digital-analog conversion (fan-out) and accumulation (fan-in) of partial

products before detection and analog-digital conversion.

• An ONN must perform computations with large operands in a single shot

to gain an energy advantage. Once operands exceed 104 × 104 in size the

advantage is significant, and therefore a future ONN should implement

at least this level of parallelism to achieve >100× efficiency improvements

over current state-of-the-art GPUs (NVIDIA A100).

• An ONN must support at least 7 effective bits of precision. The impreci-

sion can come from various sources of noise or error as long as there are

effectively ∼ 27 distinguishable levels (however, recent work has demon-

strated low-precision Transformers [123, 134]).

• An ONN system must have sufficient fast (ie. SRAM) memory to store

activations at minimum.

• An ONN should be implemented with minimal cost of its surround-

ing electronic components for maximum benefit. Future improvements

in CMOS technology will be greatly beneficial. We estimate that future

optics-based systems might achieve energy advantages of >100, 000× run-

ning models the size of FUTURE-4q (over 300 fJ/MAC).
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These generic traits/specifications are sufficient to implement Transformers

efficiently, regardless of implementation details. But the design of the software

— DNN architectures, including Transformer shape and size — for these sys-

tems is also critical:

• The asymptotic advantage of optics is that once data is loaded, it may be

reused N times for free, with constant energy for M-sized dot products.

This suggests that architectures with large M and N benefit the most, and

that wider is better than deeper when scaling a model (in terms of energy).

• The attention mechanism requires much of optical Transformers’ power

consumption for very little compute. Models designed with larger d
h are

therefore more energy efficient. Scaling of Transformers is conveniently

following this trend already.

• The ability of Transformers to run efficiently optically is due to their

parallel-processing of tokens with the same weights, and ability to tolerate

the levels of noise and error present in ONN systems at scale. Thus archi-

tectures designed with similar behavior [135, 136] could also be efficient.

Limitations While we have laid out the potential requirements and used sim-

ulation to predict the viability and potential gains from doing so, building a full

ONN system that realizes the potential benefit is still an open challenge. For

example, while optical components may perform computations cheaply and

quickly, there is still the issue of supplying them with sufficient data band-

width to fully leverage them. Furthermore, studying potential advantages in

speed/throughput is more challenging. In this domain, different ONN imple-

mentations have different behavior, and may be optimized towards running
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certain neural-network architectures, and further study of the tradeoffs with

speed/energy/memory could be necessary. Integrating these components into

a working system – memory, conversion, the optical elements, etc. – presents

a significant engineering challenge. Finally, we note that while our estimates

are for single devices, large-scale deep learning systems often consist of multi-

ple devices working together, due to memory/compute limitations. This intro-

duces additional data-transport costs for digital systems, and memory-bound

situations affect both digital and optical systems’ energy consumption in non-

trivial ways. In these cases, more complicated schemes to run models efficiently

are necessary, such as sharding weights across devices, and the assumption that

all weights can be kept in-place must be relaxed. Despite these limitations, we

hope that the potential benefits we studied here motivate future work in this

direction.

5.6 Summary and Conclusion

We have demonstrated the ability of Transformer models to run accurately and

efficiently on optical hardware through optical experiments and an experiment-

informed simulation of the hardware. We examined Transformers’ scaling be-

havior with optics and used our findings to show that optical systems have

a large and asymptotic energy advantage over digital ones that grows with the

model size. For example, we showed that optical hardware may achieve an over

100× energy advantage when running the largest Transformer models today

(∼500 billion parameters) and that larger, future Transformers (∼4 quadrillion

parameters) may be realized with an >8000× optical energy advantage. We then

explained how existing trends in the machine-learning community (such as op-
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timizing Transformer designs for better parallelism, and building models that

rely more heavily on multi-layer perceptrons within them [135]) are resulting in

models that are increasingly better suited for optical hardware than the canoni-

cal Transformer model [93] and previous language models—they involve large,

dense, linear calculations to saturate processors’ compute capabilities without

data-access bottlenecks. This is not a coincidence; in general, neural-network

models that are designed to be more efficient on digital-electronic hardware by

maximizing compute and parallelism per-data-access will be more efficient on

optical hardware, where data-access costs are also a primary concern.

We discussed what specifications optical hardware would need to meet to

realize the projected energy-efficiency advantages for different model sizes.

For example, to realize the 100× energy-efficiency advantage for current Trans-

former models, we project needing optical matrix-vector multipliers each capa-

ble of multiplying a 104 ×104-dimensional matrix with a 104-dimensional vector

at a rate of 1 matrix-vector multiplication every 0.1 nanoseconds, with power

consumption of roughly ∼1 pJ/bit for input/output data access and conversion.

While existing components are capable of this level of energy-efficiency, there is

an open hardware systems-level challenge of making an optical neural network

that is simultaneously big, fast, and efficient enough. We also discussed how

future architectural changes and improvements to electronics would further im-

prove ONN efficiency—with better model quantization and assumptions about

near-future hardware, future Transformers running on optical hardware could

exceed a 100,000× energy advantage over current state-of-the-art ∼300-fJ/MAC

digital electronics. The efficiency of digital-electronic neural-network accelera-

tors is improving at a rate of ∼10× every 7 years [137], suggesting that even if

the proposed optical hardware takes 10 years to develop, there should still be
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a several-orders-of-magnitude benefit to using optics for neural-network com-

putations when the scaled hardware becomes available. Furthermore, any im-

provements to the energy efficiency of electronic memories directly benefits

both digital processors and optical processors, so future development of digi-

tal processors may only shrink the optics–electronics efficiency gap through im-

proved MAC-computation efficiency, which has proceeded predictably for the

past two decades based on transistor scaling [138].

We believe our findings about the potential energy-efficiency of optical ac-

celerator hardware strongly motivate pursuing the development of optical pro-

cessors for large-scale deep learning with Transformers (or other models that

heavily rely on weight-stationary matrix-vector multiplication).
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CHAPTER 6

MULTIMODE PHOTON COUNTING FOR QUANTUM OPTICAL STATES

Much of the content in this chapter is adapted from the work presented in Presutti

et al. [3]. My major contributions to this work included evaluating and calibrating

photon-counting cameras for the spectrometer, collaborating on the quantum-optical

modeling of the experiment with the other co-authors, and assisting in building and

running the experiment.

6.1 Background

The generation, control, and measurement of entangled multimode Gaussian

states of light are crucial elements of continuous-variable (CV) quantum in-

formation processing [139, 140, 141, 142]. Most quantum technologies based

on multimode quantum optics benefit from being able to use as many modes

as possible. As an example, a Gaussian boson sampler (GBS) [143, 144] is a

special-purpose quantum computer that can – at least in the ideal case – per-

form certain calculations that are believed to be intractable on a classical com-

puter when the number of modes and number of photons in the GBS are suffi-

ciently large [144, 145]. The recent demonstration of Gaussian boson sampling

in the regime of quantum computational supremacy, with tens to hundreds of

squeezed modes and detected photons per shot [146, 147, 148, 149], was a mile-

stone in the development of CV-based quantum systems that was achieved be-

cause of the success in pushing to large numbers of modes and photons. A GBS

executes a sequence of three steps, which are common to many CV quantum-

information-processing protocols: (1) generate squeezed states, (2) apply a uni-

tary transformation to entangle them, and (3) measure the final state (by photon
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counting).

Optics gives us the choice of several possible degrees of freedom within

which to encode information – most importantly: space, time and frequency (or

any combination thereof). While large-scale GBS experiments have been real-

ized using space [146, 147, 148] and time [149] encodings, the frequency domain

remains to be explored. Frequency encoding offers important potential advan-

tages over space or time encoding for both the generation and the manipulation

(unitary control) of multimode squeezed light: reduced hardware resources and

complexity, and reduced loss. The extremely broad bandwidth of light enables

frequency-encoded systems to operate on many frequency modes in a compact

system [150, 151, 152, 153, 154, 155, 156]. Many demonstrations of large-scale

multimode squeezing, for example, use the frequency domain, e.g., in broad-

band frequency combs [154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166,

167, 168, 169]. Linear unitary operations in the frequency domain, i.e., acting on

the frequency modes, can be implemented in a hardware-efficient way, operat-

ing on all frequency modes in parallel [170, 171]. One approach is to use one or

more electro-optic modulators [172, 173, 170, 171, 174] (although there are limi-

tations on the unitary from the driving microwave bandwidth being ≲100 GHz);

another is to use nonlinear wave mixing to convert photons in each frequency

mode to photons in a combination of other frequency modes [175]. Unitaries

based on nonlinear wave mixing mediated by a classical field, such as four-

wave mixing [176], provide a route to realizing programmable unitaries that

can operate over wide bandwidths, in compact hardware with low loss. The

programming of the unitary can be done by shaping the classical field(s) used

to control the wave mixing of the modes containing quantum light, and the

wave mixing can be implemented compactly in a single-spatial-mode waveg-
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uide. However, a programmable, frequency-domain unitary working over op-

tical (>1 THz) bandwidths for quantum light has yet to be realized at even mod-

erate scale (more than 2 modes [176]).

The final step, state measurement by photon counting, is a challenge for

many multimode architectures. Since the preferred nonlinear optical materials

for generating squeezed vacuum work best at longer wavelengths, squeezing at

wavelengths centered near 1550 nm is typical [146, 147, 148, 149, 153, 154, 155,

156, 157, 158, 159, 160, 161, 162, 163, 164, 169], also in part due to the convenience

of being able to use optical components from telecommunications technolo-

gies. However, good (high quantum-efficiency, low dark-count) single-photon

detectors at 1550 nm, namely superconducting nanowire detectors [177, 178],

are very expensive and require cryogenic cooling. Silicon-based camera sensor

technologies – both charge-coupled device (CCD) and complementary metal–

oxide–semiconductor (CMOS) detectors – are well-established, comparatively

inexpensive and compact, and each camera comprises 105–106 individual pix-

els, i.e., detectors. Cameras capable of detecting single photons with low noise

have recently become available, and there is a growing literature of quantum-

optics and sensing experiments that were performed with visible wavelengths

and these cameras [179, 180, 181, 182, 183, 184]. Electron-multiplying CCD (EM-

CCD) cameras are arguably the current state-of-the-art, and low-noise CMOS

photon-number-resolving cameras are also a promising tool within this domain

[185, 186].
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6.1.1 Theory of EMCCD Camera Statistics

The electron-multiplying (EM) gain process used in EMCCD cameras is what

makes these instruments highly sensitive: by magnifying the charge of a few

photoelectrons to macroscopic levels, the camera is capable of detecting single

photons. However, the nature of the gain process is stochastic, which introduces

noise. Here we introduce the model for the gain process, and discuss how it

influences the measurements we are interested in.

Photon Statistics after EM Gain

The EM gain process adds a high amount of noise, which typically precludes the

possibility of resolving the exact photon numbers in EMCCD cameras. When n

photons are captured as photoelectrons on the CCD sensor and amplified with

EM gain g, the conditional probability of yielding x amplified electrons follows

a gamma (Erlang) distribution [187]:

P(x; n) =
xn−1 exp(−x/g)

gn(n − 1)!
.

To estimate the statistics of the EM gain output x, let Pn be the photon-

number distribution incident on a pixel. We are first able to calculate the con-

ditional moments of x with respect to n, use these to calculate (unconditional)
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moments of x, and finally calculate the photon number moments:

⟨xk⟩n =

∫ ∞

0
xkP(x; n)dx = gk (n + k − 1)!

(n − 1)!
,

⟨xk⟩ =
∑
n≥0

Pn⟨xk⟩n,

g−k⟨xk⟩ =
∑
n≥0

Pn

k−1∏
i=0

n + i =
〈 k−1∏

i=0

n + i
〉
.

This can be extended to correlations between multiple variables, e.g.:

⟨xk
i xl

j⟩ =
∑

ni,n j≥0

Pnin j⟨x
k
i ⟩ni⟨x

l
j⟩n j = gk+l

〈 k−1∏
m=0

ni + m

  l−1∏
m=0

n j + m

〉 .
We may then solve for the photon number moments by inverting the above

equations. Hence we can write down the formulae for our photon statistics of

interest (omitting the gain term g):

⟨n⟩ = ⟨x⟩

⟨nin j⟩ = ⟨xix j⟩

⟨nin jnk⟩ = ⟨xix jxk⟩

⟨n2⟩ = ⟨x2⟩ − ⟨x⟩

⟨n2
i n j⟩ = ⟨x2

i x j⟩ − ⟨xix j⟩

⟨n2
i n2

j⟩ = ⟨x
2
i x2

j⟩ − ⟨x
2
i x j⟩ − ⟨xix2

j⟩ + ⟨xix j⟩.

Finally, the electronic stages between the EM gain process and a digitized

pixel value will introduce additional noise, such as readout noise. However

this noise is independent of the signal x, hence it does not affect the above our
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ability to estimate the photon number.
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Figure 6.1: Electron multiplying gain model and thresholding. a. The
probability distribution of an amplified signal for a given num-
ber of photoelectrons, prior to additional noise. We model this
with the Erlang distribution. The signal x is measured in elec-
trons (e−) divided by the gain g (the expected value of this is
the original number of photelectrons). b. The probability dis-
tribution of the signal with Gaussian readout noise. Although
the two probability distributions begin to overlap, in this ex-
ample, thresholding can be used to distinguish between 0 and
1 (or more) photons with some degree confidence, incurring
a tradeoff between the photon-detection efficiency and false
count rate. The readout noise has standard deviation σ. The
inset shows the analytical (ideal) ROC curve for this example.

Thresholded Operation

As discussed above, the electronic signal x, ensuing an EM process with a gain

of g, follows a random distribution parametrized by the number of photons

captured n – this is shown in Figure 6.1. Due to the stochastic nature of the EM

gain process, it is impossible to resolve the original number of photoelectrons

n on the CCD sensor from the number of amplified electrons x. However, if

there are no photons absorbed by the CCD sensor during the detection window,

there is no signal (no electrons) to amplify in the gain process. Hence, there is no
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excess noise from the EM process, and the variance of the output signal depends

solely on the readout noise σ. With a high EM gain, the effective readout noise,

σ ≪ 1 e−, we can set a threshold on the output signal to discriminate between

the absence or presence of photoelectrons with a high degree of confidence.

We evaluate the EMCCD camera in the single-photon detection mode using

a threshold to detect the absence or presence of a photon. The threshold value

will determine the photon-detection efficiency (PDE) and the false click rate. In

general, a lower threshold increases the effective PDE but increases the false

click rate, and vice versa. See Figure 6.1b. By varying the threshold value, we

obtain a receiver operating characteristic (ROC) curve to characterize the perfor-

mance of the photon counter (Figure 6.1b inset). The ROC curve quantifies the

trade-off in the effective quantum efficiency and dark count rate. In practice, we

obtain the false click rate as a function of the threshold by obtaining dark frames

– images from the sensor with no illumination – and count how many times a

given threshold is exceeded. We obtain the PDE by determining the readout

noise from this data, and computing the PDE through the model by comparing

g and e, multiplied by the quantum efficiency (QE) of the CCD sensor.

6.1.2 Photon Statistics in Multimode Gaussian Quantum Op-

tics

The aim of this section is to provide a working knowledge of the physics of mul-

timode Gaussian quantum optics, especially as it relates to our experiments.

We provide an explanation of the underlying theory in our preferred formal-

ism, show how to apply the nonlinear optics equations, and how to predict the
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supermodes and squeezing values. Finally, we describe the photon number

properties of Gaussian states.

We refer to as “Gaussian” the class of states that are fully described by the

first two moments of its field operators, or, equivalently, whose phase space dis-

tribution is a Gaussian. These states are the most typical in experimental quan-

tum optics (this is a consequence of weak optical nonlinearities and the large –

classical – driving fields that are required to achieve them). Furthermore, while

multimode or multivariable quantum-mechanical states have generally expo-

nentially large representations, Gaussian states have efficient phase-space repre-

sentations. This makes working with large multimode Gaussian states tractable.

The Bosonic Covariance Matrix

To fully characterize a zero-mean Gaussian state, we must know the squeezing,

the thermal noise, the loss and the correlations between all modes; all this infor-

mation is encoded in the covariance matrix. In typical convention [188, 189]:

σ =
1
2

〈{
ξ̂, ξ̂†

}〉
−

〈
ξ̂
〉 〈
ξ̂†

〉
, ξ̂⊺ =

[
â1, . . . , âM, â

†

1, . . . , â
†

M

]
,

where â†i and âi are the bosonic creation and annihilation operators for some

mode i, defined in the usual manner. σ is Hermitian and, for later convenience,

we can write it in terms of the submatrices:

σ =

V + IM/2 U

U∗ V⊺ + IM/2


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such that V is Hermitian and U is symmetric; IM is the M × M identity. As

we shall see, V ∼ ⟨â†i â j + h.c.⟩ contains the information pertaining to the state’s

classical properties and thermal correlations, and U ∼ ⟨â†i â†j + h.c.⟩ encodes the

entanglement and higher-order-correlation physics.

Note that it is more common in the quantum optics and information litera-

ture to see the quadrature covariance matrix, which use the real-valued canoni-

cal variables x̂ ∝ â + â† and p̂ ∝ â − â†. The quadrature basis has the advantage

of being a real-valued symplectic space. However, the â-basis is a more natural

convention for photon-number properties of the field.

Overall, the Gaussian states defined by σ have 2M2 free parameters (real

numbers), plus an additional M local phase degree of freedom that may be ig-

nored, as they have no effect on the photon number statistics.

Constructing and Decomposing the Covariance Matrix

Here we summarize some of the body of work pertaining to the matrix repre-

sentations of multimode Gaussian systems. For more depth, see Refs. [190, 191,

192, 188, 193, 141, 189].

In this formalism, the space of Gaussian states is closed under Gaussian op-

erations, some of which are represented as linear transformations. We call the

transformation a Green’s function if it represents the outcome of a process de-

scribed by a linear differential equation. In a discrete basis of â-operators, any
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lossless Gaussian operation can be represented as:

âout = Câin + S â†in

ξ̂out =

C S

S ∗ C∗

 ξ̂in = Gξ̂in

or in a continuous basis parametrized by ω:

âout =

∫
C(ω,ω′)âin(ω′) + S (ω,ω′)âin(ω′)†dω′.

S may only be nonzero only if there is squeezing (if the Hamiltonian contains

an â†â† + c.c. term).

In our experiment, specifically, we are interested in the Green’s function of

the OPA process, a combination of parametric amplification and dispersion de-

scribed by the differential equation:

dâ
dz

(∆ω) = iD(∆ω)â + iA(z,∆ω) ∗ â†

where D represents the dispersion (phase matching, group velocity difference,

and higher order dispersion), and the coupling term A represents the classical

pump field, convolved with the quantum field. This equation is the same as

you would find in classical nonlinear optics, but with the operator â replacing

the classical field term. Classically, we could interpret this as the expectation

value of the field operator and its evolution; quantum mechanically, we should

think of this as the evolution of C, S that act on the operator. In our experiment,

we expect S to be predominantly anti-diagonal due to energy conservation, and
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C to depend on the phase-matching function.

Such a Green’s function can be decomposed by the Bloch–Messiah decompo-

sition, which informs us of how much squeezing there is and over what modes.

To take advantage of standard computational methods, this is performed in the

quadrature basis of x̂, p̂ (denote this Green’s function by G′). This matrix de-

composition returns canonically conjugate squeezed and anti-squeezed “super-

modes.” Concretely: 1

G′ = OoutΣO⊺in

Σ = 1
2diag({si}

M
i=1, {s

−1
i }

M
i=1) = 1

2diag({eri}Mi=1, {e
−ri}Mi=1)

where si are the symplectic eigenvalues, related to the squeezing parameters ri,

and orthogonal matrices O contain the “input” and “output” symplectic eigen-

vectors or supermodes, which come in pairs (squeezed and anti-squeezed).

The input supermodes are not important if the initial state is vacuum, as the

squeezed vacuum only depends on the output supermodes. Intuitively, Bloch–

Messiah may be thought of as a singular value decomposition that preserves

commutation relations. These bases diagonalize the Green’s function into single

mode squeezing operations. Figure 6.2 illustrates the process. Each si represents

an independent squeezed mode, and a source of photons with ⟨n⟩ = sinh2 ri dis-

tributed over the mode Oout,i, or from a quantum noise perspective, a 20 log10 si

dB noise reduction in the mode Oout,i. A change of basis from x̂, p̂ back to â

transforms the orthogonal matrices into unitary, and the diagonal matrix into a

1Note: this assumes the convention x̂ = â† + â and p̂ = i(â† − â).
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matrix where the quadrants are diagonal:

σ =

diag({cosh ri}
M
i=1) diag({sinh ri}

M
i=1)

diag({sinh ri}
M
i=1) diag({cosh ri}

M
i=1)

 .

Input Basis Output BasisParametric
Amplification

Vacuum
Input:

Quadrature Noise Distribution Squeezing

Phase-Dependent Amplification

Bright
Input:

a

b

Figure 6.2: Parametric amplification and the Bloch–Messiah decompo-
sition. The Bloch–Messiah decomposition reduces the para-
metric amplification to a phase-dependent amplification of an
orthogonal set of modes. Each input mode is transformed to
an output mode during this process: these modes are gener-
ally not the equal due to other effects in the OPA that may alter
the signal (e.g. dispersion). a. In the case of vacuum input,
squeezed vacuum is generated in each output mode indepen-
dently. b. In the case of bright input, a signal may be decom-
posed into input modes, mapped to output modes, and each
component is (de)amplified depending on the phase.
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With vacuum input, a covariance matrix can be generated as follows:

σi j =
1
2 {Gikξ̂k,G jkξ̂k} ⇒ σ = 1

2GG†.

Additional operations can be similarly applied to the covariance matrix:

σ→ GσG†.

Note that vacuum σ = I2M/2.

As previously mentioned, (going back to the x̂, p̂ basis) the input super-

modes cancel out in the vacuum case:

1
2G′G′⊺ = 1

2OoutΣO⊺inOinΣO⊺out =
1
2OoutΣ

2O⊺out

and we see that the Bloch–Messiah decomposition is also valid on the the covari-

ance matrix, although one must account for squared diagonal matrix (however,

we note that the Williamson decomposition must be used when the state is not

pure: in the case of loss, thermal noise, or if the state has been partially traced

out).

We can observe that:

σ = 1
2GG† =

1
2

 S S † +CC† CS ⊺ + S C⊺

C∗S † + S ∗C† S ∗S ⊺ +C∗C⊺


=

 S S † + I/2 (CS ⊺ + S C⊺)/2

(C∗S † + S ∗C†)/2 S ∗S ⊺ + I/2

 =
V + I/2 U

U∗ V⊺ + I/2

 .
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Note that for the U quadrants to be nonzero, a squeezing operation must be

involved through a nonzero S . No unitary C applied to any thermal state can

populate U. On the other hand, the squeezing contributes to “thermal” com-

ponents V , as it adds photons to the field, thus increasing the photon-number

variance.

The formalism introduced so far – where all the operations are unitary or

symplectic and preserve commutation relations – cannot account for losses or

inefficiencies that must be considered during the frequency conversion and de-

tection steps of our experiment. In both cases, the state occupies unobserved

modes, that are traced out. Tracing out modes in a covariance matrix is simply

equivalent to removing the corresponding rows and columns, in other words,

taking a principal submatrix that omits the traced out modes. For example,

this is used to derive the action of a lump loss or noise on a covariance matrix

(modeled as passing through a fictitious beamsplitter and tracing out the second

port):

σ→
√
ηη⊺ ◦ σ + (1 − η) ◦ ν ◦ I

where η is the transmission, ν = n̄ + 1/2 represents any thermal noise added

(1/2 for vacuum). Both are vectors in the general case. The ◦ operator is the

element-wise or Hadamard product.

We now use these results to describe the physics relevant to our experiment:

we convert the infrared squeezed light to visible, but do not detect the remain-

ing infrared light. For notational simplicity let ξ̂ = [âvis, â
†

vis, âir, â
†

ir]. The initial

state is:

σtot(z = 0) =

 σvis σvis,ir

σ†vis,ir σir

 =
I2M/2 0

0 σir(0)

 .
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The AFC (over crystal length L) acts as a unitary on the entire state:

σtot(z = L) =

Gvis,vis Gvis,ir

Gir,vis Gir,ir


I2M/2 0

0 σir


Gvis,vis Gvis,ir

Gir,vis Gir,ir


†

.

Expanding and tracing out the infrared modes we obtain the covariance matrix

of the observed visible modes:

σvis(L) = Gvis,irσir(0)G†vis,ir +Gvis,visG
†

vis,vis/2.

As the conversion tends to unity, Gvis,ir becomes unitary and Gvis,vis vanishes.

The sum frequency generation equations that yield the Green’s function in

this case are:

dâvis

dz
(∆ω) = iDvis(z,∆ω)âvis + iA(z,∆ω) ∗ âir

dâir

dz
(∆ω) = iDir(z,∆ω)âir + iA∗(z,∆ω) ∗ âvis

where, again, A is the pump field and D is the dispersion, which is notably a

function of z, due to aperiodic poling.

Photon Number Properties of Zero-Mean Gaussian States

For convenience, in the context of photon number statistics, we can make the co-

variance matrix symmetric and complex-valued, by defining the transformation
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X, as first introduced in [144]:

σ′ = σ − I2M/2, Xσ′ =

U V⊺

V U∗

 ,
X =

 0 IM

IM 0

 .
σ′ defined in this manner is useful, because we can use it to find any of the

following photon number expectation values:

〈∏
i

n̂mi
i

〉
=

〈∏
i

(
â†i âi

)mi

〉
= Haf(Xσ′m), m ∈ {0, 1}M.

using the conventional definition of the Hafnian (Haf). σ′m indicates the princi-

pal submatrix with indices given by m. Suffice to say, the Hafnian function is

central to the (Gaussian or perturbative) multimode physics of bosons, since it

can be thought of as an implementation of Wick’s theorem for Gaussian inte-

grals; for zero-mean Gaussian variables xi j :

⟨xi1 . . . xi2m⟩ =
∑
P

⟨xk1 xk2⟩ . . . ⟨xk2m−1 xk2m⟩

where the sum is over all pairings P – all possible ways to group the i-indices

into m pairs of k-indices – hence the Hafnian, a function defined for this very

purpose [194]. And of course the operators âi are jointly Gaussian (in their

quasi-probability distributions).

The general case with m ∈ NM is more complicated, as it requires more care-

ful consideration of operator ordering. Indeed, we were being hasty: â is not a
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random variable, it is an operator. However, Wick’s theorem tells us that this

was allowed as long as the state and operator have compatible representations.

For example, one way to “treat our operators as though random variables” is

by converting our expression to Weyl ordering (denoted by :. . .:W). This re-

quires a prescribed order of â’s and â†’s, and once we have this expression, we

may move the operators within without incurring a commutation relation, e.g.

:â†â:W = :ââ†:W . The correct procedure is to expand out the operator expression

into Weyl-ordered expressions, and replace each one with the corresponding

Hafnian, i.e.:

⟨n̂m1
1 n̂m2

2 . . .⟩ = ⟨(â†1â1)m1(â†2â2)m2 . . .⟩

=
∑

orderings

corder⟨:â
†

1
morder1 âmorder2

1 . . .:W⟩

=
∑

orderings

corder

 ∑
P(order)

∏
(k1,k2)

⟨:âk1 âk2:W⟩


=

∑
orderings

corderHaf(Xσm̄order).

It is well known how to relate normal (operator expressions where all the â†

precede the â, denoted by :. . .:) and Weyl forms [195, 189], in our case:

:â†mâm: =
m∑

k=0

k!
(
m
k

)2 (
−

1
2

)k

:â†m−kâm−k:W

and all modes are treated separately. Additionally, the normal form of (â†â)m

can be obtained by repeatedly applying commutation relations. This can be
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generalized to a sum represented by Stirling numbers S [196]:

(â†â)m =

m∑
i=1

S (m, i)â†iâi.

In the case of m ∈ {0, 1}M, as above, â†â = :â†â:W −1/2, and we can subtract the

constant directly from the covariance matrix as we did for σ′ (σ is convention-

ally defined as above, with the anticommutator, such that it is conveniently in

Weyl form).2 Similarly, for the second order case,

⟨n̂2⟩ = ⟨(â†â)2⟩ = ⟨:â†2â2 + â†â:⟩ = ⟨:â†2â2 − â†â:W⟩ ⇒ Haf(Xσ(2)) −Haf(Xσ).

In this example we useσ(2) to denote a larger covariance matrix where we repeat

the rows and columns of σ for this mode.

These equations involving Hafnians will look familiar to the reader famil-

iar with the recent Gaussian Boson Sampling literature. Indeed, for multimode

Gaussian states, calculating the probabilities is largely the dual of calculating

the expectation values. The photon number distribution is essentially a gener-

alized Bose–Einstein distribution that incorporates modes, interference and en-

tanglement. To quote the result proven in [143, 144], the probability of a given

measurement, n ∈ NM, has the form:

P(n) =
1

n!|σ + I2M/2|1/2
Haf (XAn)

A = I2M − (σ + I2M/2)−1, n! =
∏

ini!

2Note, however, that because in this case n̂1 = â†â is already normal ordered, we end up
implicitly converting σ to normal ordering by subtracting I/2 (i.e. σ′ii = ⟨:â

†

i âi:⟩ = ⟨â
†

i âi⟩ from
σii = ⟨:â

†

i âi:W⟩ = ⟨{â
†

i , âi}⟩).
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where the Hafnian’s argument refers to the principal submatrix with indices

given by n. To gain some intuition, one may notice the Bose–Einstein resem-

blance via σii = ⟨â
†

i âi + h.c.⟩/2 = ⟨ni⟩ + 1/2, so (σ + I/2)ii = ⟨ni⟩ + 1, thus in some

limiting cases:

|σ + I/2|−1/2 →
1

⟨n⟩ + 1
, I − (σ + I/2)−1 →

⟨n⟩
⟨n⟩ + 1

More precisely, the Bose–Einstein distribution, which is simply geometric, can

be thought of as stemming from the recurrence relation:

PBE(n) = PBE(n − 1)a = PBE(0)an =
1

⟨n⟩ + 1

(
⟨n⟩
⟨n⟩ + 1

)n

while this general version follows the similar, yet more complex, Hafnian

(Wick’s theorem) recursive property:

∀i s.t. ni > 0, P(n1, . . . , nM) =
P(0, . . . , 0)

n!

2N∑
j=1
j,i

ai jHaf(XAn−{i, j}), N =
∑

i

ni

where the notation An−{i, j} denotes the subtraction of rows and columns i, j from

the matrix An (note e.g. with j = i + N, Haf(An−{i j}) ∝ P(n1, . . . , ni − 1, . . . , nM),

ai j = P(0, . . . , ni = 1, . . . , 0)).

From the quantum computing and complexity theory perspective, the Haf-

nian is of interest as it belongs to #P, a class of classically intractable functions

[197, 144, 145].

A brief sketch of a derivation of the probabilities is as follows; it is perhaps a

bit more cumbersome than using phase space formalism (which abstracts away
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the use of operators and orders) but it is hopefully more transparent. We use the

normal form, as this allows us to use a convenient representation of the photon-

number Fock state projection operator: the vacuum projection is known to be

|0⟩⟨0| = :exp(−â†â):

(see, for example, [198] Eqns. 17–19 for a short proof), and it follows that [189]:

|n⟩⟨n| = |n1, . . . , nm⟩⟨n1, . . . , nm| =
∏

i

(â†i )ni |0⟩⟨0|
∏

i

âni
i /ni! = :

M∏
i=1

exp(−â†i âi)

(
â†i âi

)ni

ni!
:

P(n) = ⟨|n⟩⟨n|⟩ =
1
n!

〈
:

M∏
i=1

exp(−â†i âi)
(
â†i âi

)ni
:
〉
=

〈
:

M∏
i=1

e−n̂i n̂ni
i

ni!
:
〉
.

Since the operator is normal-ordered, we must also use the normal-ordered co-

variance matrix, which is σ′ as defined above (since, e.g. for the first matrix

quadrant, σ′i j = ⟨:â
†

i â j:⟩ = ⟨â
†

i â j⟩ = ⟨{â
†

i , â j}⟩ − δi j = ⟨:â
†

i â j:W⟩ − δi j = σi j − δi j). Lastly,

notice that we can set

|0⟩⟨0| = :exp
(
−1

2 ξ̂
†ξ̂

)
:

so that the notation is compatible with that of the state’s covariance matrix.

Hence, the problem is reduced once more to calculus; multivariate Gaussian

integrals. We first find P(0), and the rest of the probabilities follow from Wick’s

theorem, with a modified covariance matrix due to the above |0⟩⟨0| Gaussian.

The former can be solved with the usual tricks. Let Z ∼ N(0, I) be a vector of

standard normal random variables. By affine transformation, we can transform

it to a vector of arbitrary jointly Gaussian variables: σ′1/2Z+µ. Since we are only

interested in the case of zero displacement, let the means µ = 0. We thus simplify

our calculation by computing the expectation over the multivariate standard
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normal distribution:

〈
exp

(
−1

2 (σ′1/2Z)†σ′1/2Z
)〉
= (2π)−M

∫
R2M

dZ exp
(
−1

2Z†(σ′ + I)Z
)
= |σ′ + I|−1/2.

This is the zero-photon probability. We note that σ′ + I = σ + I/2 corresponds to

the anti-normal covariance matrix (all the â precede the â†).

Finally, we can include monomial terms in the integral to calculate other

probabilities, using Wick’s theorem once more, after solving for the effective

covariance matrix, A – since the distribution and operator Gaussians combine:

exp
(
−1

2Z†Z − 1
2Z†σ′−1Z

)
= exp

(
−1

2Z†A−1Z
)
.

A can be found by invoking the matrix inversion lemma:

A−1 = σ′−1 + I

A = (σ′−1 + I)−1

= I − σ′−1(σ−1 + I)−1

= I − (σ′ + I)−1,

as per convention. We have not been completely rigorous, however, since σ′

may not be invertible (if, in a diagonal basis, sigma has some ⟨:â†i âi:⟩ = 0, 3

in which case the Gaussian tends towards a delta function); hence, besides for

the last line, the above equalities may not be strictly valid. Nonetheless, the

moments exist, which is what we need for the moment expansion in Wick’s

3The field can never be a pure vacuum at finite temperature, although for all intents and
purposes it is at optical frequencies, since the photon energy ℏω ≫ kBT (the Boltzmann constant
temperature product) at room temperature.
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theorem.

Photon Number Expectation Values

We can solve for some lower order photon number moments in terms of σ’s ele-

ments. To eliminate local phase degrees of freedom, we set all diagonal Uii terms

to be real and positive. Here, wherever relevant, we have i < j < k (switching

order requires taking complex conjugates of some terms and can therefore in-

troduce inconsistencies).

⟨ni⟩ = Haf(Xσ′i) = Vii

⟨nin j⟩ = Haf(Xσ′i j) = |Ui j|
2 + |Vi j|

2 + ⟨ni⟩⟨n j⟩

⟨n2
i ⟩ = Haf(Xσii) −Haf(Xσi) = |Uii|

2 + 2⟨ni⟩
2 + ⟨ni⟩

⟨nin jnk⟩ = Haf(Xσ′i jk)

= ⟨ni⟩⟨n jnk⟩ + ⟨n j⟩⟨nink⟩ + ⟨nk⟩⟨nin j⟩ − 2⟨ni⟩⟨n j⟩⟨nk⟩

+ 2R
(
U∗i j(VikU jk + V jkUik) + Vi j(U∗ikU jk + V∗ikV jk)

)
⟨n2

i n j⟩ = Haf(X(σii j −
1
2δ j j) −Haf(X(σi j −

1
2δ j j))

= ⟨nin j⟩(4⟨ni⟩ + 1) + ⟨n j⟩(|Uii|
2 − 2⟨ni⟩

2) + 2Uii(U∗i jVi j + Ui jV∗i j)

⟨nin2
j⟩ = Haf(X(σi j j −

1
2δii) −Haf(X(σi j −

1
2δii))

= ⟨nin j⟩(4⟨n j⟩ + 1) + ⟨ni⟩(|U j j|
2 − 2⟨n j⟩

2) + 2U j j(Ui jVi j + U∗i jV
∗
i j)

⟨n2
i n2

j⟩ = Haf(Xσii j j) +Haf(Xσi j) −Haf(Xσii j) −Haf(Xσi j j)

= ⟨n2
i n j⟩(4⟨n j⟩ + 1) + ⟨nin2

j⟩(4⟨ni⟩ + 1) − ⟨nin j⟩(4⟨ni⟩ + 1)(4⟨n j⟩ + 1)

+ 4(⟨nin j⟩ − ⟨ni⟩⟨n j⟩)2 + (2⟨ni⟩
2 − |Uii|

2)(2⟨n j⟩
2 − |U j j|

2)

+ 2UiiU j j(V2
i j + U2

i j + V∗i j
2
+ U∗i j

2) + 8|Ui j|
2|Vi j|

2.
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A few important observations. The equations for the statistics can be sepa-

rated into a trivial component (composed of lower order statistics) and an in-

terference term, due to complex-valued U and V terms. If the U terms are zero,

there are no nontrivial higher order correlations: everything can be described

by second- or first-order statistics. Hence why thermal states do not have inter-

esting higher order correlations.

Relatedly, where U = 0, there are a vast number of states that have the same

photon number distribution, as there is no information beyond photon number

mean and covariance. Measurements carry no information about the underly-

ing supermodes.

The value of Uii ∈ [0, ⟨ni⟩(⟨ni⟩ + 1)], and the two extremes correspond to two-

mode and single-mode squeezing respectively. States that have intermediate

values can be thought of as a multimode generalization of these two concepts,

where the value of Uii represents the locality of the entanglement. When Uii = 0,

certain higher order correlations also lose interference terms. Therefore, mea-

surements of two-mode squeezed vacuum also lack certain information about

the underlying state.

Finally, for a state with sufficient information encoded in U, the inverse

problem of retrieving the state and modes from observations is possible, within

some limitations. This is within the realm of possibility and future experiments

should seek to achieve this.
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6.1.3 Coincidence Detection

In this section we explain how coincidence detection may be used as a tool to

distinguish between different pulsed photonic states, as well as measure the

purity of the state.

Derivation

50:50

Figure 6.3: Toy model for the coincidence detection experiment.

Consider a beam of squeezed light incident on a balanced beamsplitter,

which is followed by two detectors on each side of the output (Figure 6.3). The

first arm of the beamsplitter, with operator â1, has some ⟨n̂⟩ and (n̂) = 2⟨n̂⟩(⟨n̂⟩+1),

in the lossless case (η = 1). The second input port, with operator â2 has vacuum

input.

The third and fourth ports, defined by operators â3, â4, have ⟨n̂3⟩ = ⟨n̂4⟩ =
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⟨n̂⟩/2. Evaluating their statistics:

⟨n̂3n̂4⟩ =
〈
â†3â3â†4â4

〉
=

1
4

〈
(â1 + â2)†(â1 + â2)(â1 − â2)†(â1 − â2)

〉
=

1
4

〈
n̂2

1 − â2â†2n̂1

〉
⇒

1
4

(〈
n̂2

1

〉
− ⟨n̂1⟩

)
, η = 1

We can now compute the covariance of the number measurements on each

detector.

(n̂3, n̂4) = ⟨n̂3n̂4⟩ − ⟨n̂3⟩⟨n̂4⟩

=
1
4

(〈
n̂2

1

〉
− ⟨n̂1⟩

)
−

1
4
⟨n̂1⟩

2

=
1
4

((n̂1) − ⟨n̂1⟩)

⇒
1
4
⟨n̂⟩(2⟨n̂⟩ + 1⟩), η = 1

Note that for coherent states, with (n̂) = ⟨n̂⟩, and for thermal states, with

(n̂) = ⟨n̂⟩(⟨n̂⟩ + 1), the covariances are 0 and ⟨n̂⟩2/4, respectively. Similarly,

Fock states with (n̂) = 0, have negative covariance; this is the well-known anti-

bunching behavior. These different scaling behaviors allow us to experimentally

distinguish these different photonic states.

To account for loss, we introduce a fictitious unbalanced beamsplitter oper-
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ation such that ⟨n′1⟩ = η⟨n1⟩:

(n̂′1) =
〈(√

ηâ1 +
√

1 − ηâ0

)† (√
ηâ1 +

√
1 − ηâ0

) (√
ηâ1 +

√
1 − ηâ0

)† (√
ηâ1 +

√
1 − ηâ0

)〉
− η2⟨n̂1⟩

2

= η2
〈
n̂2

1

〉
+ η(1 − η)⟨n̂1⟩ − η

2⟨n1⟩
2

= η2(n̂1) + η(1 − η)⟨n̂1⟩

So the covariance will simply change by a factor η2:

(n̂3, n̂4) =
1
4

(
(n̂′1) − ⟨n̂′1⟩

)
=
η2

4
((n̂1) − ⟨n̂1⟩)

⇒
η2

4

(
2⟨n̂1⟩

2 + ⟨n̂1⟩
)

If we consider the case of asymmetric loss, it can be shown that the transmis-

sion efficiency can be replaced by the individual efficiencies of the left and right

arms, η2 → ηLηR.

Finally, in the multimode case, the total covariance is simply the sum of the

covariances of all the individual modes (as a consequence of mode indepen-

dence/commutation). Therefore, a lossy multimode squeezed state has:

(n̂3, n̂4) =
∑

i

ηLiηRi

4
((n̂i) − ⟨n̂i⟩)

⇒
∑

i

ηLiηRi

4

(
2⟨n̂i⟩

2 + ⟨n̂i⟩
)

In the case where all modes have ⟨n̂i⟩ ≪ 1, the covariance is a linear function
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of the photon number

(n̂3, n̂4) ≈
∑

i

ηLiηRi

4
⟨n̂i⟩

Notably, the slope is determined by the overall transmission efficiency, η/2 (as-

suming a constant transmission), since the average number of photons per de-

tector is

⟨N⟩ =
∑

i

ηi

2
⟨n̂i⟩

Therefore, in addition to being a test for squeezing, this experiment may also

serve as a measurement of loss.

To measure loss at slightly larger photon numbers, a quadratic fit may be

used:

(n̂3, n̂4) ≈
η

2
⟨N⟩ +

η

2
C⟨N⟩2, C ≈

∑
i

(
ηi⟨ni⟩

⟨N⟩

)2

so long as ⟨ni⟩/⟨N⟩ ≈ const. In other words, the photon numbers in the state

must scale linearly. This requires that the squeezed modes remain in the region

where ⟨n⟩ = sinh2 ri ≈ r2
i . Once again, the transmission is given by the linear

coefficient.

Threshold Detection

Finally, we must consider the case of threshold detectors, where the detector

only provides “clicks,” if it registers any number of photons. This reduces

the two observables to Bernoulli variables. While the total number of photons
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⟨N⟩ ≪ 1, the physics remains the same. However, the covariance of Bernoulli

variables is bound by a parabola, therefore the photon covariance will behave

as such:

(n3, n4) = ⟨n3n4⟩ − ⟨n3⟩⟨n4⟩

= P(n3 = 1|n4 = 1)P(n4 = 1)

− (P(n3 = 1|n4 = 1)P(n4 = 1) + P(n3 = 1|n4 = 0)P(n4 = 0)) ⟨n4⟩

= (P(n3 = 1|n4 = 1) + P(n3 = 1|n4 = 0)) (1 − ⟨n4⟩)⟨n4⟩

where we expect the probabilities to be constant in the many mode, ⟨n̂i⟩ ≪ 1,

scenario, where coincidences are predominantly due to biphotons.

Predicting Coincidence Outcomes with Wavelength-Dependent Detector

Quantum Efficiency

The above treatment of coincidence detection assumes a uniform quantum

efficiency. However, in our infrared-wavelength experiment, we have that

ηLi, ηRi → ηLi(λ), ηRi(λ). This thermalizes the state further than uniform loss. Be-

cause the QE cutoff is 1700 nm, any photon above this wavelength will never

be detected, it is traced out and its sister photon therefore effectively becomes

a thermal photon. In addition, the spectrum measured in experiment is far

broader than in simulation. Therefore, while it is straightforward to derive the

covariance expected for a given QE for the simulated state, the simulation is not

representative of experiment in this case.

To account for this, we derive a simple model to estimate the photon num-

ber vs covariance scaling we expect in the experiment, using the spectrum mea-
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sured experimentally. In addition, we use the specified detector quantum effi-

ciency.

Assume that the number of modes M ≫ ⟨N⟩, the total number of photons,

and therefore the probability of any given mode yielding photon pairs, Pm ≪ 1,

where m indexes the mode. We truncate the wavefunction of each mode in the

photon number basis, as per the biphoton approximation:

|ψ⟩m ≈
√

1 − Pm|0⟩m +
√

Pm|2⟩m + O(Pm)

Furthermore assume that the probability of producing more than two photons

per event is negligible. Then we can define the probability Pm that detected

photons arise from any given mode:

⟨N⟩ = 2
∑

m

Pm∑
m

Pm = 1⇒ Pm =
2
⟨N⟩

PM

The covariance is a sum over all covariances, which depend on the coincidence

of two photons on the two different detectors:

(n̂3, n̂4) =
∑

m
m(n̂3, n̂4) ≈

∑
m

1
2

PmηLηRQE(ωm,1)QE(ωm,2) + O(P2
m)

=
∑

m

⟨N⟩PmηLηRQE(ωm,1)QE(ωm,2) + O(P2
m)

By switching to the continuous frequency basis and parametrizing by ∆ω
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about the central wavelength ω0, we can obtain the expression:

(n̂3, n̂4) ≈ ⟨N⟩η2
∫ ∆ωmax

0
d∆ωP(∆ω)QE(ω0 − ∆ω)QE(ω0 + ∆ω)

= ⟨N⟩η2
∫ λmin

λ0

dλ
λ2

[
P(λ)QE(λ)QE

(
2
λ0
−

1
λ

)]/∫ λmin

λ0

dλ
λ2 P(λ)

where P(λ) is now the spectral density (corresponding to Figure ??c in the ex-

periment). As expected, the covariance is linear in ⟨N⟩.

For simplicity, it is assumed above that the biphotons are perfectly correlated

in frequency, which for a finite bandwidth pump and finite number of super-

modes is not physically correct, but a reasonable approximation for a narrow

phase-matching bandwidth (with respect to dQE/dω).

6.2 Highly Multimode Single-Photon Spectrometer

The infrared wavelength spectrometer is based on a diffraction grating on mo-

torized rotation stage (Thorlabs GR25-0616; K10CR1). The first order reflec-

tion couples into SMF-28 single mode fiber (Thorlabs F260APC-1550), which

monochromates the input. The fiber coupling efficiency is approximately 35%.

For single photon detection, this coupled into a InGaAs SPAD (IDQuantique ID

Qube NIR Gated), set to the nominal 15% QE. The wavelength-angle correspon-

dence is calibrated using tunable lasers (JDSU mTLG-C1C1L1) between 1527 nm

and 1609 nm and fitting to the grating equation, mλ = d(sin(θi0+∆)− sin(θir−∆) =

2d cos[(θi0 + θr0)/2] sin[(θi0 − θr0)/2 + ∆], where d is the grating constant, θi0, θr0 are

some reference incidence and reflection angles, and ∆ is the rotation angle of

the grating. The extrapolation to uncalibrated wavelengths is deemed correct
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as the spectrum stops sharply at 1150 nm, which matches the long pass filter

cutoff (Thorlabs FELH1150). However, the coupling efficiency as a function of

wavelength uncalibrated.

The visible light spectrometer is based on a diffraction grating (Ibsen PCG-

1908/675-972) imaged by an objective lens (Olympus UPLFLN4x) onto the

NüVü HNü 512 IS EMCCD camera. An EM gain of 3000 is used on the cam-

era.

The wavelength-pixel correspondence is calibrated by monochromating su-

percontinuum (NKT Origami, Thorlabs HN1550) with the infrared monochro-

mator, and converting this light through AFC. The AFC pump is amplitude-

modulated to a narrow bandwidth, thus also effectively monochromated. The

monochromated supercontinuum wavelength-to-angle is calibrated with an op-

tical spectrum analyzer (Ando AQ6317B).

The SPAD and camera are triggered by the Amplitude Satsuma laser, with

an appropriate time delay (IDQuantique ID900).

6.2.1 Spectrometer Design

In order to verify the correlation structure between frequency modes generated

by our quantum light source, we design a spectrometer that has a uniformly

high spectral resolution and low loss around λ0 = 620 nm, the central wave-

length. Here we outline the design considerations to achieve the desired spec-

tral resolution.

The number of frequency modes we can resolve is ultimately limited by the
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number of pixels in each row of the EMCCD camera. We choose an EMCCD

camera with a sensor size of 512 by 512, instead of a larger one (e.g., 1024 by

1024), because the better signal-to-noise ratio that would likely preserve more

information on our light source (see below for considerations in the choice of

camera). The spectrometer is designed for a 60 nm bandwidth (a spectrum be-

tween 590 nm and 650 nm). The ideal spectral bin width in each EMCCD pixel is

thus ∆λ = 60/512 ≈ 0.12 nm. The design of the optics must satisfy the following

two conditions to provide this resolution:

1. The spatial resolution of the lens must be finer than the pixel size of the

EMCCD camera, which is xp = 16 µm. The focal length of the objective

lens we chose (Olympus UPLFLN4x) is 45 mm. To match the focal spot

size (1/e2 diameter) to the pixel size, the 1/e2 beam diameter at the back

aperture of the objective lens should be at least 2 fλ0/(πxp/2)) = 2 × 45 mm

× 620 nm/(π× 8 µm) ≈ 2.22 mm, which is smaller than the back aperture

diameter (11.7 mm).

2. The angular resolution of the grating must exceed ∆λ, which requires the

beam to cover at least λ0/∆λ = 620 nm/0.12 nm ≈ 5300 grating lines. Since

the grating (Ibsen PCG-1908/675-972) has a line density of 1908 lines per

mm, this means the minimum 1/e2 diameter of the beam on the grating

should be at least (5300 lines)/(1908 lines/mm) ≈ 2.8 mm. The grating has

an area of 20 mm × 10 mm, sufficiently large for a beam of this size.

In conclusion, to achieve both high spatial and spectral resolution, the beam

size must be at least 2.8 mm, which is well within the clear aperture size of the

grating and objective lens. The target beam size was designed to be approxi-

mately 8 mm, and the actual beam size was slightly smaller than that.

161



To maximally preserve the quantum properties of the light, all the optics,

including routing mirrors, grating, and focusing lens, should have uniformly

low loss around 620 nm. The overall quantum efficiency of the spectrometer,

including the EMCCD camera quantum efficiency, is measured to be around

75% at 633 nm.

6.2.2 Imaging Resolution
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Figure 6.4: Focal spot size throughout the image plane. Results of a
Gaussian fit to the intensity spread at every column; the stan-
dard deviation σ is plotted. The intensity drops outside the
target spectrum region, hence the sharp transitions in the fits.

As mentioned in the Discussion, there are imperfections with the detection

setup. We do not make full use of the number of pixels: between 10–20% of

the spectrometer measures wavelengths outside the target bandwidth. Ideally,

customized optics would allow the focal length of the objective lens to match

the range of the diffraction angles from the grating to the width of the sensor.

As is, the number of detection modes and squeezed modes are close, a possible
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cause of decoherence.

Relatedly, the monochromatic focus should be well sub-pixel (16 µm), how-

ever, in this experiment we achieved a focus spot with standard deviation

σ ≈ 0.6 pixels (Gaussian fit) – on the order of the size of a pixel. We believe

the spatial mode quality of the beam is reduced when it is converted, reducing

the tightness of the focus. This is also a cause of decoherence because it be-

comes more difficult to measure the frequency of each photon, and correlations

become blurred (Section 6.2.4).

The focal spot size of the spectrometer is shown in Figure 6.4, throughout

the wavelength axis (columns) of the camera. The average intensity distribution

along the 5 vertical pixels of each column is fit to a Gaussian. The point spread

function is a radially symmetric Gaussian in these experiments. It is fairly con-

stant over the image plane (where illuminated), but higher than expected.

6.2.3 Evaluation of the EMCCD Camera
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Figure 6.5: Camera performance. a. ROC curves for different cameras
and operational modes. EMG, EM gain; H, horizontal line rate;
V, vertical line rate; FKM, fast kinetic mode.
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The NüVü HNü HS 512 EMCCD camera is water-cooled by a thermo-electric

chiller (Solid State TCube Edge), and the camera operates with a CCD tempera-

ture of -60°C, cooled by the built-in TEC. The camera is mounted on one rotation

and two linear stages (Newport RS65; Thorlabs PT1A). One linear stage is used

to center the camera with respect to the beam. The other two are actuated by

motorized micrometers (Thorlabs Z812B; Newport TRA25CC), in order to align

the camera to the objective’s focal plane, such that the entire spectrum is in focus

when used as a spectrometer. These two degrees of freedom are optimized by

minimizing the point spread function of two different wavelengths, alternating

until convergence.

The laser repetition rate of the Satsuma is chosen to match the maximum

frame-rate of the camera (under a given experimental configuration), and the

camera is triggered by the laser (IDQuantique ID900 is used to adjust the delay).

The blanking and exposure times are generally set to 0.1 ms, as these values

do not adversely affect the frame-rates within the experimental configurations

reported.

The camera digital readout (“pixel value”, p) is converted to photo-electrons,

⟨ne⟩, by subtracting the bias b and dividing by the total gain. The latter is com-

prised of the electron multiplication (EM) gain and the analog-to-digital conver-

sion factor k (here 21.43 photoelectrons per pixel unit). Hence ⟨ne⟩ = kp/g − b.

Bias subtraction is calibrated per pixel where possible, as these exhibited small

variations. See Section 6.1.1 for an explanation of the measurements performed

with an EMCCD.

In order to quantify the performance of the different configurations of the

EMCCD camera, we consider their ROC curves. As discussed in Section 6.1.1,
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these represent the trade-off between the photon-detection efficiency (PDE) and

the dark count rate: true positive and false positive probabilities. These are

shown in Figure 6.5.

6.2.4 Spectrometer POVM and Spectral Discretization

A natural question for our experiment is how to reconcile the fact that we have

a continuous basis (frequency), but a discrete set of measurement modes: the

spectrometer pixels. Indeed, it is common practice in theory and numerics to

discretize fields in the manner:

âi =
1

ωi − ωi−1

∫ ωi

ωi−1

â(ω)dω

for sufficiently small intervals such that the outcome converges. However, the

experimental implications of this procedure are less obvious, especially if the in-

tervals happen to be too large with respect to the spectral features. The correct

procedure is to consider the field in the continuous limit and classically accu-

mulate the statistics or probabilities. This coarse-binning effect can therefore be

an effective source of decoherence. The discrete case is recovered in the limit

where the field properties are constant within the bins.

Additionally, the point spread function when imaging one wavelength onto

the pixelated detector must be much smaller than one pixel. This “pixel-arrival”

error is otherwise a source of additional decoherence from a classical process.
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6.2.5 Multimode Quantum State Sampling

The final ingredient in any quantum-optical computing or sensing protocol is

measurement, and in this work we focus on photon-counting measurements.

Any quantum advantage for computing or sensing typically scales with the

number of photons detected so high average photon numbers and high detec-

tion efficiency are crucial. Here we demonstrate sampling of the photon-count

distribution of our generated states using an EMCCD camera.

We used 5 rows and all 512 columns of a 512×512 pixel EMCCD camera,

whose CCD sensor has a QE of ∼95% at 620 nm [199]. The receiver operat-

ing characteristic (ROC) curve for thresholding for this camera is shown in Fig-

ure 6.6a: this characterizes the false click rate against the photon-detection ef-

ficiency (PDE), parametrized by the threshold value (Section 6.1.1). The green

marker indicates the threshold used to generate the subsequent plots, resulting

in a competitive photon-detection efficiency of ∼80%.

Figure 6.6b shows a histogram of the number of photons detected per shot.

Blue (left) is prior to thresholding, green (right) is with thresholding. The gain

noise in EMCCDs is large, which makes it practically impossible to distinguish

between photon numbers ≥1 incident on one pixel. However, statistical aver-

ages tend to be accurate, as this is zero mean noise [187] (see Section 6.1.1).

Henceforth, we use the term photoelectrons to refer to the amplified charge on

the CCD divided by the gain: since the gain is a noisy process, this is not quan-

tized. The first histogram implies an average of almost 700 photons per shot;

with thresholding the average number of clicks is just under 500 per shot. The

discrepancy is due to both the effective QE and the high rate of multiple photons

incident on one pixel.
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Figure 6.6: Parallel single-photon detection for multimode-quantum-
state measurement: sampling the many-mode, many-photon
distribution. a. Receiver operating characteristic (ROC) curve
for the EMCCD camera’s detectors. This quantifies the trade-
off between false click rate and photon-detection efficiency
(PDE). b. Histogram of the total photon number per event:
analog (noisy) and thresholded. We use the term photoelec-
trons to refer to the amplified charge on the CCD divided by
the gain. Some example, high-photon-number events, are la-
beled on the histogram with callouts i–iv; these are referenced
in the subsequent subfigures. c. Example unprocessed camera
image from one sampled event. d. Samples integrated ver-
tically (left) and thresholded then summed vertically (right).
The experimental schematic (bottom) refers to the experimen-
tal configuration for collecting the data shown in b–d. The data
in a consists of dark frames collected with a closed shutter (see
Sections 6.1.1 and 6.2.3.)
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For these frequency-resolving experiments we use more than one pixel-rows

of the camera. This is done in order to capture all the photons, due to the

spectrometer’s point spread function occupying a space larger than one pixel

(Gaussian width of σPSF ≈ 0.6 pixels). An example of a raw sample is shown in

Figure 6.6c, in units of photoelectrons. With this configuration we could sam-

ple at a rate of just over 800 Hz. Using a single row would allow an average

sampling rate of 15.7 kHz, which is limited by data readout times. Figure 6.6d

shows samples integrated vertically, for each frequency bin mode. The point

spread function in the vertical direction can allow a thresholding camera to act

as a pseudo-photon-number resolving detector, by illuminating more pixels (via

astigmatic focus) (an established method [200, 201, 202] used e.g. in Refs [148]).

The point spread function in the horizontal dimension, however, acts as an effec-

tive decoherence and must be carefully engineered to fit within the dimensions

of a pixel (see Section 6.2.4).

6.2.6 Validation of Photon-Counting Cameras for Quantum

Advantage

Boson sampling is an intermediate model of linear optical quantum computa-

tion [197]. Realizing boson sampling with a level of post-classical computa-

tional complexity requires high performance quantum light sources: a large-

scale, low-loss photonic circuit; and high-efficiency single-photon detectors –

all of which are essential building blocks for universal quantum computation

using photons. Gaussian boson sampling (GBS), a variation on this protocol, ex-

ploits squeezed vacuum states as input non-classical light sources. For GBS, two
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main strategies for classical simulation exist. The first uses the non-negativity of

quasi-probability distributions (QPD) (generalizations of the Wigner function)

as a strategy for simulation. The second uses the fact that in GBS, the marginal

distributions of photon numbers (i.e., the probabilities to observe some subset of

detection events irrespective of the others) are informative about the complete

probability distribution.

For the QPD based simulations, an inequality exists that that demarcates

the “regime of simulability.” Thus, any finite-sized experiment must pass this

inequality to show that it is not simulable by this strategy. The inequality is

given in Ref. [203]:

sech
{

1
2
Θ

[
ln

(
1 − 2pD/ηD

ηe−2r + 1 − η

)]}
> e−ϵ

2/4K ,

where r is the squeezing parameters, η is the overall photon transmission rate, K

is the number of squeezed sources, ϵ is the total variance distance of the experi-

mental GBS samples compared to the ideal cases, Θ is the Heaviside function, η
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is the transmission, ηD is the photon detector efficiency and pD is the dark count

rate.

In order to quantify the simulability of the experiment with different photon-

counting cameras, we consider the bound for total variance distance ϵ as a func-

tion of the parameters determined by the cameras: photon detector efficiency

(ηD) and dark count rate (pD) (as discussed in Section 6.1.1). We estimate the

total optical transmission rate to be η ≈ 40%. In Figure 6.7 we then compare

these (ηD, pD)-plane trajectories to the left-hand side of the above simulability

criterion equation. We consider two EMCCD cameras: the NüVü HNü 512 IS

and the Andor iXon Ultra 888.

6.3 Highly Multimode Visible Squeezed Light with Pro-

grammable Spectral Correlations Through Broadband Up-

Conversion

In this section, we demonstrate how to use frequency conversion [204] to enable

the use of these visible-light cameras in combination with techniques for strong

squeezing possible at longer wavelengths.

6.3.1 Background and Overview

Our demonstration here is an improvement over existing methods of quantum

frequency conversion: previous demonstrations are limited to either modest

bandwidths or efficiencies [205, 206, 207, 208, 209, 210, 211]. However, adia-
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batic frequency conversion (AFC) essentially eliminates this trade-off [212, 213].

We show how this method allows us to obtain robust, efficient and broadband

conversion over >45 THz (1390–1750 to 590–650 nm) and near-unity efficiency.

Furthermore, it allows unitary control of the multimode entanglement (with,

in principle, no additional loss) by manipulation of the complex profile of the

broadband pump used to drive the conversion. This architecture provides the

best of both worlds: squeezing at telecommunications wavelengths, and pho-

ton detection at visible wavelengths. We will show that we are able to generate

strong squeezing in over 400 frequency supermodes, resulting in states having

a measured mean photon number of nearly 700. By using AFC to efficiently

convert the squeezed light to visible wavelengths, and using the highly parallel

photon counting made possible by a modern EMCCD, we can directly measure

these states. We will also show that we can control the entanglement between

different modes by using different spectrally shaped classical fields as the pump

of the AFC process, resulting in different measured correlations between photon

detections across the frequency modes.

The experimental setup is illustrated in Figure 6.8; an overview is as fol-

lows. We use a waveguided degenerate optical parametric amplifier (DOPA)

pumped with a pulsed laser: this provides squeezing in a single spatial mode

and over many frequency modes (known as the “supermodes”). An adiabatic

frequency conversion (AFC) crystal subsequently converts this near-infrared

squeezed light to the visible. The temporal profile of the AFC pump pulse

is shaped, which controls the conversion process – the linear transformation

between infrared and visible light frequencies. Finally we detect the visible

squeezed light with an electron-multiplying CCD (EMCCD) camera, serving as

an array of high-quality photodetectors. We demonstrate efficient conversion
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Figure 6.8: Frequency domain, multimode, visible squeezed state
preparation and detection. a. Highly multimode squeezed
vacuum is generated in the degenerate optical parametric am-
plifier (DOPA). The squeezed modes may be represented by
a set of squeezing operators Ŝ i acting the vacuum state |0⟩.
Each operator squeezes a distinct frequency mode with some
squeezing parameter ri. The squeezing occurs around a cen-
tral frequency ω0 equal to half the pump central frequency 2ω0.
b. Adiabatic frequency conversion (AFC) efficiently converts
the squeezed light to visible wavelengths. The pump, a broad-
band pulse centered at 1033 nm (3ω0/2), combines with the
broadband 1550 nm signal to yield 620 nm (5ω0/2) light. This
operation may be represented as a linear unitary transforma-
tion U acting on the infrared and visible fields, represented
by the operators âωir and âωvis . c. The final state, incident on
a diffraction grating (DG), is split into frequency modes, and
frequency-resolved photon counting is performed with an EM-
CCD camera. Each measurement yields some photon-number
sequence, or vector, n, whose probability distribution depends
on the state (determined by Ŝ i and U). The camera measures
the spectrum in a discrete manner, as the pixels capture the
photons within some frequency “bins,” denoted ∆ωi. Hence,
the state’s overlap with these bin-basis Fock states, |n∆ωi⟩, de-
termines the probability distribution.
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using AFC. In addition, with the photon-counting camera, we are able to ob-

serve spectral photon-number correlations throughout the whole bandwidth at

high resolution. With this ability, we generate qualitatively different joint spec-

tra as a proof of concept of frequency-domain unitary transformations by pulse

shaping. Please refer to [3] for more details on the DOPA, AFC, pulse shaper,

the photon-counting spectrometer, as well as specific experiments.

6.3.2 Upconversion as a Unitary Transformation

Most quantum sensing or computing protocols require unitary operations to be

performed on the overall state, because each application requires some specific

entanglement structure. Here we demonstrate how the covariance matrix can be

transformed by implementing frequency unitaries through the broadband sum

frequency generation process. The unitary is applied during the conversion;

shaping the AFC pump pulse affects the nonlinear dynamics, changing which

wavelengths convert to which. This means that, within certain constraints, we

can program the pulse to achieve a desired transformation.

Intuitively, the relative phase of a pump frequency affects the phase of a sig-

nal it converts, thereby constructive and destructive interference may promote

or suppress the conversion of a signal from one frequency to another, effectively

forming a frequency-domain interferometer network. This is illustrated in Fig-

ure 6.9a-b.

Some examples of this process and how it influences the covariance matrix

are shown in Figure 6.9c. Phase modulations are applied with the pulse shaper,

on top of a fixed quadratic phase (chirp) to guarantee a certain pump pulse
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duration. The predicted pulse shapes (inferred from the applied phase modu-

lation) are shown for each example. For clarity, we show the correlation rather

than covariance matrices, and we subtract a fit to the thermal (classical) part in

order to show only the entanglement contribution (the joint spectrum). For ref-

erence, Figure 6.9a is derived from the same data as Figure ??b. As we do not

measure the relative phases in the covariance, we focus on transformations in

the joint intensity.

In our experiment the bandwidth of the pump (<5 THz) is much smaller

than the bandwidth of the squeezed light (∼47 THz), which prevents all-to-all

coupling (the pump frequencies mediate the change in signal frequency). Ad-

ditionally, the AFC pump peak intensity is reduced by pulse-shaping, therefore

reducing the efficiency. Despite these limitations, it is possible to achieve quali-

tatively different joint spectra by simply changing the pulse shape.

6.3.3 Influence of Pump Shape on Frequency Conversion

Figure 6.10 demonstrates this effect: by intensity-modulating the pump spec-

trum (with a fixed phase), for a fixed monochromatic input, we observe that the

output signal closely matches the pump profile. However, by virtue of reduc-

ing the overall pump energy, the efficiency is affected. In addition, a shift in the

input signal ostensibly produces an the same, but shifted, output signal.

While the pump imparts its intensity to the magnitude, the spectral phase

of the pump determines the phase in the transformation, which is why we ob-

serve that pump phase modulation can generate non-trivial differences in the

squeezed-light covariance matrices, in Figure 6.9.
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Figure 6.11 shows the simulated conversion process for a broadband sig-

nal. The conversion process under an unshaped pump converts fairly uni-

formly, while the process under a shaped pump is influenced by interference

effects, strongly altering the shape of the output. Figure 6.12 shows a series of

experimentally-obtained photon spectral correlation matrices as the phase mod-

ulation of the AFC pump is gradually varied.

6.4 Discussion

The creation, manipulation, and detection of highly squeezed, highly multi-

mode entangled states are important ingredients of many continuous-variable

(CV) schemes for quantum computing, sensing, and communication using pho-

tonics. When compared to space or time encoding, frequency encoding has

significant advantages for integration and scalability, but it is not always practi-

cal to perform unitary transformations on frequency modes without substantial

loss. We have experimentally demonstrated efficient, broadband, quantum fre-

quency conversion of highly multimode squeezed light generated in the near in-

frared into the visible using adiabatic frequency conversion (AFC). This simul-

taneously allows efficient, parallel photon counting across over 400 squeezed

and 500 detection modes using CCD-based photon-detector arrays, and the pro-

gramming of frequency correlations in the multimode squeezed light. Our ap-

proach requires no active phase locking, uses a single optical beam path for the

quantum light, and the number of modes and shot rates should be scalable well

beyond what we have demonstrated.

To the best of our knowledge, the quantum-optical states we produced
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are the largest partially programmable, photon-counted, multimode squeezed

states produced by a moderate factor (about 2–4 times larger than previous re-

sults, albeit with different limitations and caveats), and by an order of magni-

tude the largest in the frequency domain. Our work provides a path to con-

structing large-scale Gaussian boson samplers using frequency encoding. 4

There are also imperfections with the detection setup, as discussed in Sec-

tion 6.2.2. Most importantly, the frequency binning is suboptimal, which may

be a cause of decoherence. A disadvantage of using an EMCCD camera instead

of, for example, an array of superconducting nanowire single-photon detectors

for measurement is speed: the camera’s frame rate of 800 Hz is slow. How-

ever, the EMCCD camera we used has a linerate of 2 MHz (up to 3.33 MHz

with higher noise), which is in principle the relevant speed when only using a

single row (or few rows) of pixels, as is the case for our measurements. How-

ever, there is currently a practical bottleneck to reading out the data, which is

limited to line readouts at up to 15.7 kHz on our camera model. Several mod-

ern EMCCD cameras, including ours, allow reading out bursts of frames (or

regions of whole frames, including lines) at up to MHz rates for short time win-

dows; this could allow fast detection for a limited number of shots in the future.

Finally, the photon-number sampling we demonstrated used threshold detec-

tion or pseudo-photon-number-resolving measurements; ideally, future imple-

4The experiments we report contain the key parts of a Gaussian boson sampler (GBS):
squeezing of multiple modes, a unitary, and photon detection. Why then do we not declare
our experiments a realization of the world’s largest GBS already? The issue is we have im-
perfect calibration of the squeezed modes and of the unitary transformation realized by AFC,
making it unreasonable for us to compare the experimental sampling results we obtained with
samples one could obtain from a simulator of our experiment running on a classical computer.
Since the simulator would not have a sufficiently accurate description of the modes and the
unitary, one wouldn’t expect the samples – or the statistics of the samples – to match those from
the experiments, which would prevent us from verifying the operation of the GBS in the way
that has been done by prior studies [146, 147, 148, 149]. In essence, we have demonstrated a
large-scale but poorly calibrated GBS.
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mentations could be capable of true photon-number-resolving measurements

up to high photon numbers per mode (e.g., using ultra-low-noise CMOS cam-

eras [185, 186]).

Despite these current limitations, the experiment we reported already has

some distinct advantages over other platforms. To the best of our knowledge,

our experiment marks the first instance of simultaneous sampling with 500 de-

tectors with a similar number of squeezed modes. In comparison to spatial-

domain architectures that reach a count of 100s of modes with superconducting

detectors, our approach is far less complicated and less expensive to realize for

the same number of modes. It appears possible to substantially increase the

number of modes and detected photons from what we have already demon-

strated, as well as the complexity of the programmed unitaries; crucially, for all

these enhancements, the total system transmission is not expected to change sig-

nificantly, which would be in marked contrast to most space- and time-domain

implementations. Overall, we hope our work will enable more widespread

study of many-mode, many-photon entangled quantum states, and provide a

useful building block for large-scale frequency-encoded CV quantum technolo-

gies.
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Figure 6.9: Preparing the joint spectrum via frequency conversion. By
pulse shaping the AFC pump A(ωp), we can modify the lin-
ear unitary transformation U performed by the AFC process,
hence the state and the measured spectral photon-number cor-
relations. The pump spectral intensity and phase both play a
role in the transformation. a. Pulse shaping involves two op-
erations: intensity and phase modulation. The former (µ(ωp))
changes the spectral intensity of the pump, which in turn
mainly affects the magnitude of elements of U, and the lat-
ter (ϕ(ωp)) changes the spectral phase of the pump, which
mainly affects the complex phase of the elements of U. b.
The phase-averaged linear transformation performed by the
AFC. The rows of the unitary strongly resemble the pump spec-
trum, as shown in the subplots: the first pair shows how it
compares to the original spectrum, and the second is an ex-
ample of how it changes given an intensity-modulated pump.
The frequency-difference axis is shared among the pump and
unitary-row subplots. c. These plots show how a phase-
modulated pump affects the conversion process and produces
more complicated correlation structure. Example spectral in-
tensity correlations are plotted on the right, and the corre-
sponding (inferred) pump intensity profiles on the left. Specif-
ically, we plot the entanglement contribution to photon corre-
lation matrices (correlation matrices with thermal-like compo-
nents subtracted). The first shows the same data in Figure ??b,
for reference, with no pulse shaping. The next three are the
result of random pulse shaping. The corresponding pump in-
tensities, plotted on the right, are not measured directly, but es-
timated based on the phase modulation applied and the pulse
shaper calibration.
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Figure 6.10: Programming the unitary transformation by programming
the pump shape: the effect of the pump spectrum shape on
the transformation. Example of how the pump spectrum af-
fects the frequency conversion profile and linear transforma-
tion. a. The converted signal spectral profiles, under unmod-
ulated and modulated pumps. b. The pump spectra for a,
unmodulated and under intensity modulation. The conver-
sion profile of the signal closely matches the pump spectrum.
c. The converted signal spectral profiles, unmodulated and
modulated, with three different wavelength inputs. The mea-
sured signal intensities are essentially translated in frequency.
d. The modulated and unmodulated pump spectra for c. A
random intensity modulation pattern is applied. λin indicates
a monochromatic, infrared input light, and λout indicates the
wavelengths measured by the spectrometer.
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Figure 6.11: Example conversion dynamics in AFC. The left panel rep-
resents the input modes centered around 1550 nm, the cen-
ter panel represents the converted modes centered around
620 nm, and the right panel represents the pump profile used
in the simulation. Top: conversion of a single broadband in-
put with an unshaped pump. Bottom: conversion of a sin-
gle broadband input with an shaped pump. The conversion
yields a non-uniform spectrum in the converted wavelength
due to interference effects.
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Figure 6.12: Photon spectral correlations while varying the AFC pump
phase modulation. The top panels are photon number cor-
relation plots, where i is the state generated by AFC with a
chirped pulse, vi with the shaped pulse in Figure 6.9iv, and the
panels in between are with intermediately-spaced phase mod-
ulations of the AFC pump. These six panels show the evo-
lution of the correlation structure as the phase profile varies.
The corresponding temporal profiles of the pumps, estimated
based on the spectral phase modulations, are shown in the
bottom panels. In contrast to Figure 6.9, the diagonal portion
of the correlation matrix has not been subtracted.
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CHAPTER 7

QUANTUM-LIMITED STOCHASTIC OPTICAL NEURAL NETWORKS

OPERATING AT A FEW QUANTA PER ACTIVATION

Much of the content in this chapter is adapted from the work presented in Ma et al.

[4].

7.1 Background

Physical systems are subject to various sources of noise. While some noise

can be reduced through improvements to the hardware, some noise is funda-

mentally unavoidable, especially when the system is operated with very little

power—which is an engineering goal for neural-network processors. Shot noise

is a fundamental noise that arises from the quantized, i.e., discrete, nature of in-

formation carriers: the discreteness of energy in the case of photons in optics,

and of discreteness of charge in the case of electrons in electronics [214]. A shot-

noise-limited measurement of a signal encoded with an average of Np photons

(quanta) will have an SNR that scales as
√

Np [215].1 To achieve a suitably high

SNR, ONNs typically use a large number of quanta for each detected signal. In

situations where the optical signal is limited to just a few photons, photodetec-

tors measure and can count individual quanta. Single-photon detectors (SPDs)

are highly sensitive detectors that—in the typical click detector setting—report,

with high fidelity, the absence of a photon (no click) or presence of one or more

photons (click) during a given measurement period [217]. In the regime of an op-

1The shot-noise limit, which is sometimes also referred to as the standard quantum limit [216],
can be evaded if, instead of encoding the signal in a thermal or coherent state of light, a quantum
state—such as an intensity-squeezed state or a Fock state—is used. In this paper we consider
only the case of classical states of light for which shot noise is present and the shot-noise limit
applies.
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tical signal with an average photon number of about 1 impinging on an SPD, the

measurement outcome will be highly stochastic, resulting in a very low SNR (of

about 1).2 Conventional noise-aware-training algorithms are not able to achieve

high accuracy with this level of uncertainty. Is it possible to operate ONNs in

this very stochastic regime and still achieve high accuracy in deterministic clas-

sification tasks? The answer is yes, and we will show how.

The stochastic operation of neural networks has been extensively studied in

computer science as part of the broader field of stochastic computing [218]. In

the field of machine learning, binary stochastic neurons (BSNs) have been used

to construct stochastic neural networks [219, 220, 221, 222, 223, 224, 225], with

training being a major focus of study. Investigations of hardware implementa-

tions of stochastic computing neural networks, such as those in Refs. [226, 227]

(with many more surveyed in Ref. [228]), have typically been for determinis-

tic complementary metal–oxide–semiconductor (CMOS) electronics, with the

stochasticity introduced by random-number generators. While many studies

of binary stochastic neural networks have been conducted with standard dig-

ital CMOS processors, there have also been proposals to construct them from

beyond-CMOS hardware, motivated by the desire to minimize power consump-

tion: direct implementation of binary stochastic neurons using bistable sys-

tems that are noisy by design—such as low-barrier magnetic tunnel junctions

(MTJs)—has been explored [229, 230, 231], and there have also been proposals

to realize hardware stochastic elements for neural networks that could be con-

structed with noisy CMOS electronics or other physical substrates [232, 233].

ONNs in which noise has been intentionally added [43, 234, 235] have also been

studied. Our work with low-photon-count optics is related but distinct from

2Again, this is under the assumption that the optical signal is encoded in an optical state that
is subject to the shot-noise limit—which is the case for classical states of light.
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Figure 7.1: Deterministic inference using noisy neural-network hard-
ware. a, The concept of a stochastic physical neural network
performing a classification task. Given a particular input im-
age to classify, repetitions exhibits variation (represented by
different traces of the same color), but the class is predicted
nearly deterministically. b, The single-to-noise ratio (SNR) of
single-photon-detection neural networks (SPDNNs) compared
to conventional optical neural networks (ONNs). Conven-
tional ONNs operate with high photon budgets (SNR ≫ 1)
to obtain reliable results, whereas SPDNNs operate with low
photon budgets—of up to just a few detected photons per shot
(SNR ∼ 1). The relation between the detected optical energy
(in number of photons Np) and SNR is SNR =

√
Np, which is

known as the shot-noise limit.
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many of the studies cited here in its motivating assumption: instead of desir-

ing noise and stochastic behavior—and purposefully designing devices to have

them, we are concerned with situations in which physical devices have large

and unavoidable noise but where we would like to nevertheless construct deter-

ministic classifiers using these devices because of their potential for low-energy

computing (Figure 7.1).

The key idea in this work is to embrace the inherent uncertainty of the stochas-

tic physical system, rather than attempting to shape it into a deterministic net-

work with restricted precision. When ONNs are operated in the approximately-

1-photon-per-neuron-activation regime and the detectors are SPDs, it is natural

to consider the neurons as binary stochastic neurons: the output of an SPD is bi-

nary (click or no click) and fundamentally stochastic. Instead of trying to train the

ONN as a deterministic neural network that has very poor numerical precision,

one can instead train it as a binary stochastic neural network, adapting some

of the methods from the last decade of machine-learning research on stochas-

tic neural networks [222, 223, 224, 236, 225, 237, 228] and using a physics-based

model of the stochastic single-photon detection (SPD) process during training.

We call this physics-aware probabilistic modeling. While a high SNR for the final

output is essential for any reliable model outcomes, our approach pushes the

boundaries of precision requirements at every step of neural-network propaga-

tion (Figure 7.1a). This contrasts with conventional digital devices and noise-

mitigation algorithms, which maintain consistently high precision or SNR at

every step.

We experimentally implemented a stochastic ONN using as a building block

an optical matrix-vector multiplier [1] modified to have SPDs at its output: we
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call this a single-photon-detection neural network (SPDNN). We present results

showing that high classification accuracy can be achieved even when the num-

ber of photons per neuron activation is approximately 1, and even without av-

eraging over multiple shots. We also studied in simulation how larger, more so-

phisticated stochastic ONNs could be constructed and what their performance

on CIFAR-10 image classification would be. Apart from the extremely-low SNR,

probabilistic modeling also makes our SPDNNs inherently robust to various

kinds of imperfections in the setup, including dark counts on the detector, er-

rors in the optical linear operations, fluctuations in the light intensity, etc.

7.2 Physics-Aware Probabilistic Modeling

We consider ONNs in which one or more layers are each constructed from an

optical matrix-vector multiplier followed by an array of SPDs (Figure 7.2a–c),

and in which the optical powers used are sufficiently low that in each execution

of the layer, each SPD has at most only a few photons impinging on it, leading

to stochastic measurement outcomes of no click or click.

In our setting, we aim to perform inference using the SPDNN—with its im-

plementation in physical hardware—(Figure 7.2d) and to perform training of

the SPDNN in silico (Figure 7.2e–f). That is, training is performed entirely using

standard digital electronic computing.3

3It is not required that the training be done in silico for it to succeed but is just a choice we
made in this work. Hardware-in-the-loop training, such as used in Ref. [41], is a natural alternative
to purely in silico training that even can make training easier by relaxing the requirements on
how accurate the in silico model of the physical hardware process needs to be.
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Figure 7.2: Single-photon-detection neural networks (SPDNNs): train-
ing and inference. a, A single layer of an SPDNN, compris-
ing an optical matrix-vector multiplier (optical MVM, in grey)
and single-photon detectors (SPDs; in red). Each output neu-
ron’s value is computed by the physical system as ai = fSPD(zi)),
where zi is the weighted sum (in green) of the input neurons to
the ith output neuron computed as part of the optical MVM,
and ai is the stochastic binary output from a single-photon
detector. b, Forward and backward propagation through the
SPD activation function. The optical energy (λ) incident on an
SPD is a function of zi that depends on the encoding scheme
used. Forward propagation uses the stochastic binary activa-
tion function fSPD, while backpropagation involves the mean-
field function of the probability PSPD. c, Probability of an SPD
detecting a click (output a = 1) or not (output a = 0), as a
function of the incident light energy λ. d, Optical inference us-
ing an SPDNN with L layers. The activation values from the
SPD array of each layer are passed to light emitters for the op-
tical MVM of the next layer. The last layer uses a conventional
photodetector (PD) array instead of an SPD array, and is oper-
ated with enough optical energy that the output of this layer
has high SNR. e, In silico training of an SPDNN with L layers.
Each forward propagation is stochastic, and during backprop-
agation, the error vector is passed to the hidden layers using
the mean-field probability function PSPD instead of the stochas-
tic activation function fSPD. In this figure, ∂x is shorthand for
∂C/∂x, where C is the cost function.
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7.2.1 Training

To train an SPDNN, we perform gradient descent using backpropagation, which

involves a forward pass, to compute the current error (or loss) of the network,

and a backward pass, which is used to compute the gradient of the loss with re-

spect to the network parameters; our procedure is inspired by backpropagation-

based training of stochastic and binary neural networks [222, 225]. We model

the forward pass (upper part of Figure 7.2e) through the network as a stochastic

process that captures the key physics of SPD of optical signals having Poisso-

nian photon statistics [238]: the measurement outcome of SPD is a binary ran-

dom variable (no click or click) that is drawn from the Bernoulli distribution with

a probability that depends on the mean photon number of the light impinging

on the detector. However, during the backward pass (lower part of Figure 7.2e),

we employ a deterministic mean-field estimator to compute the gradients. This

approach avoids the stochasticity and binarization of the SPD process, which

typically pose difficulties for gradient estimation.

We now give a brief technical description of our forward and backward

passes for training; for full details see Appendix A. We denote the neuron pre-

activations of the lth stochastic layer of an SPDNN as z(l) = W (l)a(l−1), where a(l−1)

is the activation vector from the previous layer (a(0) denotes the input vector x of

the data to be classified). In the physical realization of an SPDNN, z(l) is encoded

optically (for example, in optical intensity) following an optical matrix-vector

multiplier (optical MVM, which computes the product between the matrix W (l)

and the vector a(l−1)) but before the light impinges on an array of SPDs. We

model the action of an SPD with a stochastic activation function, fSPD (Figure

7.2b; Eq. 7.1). The stochastic output of the lth layer is then a(l) = fSPD(z(l)).
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For an optical signal having mean photon number λ and that obeys Poisso-

nian photon statistics, the probability of a click event by an SPD is PSPD(λ) = 1−eλ

(Figure 7.2c). We define the stochastic activation function fSPD as follows:

fSPD(z) B


1 with probability p = PSPD(λ(z)),

0 with probability 1 − p,
(7.1)

where λ(z) is a function mapping a single neuron’s pre-activation value to a

mean photon number. For an incoherent optical setup where the information

is directly encoded in intensity, λ(z) = z; for a coherent optical setup where

the information is encoded in field amplitude and the SPD directly measures

the intensity, λ(z) = |z|2. In general, the form of λ(z) is determined by the sig-

nal encoding used in the optical MVM, and the detection scheme following the

MVM. We use fSPD in modeling the stochastic behavior of an SPDNN layer in

the forward pass. However, during the backward pass, we make a deterministic

mean-field approximation of the network: instead of evaluating the stochastic

function fSPD, we evaluate PSPD(λ(z)) when computing the activations of a layer:

a(l) = PSPD(λ(z(l))) (Figure 7.2b). This is an adaptation of a standard machine-

learning method for computing gradients of stochastic neural networks [222].

7.2.2 Inference

When performing inference (Figure 7.2d), we can run just a single shot of a

stochastic layer or we can choose to take the average of multiple shots—trading

greater energy and/or time usage for reduced stochasticity. For a single shot,

a neuron activation takes on the value a[1] = a ∈ {0, 1}; for K shots, a[K] =
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1
K

∑K
k=1 ak ∈ {0, 1/K, 2/K, . . . , 1}. In the limit of infinitely many shots, K → ∞, the

activation a[∞] would converge to the expectation value, a[∞] = E[a] = PSPD(λ(z)).

In this work we focus on the single-shot (K = 1) and few-shot K ≤ 5 regime,

since the high-shot K ≫ 100 regime is very similar to the high-photon-count-

per-shot regime that has already been studied in the ONN literature (e.g., in

Ref. [1]). An important practical point is that averaging for K > 1 shots can

be achieved by counting the clicks from each SPD. This is done by integrating

several shots of clock cycles that are continuously collected during our experi-

ments. We can think of K as a discrete integration time, so averaging need not

involve any data reloading or sophisticated control.

7.3 Numerial Simulation

7.3.1 Incoherent Setup for MNIST Classification

We first evaluated the performance of SPDNNs on the MNIST handwritten-

digit-classification benchmark task with a simple, 784 → N → 10 multilayer

perceptron (MLP) architecture (Figure 7.3a). Here we use the activation func-

tion derived from SPDNNs with an incoherent optical setup (Section A.1). The

MNIST dataset has 60,000 images for training and 10,000 images for testing.

Each image is grayscale and has 28 × 28 = 784 pixels. To meet the non-negative

encoding of incoherent light, the input images are normalized to have pixel val-

ues of range 0 to 1.

The models consist of two linear layers: the 784 → N hidden layer has the

weight matrix W (1) with a shape of N × 784, and the N → 10 output layer has the
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Figure 7.3: Incoherent SPDNNs on MNIST handwritten-digit classifica-
tion. a, An SPDNN realizing a multilayer perceptron (MLP)
architecture of N neurons in the hidden layer. The hidden layer
(784 → N) was computed using an incoherent optical matrix-
vector-multiplier (MVM) followed by a single-photon-detector
(SPD) array. Each SPD realized a stochastic activation func-
tion for a single hidden-layer neuron. During a single infer-
ence, the hidden layer was executed a small number of times
(1 ≤ K ≤ 5), yielding averaged activation values. The output
layer (N → 10) was realized either optically—using an optical
MVM and high photon budget to achieve high readout SNR6,
as in conventional ONNs, or with a digital electronic proces-
sor, yielding a result with full numerical precision. b, Simu-
lated test accuracy of MNIST handwritten-digit classification
for models with different numbers of hidden neurons N and
shots per activation K.7 Each activation value is obtained by
averaging K shots of stochastic binary SPD readouts. When
K → ∞, the stochastic activations ai become the expectations
E[ai], which are deterministic. The test accuracy with few shots
is close to the accuracy achieved in the deterministic limit.

weight matrix W (2) with a shape of 10×N. The SPD activation function is applied

to each hidden neuron after the linear operation of W (1) to compute the neuron

activations; then the computed activation values are passed to the output layer

to produce the output vectors. The elements in the first linear operation, W (1),

are clamped to be non-negative to meet the requirement of an incoherent optical

setup. In general, real-valued weights can be realized with an incoherent optical
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MVM if some digital-electronic post-processing is available. In our case, where

the activations are measured by SPDs, the activation function is directly applied

in the single-photon detection process, which makes digital post-processing im-

possible. Similarly, biases of the linear operations are also disabled. If we want

to get away with digital post-processing by applying a bias term directly to the

optical intensity, at the level of a few photons, the approach is also challenging

in experiments. However, since the output layer is implemented using con-

ventional optical computing with a higher signal-to-noise ratio (SNR), we can

effectively implement real-valued weights of W (2). In optical implementation,

this would involve extra operations to map these values onto the incoherent

setup.

During the training process, we apply the LogSoftmax function to the out-

put vectors and use the cross-entropy loss to construct the loss function. To

avoid the issue of vanishing gradients, we clamp the pre-activation values at

λmax = 3 photons. It is important to note that due to the stochastic nature of

the neural networks, each forward pass generates different output values, even

with the same weights and inputs. However, we only use a single forward pass

in each training epoch, which has been shown to be the most efficient training

approach. The stochasticity introduced in each forward propagation could add

to the random search of the stochastic optimizer itself, helping with the training

process.

We have found that using the SGD optimizer [239] with small learning rates

leads to better accuracy compared to other optimizers, such as AdamW [240].

Although training with SGD takes longer overall, it helps us achieve a better-

optimized model in the end. For our final results, we used a batch size of 128
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and a learning rates of 0.001 for the hidden layer and 0.01 for the output layer in

the SGD optimizer. We trained each SPDNN model for 10,000 epochs to obtain

optimized parameters, and an even higher number of epochs may be needed

to achieve better accuracy. Given the small learning rate and the significant

amount of noise in the model, the number of epochs required is much larger

than what is typically seen in common neural network training processes. The

training and test errors for an incoherent MLP SPDNN with a structure of 784→

400→ 10 are shown in Figure 7.4. The training process was performed on a GPU

(Tesla V100-PCIE-32GB) and took approximately eight hours to complete.
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Figure 7.4: Training curves of an incoherent SPDNN model for MNIST
classification. The plot illustrates the progression of test and
training errors throughout the training process of an incoherent
SPDNN model with an MLP architecture of 784 → 400 → 10.
The optimization is conducted using an SGD optimizer with
learning rates of 0.001 for the hidden layer and 0.01 for the out-
put layer. The final trained model is obtained at 10,000 epochs.

The magnitude of the weight element values in the first linear layer, W (1), is

influenced by the range of values in the input vectors, a(0), and the specific form

of the SPD activation function, f Incoh
SPD (z). In the forward pass of an incoherent

SPDNN, the pre-activation values, z(1), are computed as z(1) = a(0)W (1)⊤. The

activation function, f Incoh
SPD (z), is defined as 1t<PSPD(z), where t is a random variable

uniformly distributed between 0 and 1, and PSPD(z) represents the probability of
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Figure 7.5: Visualization of weight elements in the first linear layer of an
incoherent SPDNN. The architecture of this model is 784 →
100 → 10, and we display the weight matrix W (1) of the first
layer (with dimensions 100× 784). Each block represents a row
vector in W (1) containing 784 elements. These column vectors
are rearranged to form a 2D block with dimensions 28 × 28,
matching the original shape of the MNIST input images. The
100 rows in W (1), corresponding to the 100 hidden neurons in
the neural network, are arranged in a 10 × 10 grid to be visu-
alized. The average value of each block is indicated at the top,
and the overall average value of the weight matrix is ∼ 0.07.
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photon detection. When the input vectors, a(0), are normalized to the range of 0

to 1, the weight elements in W (1) are optimized based on the specific form of PSPD

because it depends on the exact value of pre-activations z. In our simulation of

an incoherent SPDNN, the elements of z(1) are represented in terms of photon

numbers, where the value 1 corresponds to 1 photon. When z ≳ 3, PSPD reaches

the plateau part of the probability function. Thus, we have to make sure the

value of the pre-activation to be around 1 photon to ensure an effective forward

pass. When considering a uniform bright image where each element has the

maximum value of 1, and with an input vector size of 28 × 28 = 784, if we

aim for an output value of approximately 1 photon, the average value of the

weight elements in W (1) should be around 1/784 ≈ 0.0013. The average pixel

value in the MNIST dataset is approximately 0.13 (when each pixel value is

normalized to the range of 0 to 1). Based on this, we can estimate that to achieve

an output value of approximately 1 photon, the average weight element value

should be around 0.01. Taking into account that both the input images and

weight matrices tend to be sparse, this estimation may be slightly lower than

the actual scenario. Figure 7.5 illustrates the matrix elements of W (1) for a model

with N = 100 hidden neurons. The weight elements range from 0 to 5.18, with an

average value of 0.07. Each block represents a row vector of size 784, rearranged

in the form of 28 × 28. The average value of W (1) may vary slightly in different

network structures, ranging from 0.06 to 0.08.

During the inference of SPDNNs, the pixel values of the test images are nor-

malized to the range of 0 to 1 as well. This will be correspond to the dynamic

range on the optical setup. We trained incoherent MLP-SPDNN models with

varying numbers of hidden neurons, N, ranging from 10 to 400. As discussed

in Section A.1, we can adjust the number of SPD measurements per activation,
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denoted as K, to control the level of stochasticity in the models.

Model K = 1 K = 2 K = 3 K = 5 K = 7 K = 10 K → ∞
784–10–10 78.03 ± 0.32 83.18 ± 0.26 84.79 ± 0.22 86.13 ± 0.17 86.65 ± 0.17 87.08 ± 0.16 87.91 ± 0.00
784–20–10 86.74 ± 0.24 89.98 ± 0.18 90.96 ± 0.15 91.71 ± 0.13 92.00 ± 0.13 92.22 ± 0.13 92.66 ± 0.00
784–50–10 93.04 ± 0.16 94.49 ± 0.15 94.92 ± 0.12 95.24 ± 0.11 95.38 ± 0.10 95.47 ± 0.09 95.73 ± 0.00

784–100–10 95.20 ± 0.16 96.24 ± 0.11 96.53 ± 0.10 96.75 ± 0.09 96.85 ± 0.07 96.91 ± 0.07 97.02 ± 0.00
784–200–10 96.62 ± 0.12 97.33 ± 0.10 97.54 ± 0.08 97.70 ± 0.08 97.75 ± 0.08 97.80 ± 0.06 97.98 ± 0.00
784–300–10 97.00 ± 0.12 97.61 ± 0.08 97.80 ± 0.08 97.93 ± 0.07 97.97 ± 0.06 98.01 ± 0.05 98.12 ± 0.00
784–400–10 97.31 ± 0.11 97.85 ± 0.10 98.01 ± 0.09 98.15 ± 0.06 98.20 ± 0.06 98.27 ± 0.05 98.41 ± 0.00

Table 7.1: Test accuracy (%) of incoherent MLP-SPDNNs on MNIST
with varying hidden layer size N and shots per activation K.
These models have an MLP structure of 784→ N → 10, where N
represents the number of hidden neurons. Each hidden neuron
uses K shots of binary SPD readouts to compute its activation
value. The reported test accuracy values are obtained by cal-
culating the mean value and standard deviation over 100 rep-
etitions of inferences on the MNIST test set, which comprises
10,000 images.

The results of the MNIST test accuracy for different combinations of N and

K are summarized in Table 7.1. The values of N include 10, 20, 50, 100, 200, 300,

and 400, while K takes on the values of 1, 2, 3, 5, 7, 10, and ∞. In the case of

K → ∞, we use the expectation of the activation values, PSPD, as the activation

function, which is equivalent to integrating an infinite number of shots per SPD

detection. This serves as an upper bound that is approached as K increases.

Due to the stochastic nature of SPDNNs, the output vectors vary across differ-

ent repetitions of inference. To capture the overall behavior of the models, we

repeated the full inference process 100 times for each structure with N hidden

neurons and K shots per activation. This allows us to calculate the mean test ac-

curacy and standard deviation, representing the distribution of test accuracies.

Each independent repetition of inference uses the MNIST test dataset, consist-

ing of 10,000 images. We observe that as either N or K increases, the mean test

accuracy tends to improve while the standard deviation decreases.
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7.3.2 Coherent Setup with More Complex Architecture

We have successfully demonstrated two-layer SPDNNs that are compatible to

the incoherent optical setups as described in Chapter 3, but can SPDNNs be

used to implement deeper and more sophisticated models? One of the limita-

tions of our experimental apparatus was that it used an intensity encoding with

incoherent light and as a result could natively only perform operations with

non-negative numbers. In this section we will show that SPDNNs capable of

implementing signed numbers can be used to realize multilayer models (with

up to 6 layers), including models with more sophisticated architectures than

multilayer perceptrons—such as models with convolutional layers.

ONNs based on coherent light can naturally encode sign information in the

phase of the light and have been realized in many different physical platforms

[12, 57, 13, 56, 63, 17, 16]. We propose—and study in simulation—SPDNNs us-

ing coherent light. Neuron values are encoded in optical amplitudes that are

constrained to have phases that are either 0 (positive values) or π (negative val-

ues). With this encoding, detection by an SPD—which measures intensity and

is hence insensitive to phase—results in a stochastic nonlinear activation func-

tion that is symmetric about zero (Figure 7.6a). Alternative detection schemes

could be employed that would modify the activation function, but we have fo-

cused on demonstrating the capabilities of this straightforward case, avoiding

introducing additional experimental complexity.

We performed two sets of simulation experiments: one on coherent SPDNNs

trained to perform MNIST handwritten-digit classification (Figure 7.6d), and

one on coherent SPDNNs trained to performed CIFAR-10 image classification

(Figures 7.6e).
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Figure 7.6: Performance of coherent single-photon-detection neural net-
works (SPDNNs). a, The probability of detecting a photon as
a function of the input light amplitude in a coherent SPDNN.
Real-valued numbers are encoded in coherent light with ei-
ther 0 phase (positive numbers) or π phase (negative num-
bers). Measurement by a single-photon detector (SPD) results
in the probabilistic detection of a photon that is proportional
to the square of the encoded value z, in comparison to inten-
sity encodings with incoherent light. b, Structure of a con-
volutional SPDNN with a kernel size of 5 × 5. Single-shot
SPD measurements (K = 1) are performed after each layer
(by an SPD array), except for the output layer. Average 2 × 2
pooling is applied after each convolutional operation. A digi-
tal rectified linear unit (ReLU) activation function can also be
used in the linear layer as an alternative. c, Schematic of a
convolutional layer with SPD activations. d, Simulated test
accuracy of coherent SPDNNs with varying architecture per-
forming MNIST handwritten-digit classification. The multi-
layer perceptron (MLP) models had 400 neurons in each hid-
den layer. The convolutional model consisted of a convolu-
tional layer with 16 output channels, followed by two linear
layers with an SPD activation inbetween. e, Simulated test
accuracy of coherent SPDNNs with varying architecture per-
forming CIFAR-10 image classification. The models have four
convolutional layers, each followed by SPD activation func-
tions. The two linear layers can either be implemented in full-
precision with a ReLU activation function (in purple) or using
the SPD activation function. The number of output channels
for each convolutional layer is indicated above the correspond-
ing data point.
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MNIST classification

The MNIST handwritten-digit classification task was performed using the same

simulation configurations as with incoherent SPDNNs, but but using the coher-

ent SPD activation function and real-number operations. Unlike the previous

case, no clamping of the weights was necessary. The models were trained using

the SGD optimizer with a learning rate of 0.01 for the hidden layers and 0.001

for the last linear layer, for a period of 10,000 epochs. To evaluate the impact

of model size, we trained models with both one and two hidden layers. The

training curves of the model with the structure of 784 → 400 → 400 → 10 are

shown in Figure 7.7. The results for models with different structures and shots

of SPD measurements per activation can be found in Table 7.2, and the weights

of a model with the structure of 784→ 100→ 10 are illustrated in Figure 7.8.
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Figure 7.7: Training curves of a coherent SPDNN model on MNIST clas-
sification. The plot shows the evolution of the test and training
errors during the training process of a coherent SPDNN model
with an MLP architecture of 784 → 400 → 400 → 10 neurons.
The optimization is performed using SGD with different learn-
ing rates for the hidden (0.001) and output (0.01) layers. The
end result of the training is represented by the final values of
the 10,000 epochs.

Furthermore, convolutional SPDNNs were also used for MNIST classifica-
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Figure 7.8: Visualization of weight elements in the first linear layer of
a coherent SPDNN. The architecture of this model is 784 →
100 → 10, and we display the weight matrix W (1) of the first
layer (with dimensions 100× 784). Each block represents a row
vector in W (1) containing 784 elements. These column vectors
are rearranged to form a 2D block with dimensions 28 × 28,
matching the original shape of the MNIST input images. The
100 rows in W (1), corresponding to the 100 hidden neurons in
the neural network, are arranged in a 10 × 10 grid to be visual-
ized. The average value and standard deviation of the elements
in each block are indicated at the top.
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Model K = 1 K = 2 K = 3 K = 5 K = 7 K = 10 K → ∞
784–10–10 80.21 ± 0.27 85.63 ± 0.24 87.49 ± 0.19 88.85 ± 0.15 89.42 ± 0.15 89.87 ± 0.14 90.70 ± 0.00
784–20–10 89.31 ± 0.23 92.43 ± 0.17 93.42 ± 0.14 94.10 ± 0.13 94.39 ± 0.14 94.60 ± 0.11 95.05 ± 0.00
784–25–10 91.51 ± 0.20 94.16 ± 0.16 94.89 ± 0.14 95.47 ± 0.12 95.70 ± 0.10 95.86 ± 0.08 96.10 ± 0.00
784–30–10 92.72 ± 0.19 94.92 ± 0.13 95.58 ± 0.12 96.05 ± 0.10 96.26 ± 0.09 96.41 ± 0.08 96.74 ± 0.00
784–50–10 95.50 ± 0.15 96.88 ± 0.11 97.26 ± 0.09 97.55 ± 0.08 97.67 ± 0.07 97.77 ± 0.07 97.93 ± 0.00

784–100–10 97.41 ± 0.13 98.16 ± 0.08 98.36 ± 0.08 98.52 ± 0.07 98.58 ± 0.06 98.61 ± 0.05 98.70 ± 0.00
784–200–10 98.34 ± 0.10 98.76 ± 0.07 98.88 ± 0.07 98.97 ± 0.05 99.00 ± 0.05 99.04 ± 0.04 99.12 ± 0.00
784–400–10 98.64 ± 0.08 98.95 ± 0.06 99.04 ± 0.05 99.09 ± 0.05 99.12 ± 0.04 99.14 ± 0.03 99.19 ± 0.00

784–400–400–10 98.95 ± 0.08 99.21 ± 0.05 99.29 ± 0.04 99.33 ± 0.04 99.35 ± 0.04 99.37 ± 0.03 99.40 ± 0.00
784–C16–400–10 99.33 ± 0.06 99.45 ± 0.04 99.47 ± 0.04 99.50 ± 0.04 99.51 ± 0.03 99.52 ± 0.03 99.54 ± 0.00

Table 7.2: Test accuracy (%) of coherent SPDNN models on MNIST with
different model structures and shots per activation K. These
models have an MLP structure with one or two hidden layers
with the number of neurons denoted in the table, except for the
last model, which has a convolutional layer denoted as “C16”
with 16 output channels and followed by a 2 × 2 average pool-
ing and the following linear layers. The mean accuracy and stan-
dard deviation are calculated based on 100 repetitions of infer-
ences using the MNIST test set of 10,000 images.

tion. The architecture included a convolutional layer with 16 output channels,

a kernel size of 5 × 5 and a stride of 1. An SPD activation function was immedi-

ately applied after each convolution layer, without batch normalization. Aver-

age pooling of 2 × 2 was performed after each of the SPD activations. After the

convolution layer, the total number of features was 3136, then the convolution

layers were followed by a linear model of 3136 → 400 → 10, with the SPD acti-

vation function applied at each of the 400 hidden neurons as well. This structure

is depicted in Figure 7.6b. For optimization, we used an SGD optimizer with a

learning rate of 0.01 for the entire model. The convolutional SPDNN model can

be optimized easily without fine-tuning the parameters. After 200 epochs, the

accuracy quickly reached 99.4%.
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CIFAR-10 classification

Figure 7.6e shows the results of simulating variants of a 6-layer convolutional

SPDNN (comprising 4 convolutional layers and 2 fully connected, linear layers)

on CIFAR-10 image classification. All these simulation results were obtained

in the single-shot (K = 1) regime. The number of channels in each convolu-

tion layer was varied, which affects the total number of MACs used to per-

form an inference. We observed that the test accuracy increased with the size of

the SPDNN, with accuracies approaching those of conventional convolutional

neural networks of comparable size [241], as well as of binarized convolutional

neural networks [225, 242, 243]. In the models we simulated that only used SPD

as the activation function (i.e., the ones in which there are no ‘Digital ReLU’

blocks), the high-SNR linear output layer had only 4000 MAC operations, so

the number of MACs in the high-SNR layer comprises less than 0.01% of the

total MACs performed during an inference. The models we simulated are thus

sufficiently large that the total optical energy cost would be dominated by the

(low-SNR) layers prior to the (high-SNR) output layer. Equivalently, the opti-

cal energy cost per MAC would be predominantly determined by the cost of

the low-SNR layers. These simulation results illustrate the ability of SPDNNs

to scale to larger and deeper models, enabling them to perform more challeng-

ing tasks. The symmetric stochastic activation function that is realized by SPD

of coherently encoded real values yields good accuracies on both MNIST and

CIFAR-10 benchmarks and is straightforward to implement experimentally.

The CIFAR-10 dataset [244] has 60,000 images, each having 3 × 32 × 32 pix-

els with 3 color channels, that belong to 10 different categories, representing

airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships and trucks.
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The dataset is partitioned into a training set with 50,000 images and a test set

with 10,000 images. The pixel values have been normalized using the mean

value of (0.4914, 0.4822, 0.4465) and standard deviation of (0.2471, 0.2435, 0.2616)

for each of the color channels. To boost performance, data augmentation tech-

niques including random horizontal flips (50% probability) and random 32× 32

crops (with 4-pixel padding) were implemented during training. We used the

AdamW optimizer [240] with a learning rate of 0.0005 and betas of (0.99, 0.98).

The models were trained for thousands of epochs.

The convolutional SPDNNs have a structure where the SPD activation func-

tion is applied after each convolution layer and before an average pooling of

2 × 2. The final architecture consists of a series of convolution layers followed

by a linear layer of 400 neurons, and a final layer of 400 → 10 for the output.

Similar to the convolutional models trained for MNIST, the convolutional layers

use a kernel size of 5×5, a stride size of 1 and padding of 2. Batch normalization

was used in the models after each convolutional layer. Either SPD or ReLU ac-

tivation function was applied to each of the 400 neurons in the first linear layer,

as depicted in Figure 7.6e.

After Nconv convolutional layers (Nconv = 2, 3 or 4 in this case) with the num-

ber of output channels of the last one to be N last
chan (either 128 or 256 in this case),

the feature map of (32/2Nconv)2 × N last
chan is flattened to a vector, followed by two

linear layers of (32/2Nconv)2N last
chan → 400→ 10. In addition to the results presented

in Figure 7.6e, we experimented with more architectures ranging from 2 to 4

convolution layers, and the results are displayed in Figure 7.9. In these mod-

els, only the SPD activation function was used. The x-axis of the plot represents

the number of multiply–accumulate (MAC) operations in the convolutional lay-
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Figure 7.9: Test accuracy of convolutional SPDNN models on CIFAR-10
classification. The plot shows the mean test accuracy (data
points) and the corresponding standard deviation (shaded re-
gion), calculated by averaging the results of 100 repeated infer-
ence runs. The number of output channels in the convolutional
layers is indicated near each data point, with different colors
denoting different numbers of convolutional layers. The lin-
ear layers following the convolutional layers have a consistent
structure of 400 → 10, with SPD activation applied to the 400
neurons.

ers. The layout of the number of channels for each convolution layer is noted

around each data point for each model. For example, “64–128” indicates that

there are two convolution layers each with 64 and 128 output channels, respec-

tively. These mean values (data points) and standard deviations (shaded area)

of the test accuracies are obtained from 100 repeated inference, and the activa-

tions only involved a single shot of SPD measurement (K = 1) in all the neurons,

including the convolutional and linear layers.

We further investigated the effects of multiple shots of SPD measurements

per activation in the SPD activations in convolutional (Kconv) and linear (Klin)
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layers, respectively. We chose to test a model with four convolutional layers of

128, 256, 256, and 256 output channels and varied the Klin and Kconv to see the

test accuracies. The results are summarized in Table 7.3.

Klin = 1 Klin = 2 Klin = 3 Klin = 5 Klin = 10 Klin → ∞

Kconv = 1 86.94 ± 0.23 87.11 ± 0.21 87.17 ± 0.21 87.23 ± 0.19 87.26 ± 0.20 87.28 ± 0.21
Kconv = 2 88.65 ± 0.18 88.77 ± 0.18 88.83 ± 0.18 88.88 ± 0.16 88.86 ± 0.18 88.90 ± 0.16
Kconv = 3 89.16 ± 0.15 89.26 ± 0.15 89.31 ± 0.16 89.33 ± 0.15 89.35 ± 0.14 89.39 ± 0.14
Kconv = 5 89.55 ± 0.14 89.68 ± 0.15 89.71 ± 0.14 89.74 ± 0.13 89.73 ± 0.13 89.77 ± 0.13

Kconv = 10 89.82 ± 0.12 89.91 ± 0.11 89.95 ± 0.10 90.00 ± 0.11 90.00 ± 0.12 90.02 ± 0.13
Kconv → ∞ 90.09 ± 0.09 90.20 ± 0.08 90.21 ± 0.07 90.25 ± 0.07 90.26 ± 0.05 90.31 ± 0.00

Table 7.3: Test accuracy (%) of the convolutional SPDNN on CIFAR-10
with varying shots per activation K in the convolutional and
linear layers. The SPDNN model in this table consists of four
convolutional layers with 128, 256, 256, and 256 output chan-
nels, respectively. The convolutional layers are followed by a
linear layer with 400 neurons and an output layer with 10 neu-
rons. The SPD activation function is applied to each of the 400
neurons in the first linear layer. Kconv represents the number of
shots of SPD readouts per activation in the convolutional layers,
while Klin represents the shots per activation in the linear layer.
The mean accuracy and standard deviation are calculated based
on 100 repetitions of inferences using the CIFAR-10 test set of
10,000 images.

In these SPDNNs, the number of operations in the output layer is negligible

compared to the entire models. In terms of the number of MAC operations (dot

products, DPs), Nout
MAC = 4000 (Nout

DP = 10). The number of dot products, or the

activation size, is directly related to the number of optical detections in ONN im-

plementations. The output layer is the only layer that needs to be implemented

with a “high SNR” (see Figure 7.1). The small portion of operations in this layer

indicates the capability of low-SNR stochastic layers in a deeper model. This

further suggests the potential to leverage stochastic physical systems with low

SNRs to perform reliable neural-network inference.
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Model Ntotal
MAC Nout

MAC/N
total
MAC Ntotal

DP Nout
DP /N

total
DP

C64–C128 5.73 × 107 6.60 × 10−5 2.29 × 106 4.36 × 10−6

C128–C128 1.15 × 108 3.40 × 10−5 4.59 × 106 2.18 × 10−6

C128–C256 2.20 × 108 1.80 × 10−5 8.78 × 106 1.14 × 10−6

C16–C32–C128 1.11 × 107 3.37 × 10−4 4.42 × 105 2.26 × 10−5

C32–C64–C128 2.87 × 107 1.36 × 10−4 1.15 × 106 8.72 × 10−6

C64–C128–C128 8.36 × 107 4.70 × 10−5 3.34 × 106 2.99 × 10−6

C128–C128–C128 1.41 × 108 2.80 × 10−5 5.64 × 106 1.77 × 10−6

C128–C256–C256 3.24 × 108 1.20 × 10−5 1.30 × 107 7.71 × 10−7

C16–C32–C128–C128 1.76 × 107 2.24 × 10−4 7.05 × 105 1.42 × 10−5

C32–C64–C128–C128 3.52 × 107 1.13 × 10−4 1.41 × 106 7.10 × 10−6

C64–C128–C128–C128 9.01 × 107 4.40 × 10−5 3.60 × 106 2.77 × 10−6

C128–C128–C128–C128 1.47 × 108 2.70 × 10−5 5.90 × 106 1.70 × 10−6

C128–C256–C256–C256 3.51 × 108 1.10 × 10−5 1.40 × 107 7.13 × 10−7

Table 7.4: Number of operations in the convolutional SPDNN models.
The table displays the number of multiply–accumulate (MAC)
operations and dot products (DPs) in the SPDNN models. Ntotal

MAC
(Ntotal

DP ) represents the total number of MAC operations (dot
products) in the entire SPDNN models, including all the convo-
lutional layers and two linear layers. Nout

MAC (Nout
DP ) represents the

number of MAC operations (dot products) in the output layer,
which is the only layer implemented with a “high SNR”. For the
400 → 10 output layer, Nout

MAC = 4000 and Nout
DP = 10. The portion

of the high-SNR output layer’s operations relative to the entire
model’s operations in terms of MAC operations (dot products)
is presented in the third (fifth) column. “CNchan” denotes an SPD
convolutional layer with Nchan output channels.

7.3.3 Additional Classification Tasks

Apart from the benchmark MNIST and CIFAR-10 classification tasks, we added

additional tests for KMNIST (“Kuzushiji MNIST”) [245] and FashionMNIST

[246] to further demonstrate the capabilities of our SPDNN models. To en-

sure fair and straightforward comparisons, we chose to test these tasks using

the same structure we used for MNIST classification tasks, specifically the MLP

with 784→ 400→ 10. We compared the following four different models:
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• A deterministic MLP with one hidden layer of 400 neurons, 784 → 400 →

10. The weights are real-valued. The activation function is ReLU.

• A coherent MLP-SPDNN with one hidden layer of 400 neurons, 784 →

400 → 10. The weights are real-valued. This model is the same as the one

shown in Figure 7.6d (N = 400).

• An incoherent MLP-SPDNN with one hidden layer of 400 neurons, 784→

400 → 10. The weights are non-negative. This model is the same as the

one shown in Figure 7.3b (MLP, 1 hidden layer).

• A linear classifier. The weights are real-valued.

Using a training process similar to that for the MNIST classification task (??),

we optimized these SPDNN models with both incoherent and coherent optical

setups. The blue dashed line represents the deterministic model with the same

MLP architecture as the SPDNNs. The red dashed line represents the linear clas-

sifier. These lines set the upper and lower bounds of test accuracy, respectively,

for each individual classification task.

By varying the number of shots per activation K in these SPDNN models,

we observed trends consistent with those seen in the MNIST task (Figure 7.10),

although some small differences exist among these tasks. For example, the test

accuracy for coherent and incoherent MLP-SPDNNs tends to converge for the

KMNIST classification task with increasing shots per activation K. However,

this convergence is less pronounced for the other two tasks.

These additional results illustrate that our SPDNN models are effective

across various tasks. They demonstrate that our highly stochastic SPDNN mod-

els can achieve reliable performance comparable to deterministic models.
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Figure 7.10: Comparison of performance of different models on three
image classification tasks. The deterministic model and both
coherent and incoherent SPDNNs share the MLP architecture
of 784 → 400 → 10. The x-axes represent the number of
shots per activation K in the hidden layer of the correspond-
ing SPDNN model. These models are trained for a, MNIST,
b, KMNIST, and c, FashionMNIST classification tasks, respec-
tively.

7.4 Experimental Implementation

In our experimental demonstrations, we based our SPDNN on a free-space op-

tical matrix-vector multiplier (MVM) that we had previously constructed for

high-SNR experiments [1], and replaced the detectors with SPDs so that we

could operate it with ultra-low photon budgets (Section 7.4.1). The experi-

ments we report were, in part, enabled by the availability of cameras comprising

large arrays of pixels capable of detecting single photons with low noise [247].
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Figure 7.11: Experimental performance of SPDNNs on MNIST
handwritten-digit classification. a, Experimental evalu-
ation of the SPDNN, with the output layer performed with
full numerical precision on a digital computer. Results are
presented for both K = 1 (single-shot, i.e., no averaging; top),
K = 2 (middle), and K = 5 (bottom) shots per activation.
b, Experimental evaluation of the SPDNN, with both the
hidden and the output layer executed using the optical
experimental apparatus. The average number of detected
photons used per inference in the hidden layer was kept
fixed and the number used per inference in the output layer
was varied. The number of detected photons per inference is
reported both as an aggregate optical energy (top axis) and
as a per-MAC quantity (bottom axis), which we obtained by
dividing the number of photons per inference by the number
of MACs performed in a single inference. The mean and
standard deviation of the test accuracy were estimated used
100 repetitions of inference for each image in the test set.
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We encoded neuron values in the intensity of incoherent light on an organic

light-emitting diode (OLED) display; as a result, the weights and input vec-

tors were constrained to be non-negative in a single operation. In the low-SNR

layers, we imposed this non-negativity constraint during the training process.

However, this is not a fundamental feature of SPDNNs—in the next section,

we present simulations of coherent implementations that lift this restriction.

A single-photon-detecting camera measured the photons transmitted through

the optical MVM, producing the stochastic activations as electronic signals that

were input to the following neural-network layer (Section 7.4.1).

In our first set of optical experiments, the hidden layer was realized optically

and the output layer was realized in silico (Figure 7.11a): the output of the SPD

measurements after the optical MVM was passed through a linear classifier ex-

ecuted with full numerical precision on a digital electronic computer. We tested

using both K = 1 (no averaging) and K = 2 shots of averaging the stochastic bi-

nary activations in the hidden layer. In Figure 7.11a, we can see that the exper-

imental results agree well with simulations that additionally modeled imper-

fections in our experimental optical-MVM setup, in contrast to the simulation

results shown in Figure 7.3b that did not specifically consider these imperfec-

tions. The test accuracies were calculated using 100 test images, with inference

for each image repeated 30 times. The hidden layer (the one computed op-

tically in these experiments) used approximately 0.0008 detected photons per

MAC, which is ≥ 6 orders of magnitude lower than is typical in ONN imple-

mentations [17, 18, 21, 46] and ≥ 3 orders of magnitude lower than the lowest

photons-per-MAC numbers reported to date [1, 21].

We then performed experiments in which both the hidden layer and the out-
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put layer were computed optically (Figure ??d). In these experiments, we imple-

mented a neural network with 400 hidden neurons and used 5 shots per infer-

ence (N = 400, K = 5). To execute the linear operations with real-valued weight

elements on our incoherent setup, we divide the weight elements into positive

and negative components. We perform the operations separately for each com-

ponent and then obtain the final output values by subtracting the results of the

negative weights from those of the positive weights. The total optical energy

was varied by changing the number of photons used in the output layer; the

number of photons used in the hidden layer was kept fixed (see details in Table

7.6 and Section 7.4.4).

The results show that even though the output layer was operated in the

high-SNR regime (Figure 7.1b), the full inference computation achieved high

accuracy yet used only a few femtojoules of optical energy in total (equivalent

to a few thousand photons). By dividing the optical energy by the number of

MACs performed in a single inference, we can infer the per-MAC optical en-

ergy efficiency achieved: with an average detected optical energy per MAC of

approximately 0.005 attojoules (or 0.014 attojoules) at a photon wavelength of

532 nm, equivalent to 0.013 photons (or 0.038 photons), the mean and standard

deviation of test accuracy achieved 92.0 ± 2.3% (or 98.0 ± 1.3%). The optical

energy per MAC serves as a metric of the overall SNR at which the system op-

erates, allowing for direct comparison with previous works. The end-to-end

system energy consumption advantage is beyond the scope of this paper.

We can also compare our results with what has been published previously.

Our experiments, with N = 50 hidden neurons and K = 5 shots of SPD mea-

surements per activation (see Figure 7.24) achieved a test accuracy of 90.6% on
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MNIST handwritten-digit recognition while using only an average of 1390 de-

tected photons per inference (corresponding to ∼0.5 fJ of detected optical energy

per inference). This represents a >40× reduction in the number of photons per

inference to achieve >90% accuracy on this task versus the previous state-of-

the-art [1, 21].

Despite these already very low numbers, most photons per inference in these

implementations are consumed in the high-SNR output layer, and there is still

potential for further reduction with a more optimized experimental setup (Sec-

tion 7.4.4). As we discussed in Section 7.3.2 (Table 7.4), as models scale up, the

impact of a single high-SNR output layer becomes negligible.

In the following sections, we detail the process to obtain these results on the

optical MVM reported in Chapter 3.

7.4.1 Calibration of the Setup

Single-photon detection by a scientific CMOS camera

Single-photon detection is core to implementing an SPDNN. In our experiment,

we use a scientific CMOS camera, the Hamamatsu ORCA-Quest qCMOS Cam-

era, to realize the function of single-photon detectors [247]. CMOS cameras usu-

ally cannot detect single photons due to the relatively high readout noise com-

pared to the signals induced by individual photons. The ORCA-Quest qCMOS

camera, however, has well-controlled readout noise as low as 0.3 equivalent

photoelectrons. This makes viewing the individual spikes of photon response

possible on the output of the camera. An example of the distribution of pixel
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values from the camera is shown in Figure 7.12a. These pixel values are from

a sequence of frames collected with some intensity of input light. The output

pixel values have a digital bias of ≈ 200, and the analog gain is ∼ 7.94 pixel val-

ues per photoelectron. We can see the individual spikes corresponding to dif-

ferent numbers of detected photons, with the first peak referring to no detected

photons. Due to readout noise of the camera, we can still see a near-Gaussian

distribution around the peak value of each detected photon number. To do

single-photon detection, a threshold can be set to determine if there is a pho-

ton (or more photons) detected. If the pixel value is larger than the threshold,

we record a click; otherwise, there is no click. In this way, although the camera

has already completed analog-to-digital conversion (ADC) before thresholding,

the qCMOS camera can still emulate the function of a single-photon detector.

Figure 7.12: Pixel value distributions of the ORCA-Quest qCMOS cam-
era. a, An example of pixel value distribution in collected
frames with input signal light of a few photons. The red
dashed line indicates the threshold to tell if there is a photon
click. We can see clearly that the discrete numbers of photons
can be resolved in the individual peaks. b, Pixel value distri-
bution of the dark frames without input light.

This camera has an overall quantum efficiency of ∼ 86% at our working

wavelength of 532 nm and a dark count rate of 0.006 photoelectrons per sec-
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ond per pixel at the working temperature of -35ºC with air cooling. Due to the

readout noise, the thresholding process may add additional errors because of

the overlap of the signal peaks. Figure 7.12b shows the pixel value distribution

of dark frames without input signals. We can see that using the same threshold,

there is a small tail of the distribution on the right side of the threshold. This

small portion of the pixel values from dark frames would trigger a photon click

as well, which further adds to the dark count rate. Similarly, the output pixel

values from detected photons also have a small probability to fall in the “no

click” region, which makes the effective photon detection efficiency a bit lower.

In our experiment, we calibrated the qCMOS camera in the single-photon de-

tection mode and found that the effective dark count rate of around 0.01 photo-

electrons per second per pixel, and the effective photon detection efficiency to

be 68%, on average. Note that there are also variations among different pixels.

In the experiment implementation, only one single pixel is used for each vector-

vector dot product. We will see that the photon detection efficiency and dark

counts do not significantly influence the results, as discussed in Section 7.5.1.

Validation of the Optical Vector-Vector Multiplications

The major part of computation in the ONN implementation is the linear oper-

ations. The accuracy of matrix-vector multiplication is essential in a successful

ONN inference. In this section, we calibrate the accuracy of our optical MVM.

We use the setup with either single-photon detection or conventional intensity

measurement that involves a much higher intensity. Focusing the lights to one

pixel of ∼ 5 µm is challenging, which reduces the dot product precision slightly.

However, as we will see in Section 7.5.1, the SPDNN models are very robust to
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Figure 7.13: Calibration curves of vector-vector multiplication (VVM)
precision in the setup. Panel a (b) shows the VVM calibration
of the vector size of 784 (400), which were used for the hidden
(output) layer in the optical implementation of the SPDNN
model with a structure of 784 → 400 → 10. The calibration
curves (red dashed line) were obtained using the least-squares
regression method and the data points are collected with a
long exposure time to eliminate the photon noise.

this amount of errors.

To generate a test dataset representative of general dot products, we ran-

domly generated vector pairs x⃗ and w⃗ based on natural scene images from the

STL10 dataset. Each vector was generated from a single color channel of one or

more images patched together, depending on the target vector size (each image

of size L × L contributes N = L2 elements to the vector). We chose natural im-

ages since they are more representative of the inputs in image classification with

globally inhomogeneous and locally smooth features. To adjust the sparsity of

the vectors, different thresholds were applied to the image pixel values such

that the dot product results cover a wider range of possible values. This was

achieved by shifting the original pixel values (float point numbers normalized

to the range 0-1) in the entire image up or down by a certain amount, unless the
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value was already saturated at 1 (maximum) or 0 (dark). For example, a shift of

-1 would make the whole image dark. A shift of +0.2 would make all the pixel

values that were originally larger than 0.8 saturated, and would increase all

other pixel values by 0.2. This method allowed us to tune the overall intensity

of the modulated images without losing the randomness of the distribution.

Calibration curves of vector-vector dot product results are shown in Figure

7.13. The results are averaged over a large number of repetitions to get rid of

the photon noise to see the systematic errors in the optical MVM. The vectors

are randomly generated to cover the full range of the light intensity from the

minimum to maximum transmission, as discussed in [1]. The vector size is

28 × 28, which is equivalent to the size of the first layer in MNIST classification.

Validation of the SPD Activation Function

To validate the SPD activation function in the SPDNN implementation, we need

to consider not only the precision of the linear operations, but also the non-

linear activation function. As the incident light onto the qCMOS camera is at-

tenuated to just a few photons, the photon noise becomes significant and the

measurement less accurate. To address this, we first measure a higher light

intensity with long exposure times and estimate the exact light intensity with

a shorter exposure time using the ratio of exposure times. We then use the

shorter exposure time to perform single-photon detection to output a photon

click (value 1) or no photon click (value 0). The probability of a photon click

is estimated by averaging over a large number of repetitions. The intensity is

tuned by adjusting both the exposure time and neutral density (ND) filters that

attenuated the light. The expected theoretical curve is also plotted for compari-
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son. The results are shown in Figure 7.14.
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Figure 7.14: Validation of the SPD activation function. The theory curve
is the expected function of f (λ) = 1 − e−λ with the intensity
λ in photon numbers. The experiment data was taken by the
Hamamatsu ORCA-Quest qCMOS camera.

7.4.2 Adaptation to Experimental Limitations

The implementation of SPDNNs on an optical MVM can be challenged by ex-

perimental restrictions that affect the precision of the network inference. Some

of these limitations include the non-negative encoding resulting from the use

of an incoherent light source and limitations in the precision of the setup. In

this section, we describe how these limitations can be addressed to successfully

implement SPDNNs on our setup. As discussed in Section 7.4.1, our incoher-

ent optical MVM has systematic errors in the dot-product results, even in the

absence of photon noise. Additionally, the SLM used in the system has a finite
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extinction ratio of approximately 50 (Figure ??b). These limitations present a sig-

nificant challenge in the implementation of the SPDNNs because, in the models,

both the input vectors and weights have many small values close to 0. This is

problematic because, within the full range of 0 to 1, having a minimum value

of 0.02 instead of 0 has a non-trivial effect on the accuracy of the dot product

calculation. These small values are accumulated over many elements, leading

to a relatively large value, compared to the final dot product result. As a result,

the performance of the SPDNNs is severely impacted by these limitations.

Figure 7.15: Simulation of SPDNN performance with different experi-
mental settings. a, MNIST test accuracy of SPDNN models
under experimental restrictions. The models have a structure
of 784 → 400 → 10 (N = 400, K = 1). b, MNIST test accuracy
as a function of the input light intensity. The intensity was
varied by adjusting the range of input values using a constant
factor. Both panels show results obtained with an incoherent
setup and a single shot of SPD readout per activation (K = 1).

Figure 7.15a demonstrates the results of implementing the neural network

models using the real LUTs from our setup. The test accuracy significantly

drops, making the experimental implementation a failure. To address this is-

sue, we used error-aware training techniques (as discussed in [248]) to train our
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models with an understanding of these experimental restrictions. During the

error-aware training process, the real LUTs were used in the implementation of

the models. The results of this error-aware training are shown in the red curves

in Figure 7.15a. It can be seen that, with error-aware training, the SPDNN mod-

els are highly robust to changes in input range, especially with a relatively large

number of hidden neurons.

Conventional ONN inferences can operate effectively at various light inten-

sity levels, as long as the intensity is sufficiently high to suppress photon noise

and maximize detection precision. These systems can, in principle, integrate ar-

bitrarily high light intensities to enhance detection precision. However, in the

optical implementation of SPDNN inferences, the SPD activation function relies

on the precise number of photons detected. As a result, controlling the oper-

ating intensity in the setup becomes crucial to ensure accurate quantization of

the detected optical energy. Calibrating the intensity to the appropriate level for

SPD activation function presents a challenge, especially considering the inher-

ent significant noise in intensity measurements at low photon counts.

Despite these challenges, our simulation results demonstrate the robust per-

formance of SPDNNs even with slight variations in the input intensities. We

systematically varied the input intensity across a range from 0.1 to 100 times

the original expected intensity that was used during training. Figure 7.15b illus-

trates that the model’s performance remains stable within a wide range of inten-

sities. The test accuracy remains nearly consistent, even when the input energy

deviates significantly from the original training intensity. This observed stabil-

ity highlights the resilience of SPDNNs to variations in input intensity levels.

It further suggests that these SPDNN models can be successfully implemented
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with lower photon budgets, which is promising for practical applications where

minimizing optical energy usage is desirable.

7.4.3 Optical Implementation of the SPD Activations

In this section, we demonstrate the experimental implementation of SPD acti-

vation functions in SPDNN inferences. The weight matrix of the first layer W (1)

in the SPDNNs was displayed on the OLED screen, with each element encoded

as the intensity of a corresponding pixel. The models used in experiments are

trained to account for the limitations of the experimental setup, as discussed

in Section 7.4.2. In Figure 7.16, the weights of the model with N = 100 hidden

neurons are depicted. The two-dimensional arrangement of each weight vec-

tor block mirrors the visual representation on the OLED display, which matches

each pixel of the MNIST input images. The MNIST test images were displayed

on the SLM, where the pixels were aligned with those on the OLED display. The

transmission of each SLM pixel is determined by the values of the correspond-

ing pixels in the input image. After passing through the SLM, the modulated

intensity of each pixel is then combined through the imaging system to perform

an optical fan-in process, and the dot product result is obtained by detecting the

accumulated optical energy.

As described in Section 7.4.1, the qCMOS camera serves as a single-photon

detector (SPD). The modulated light is recorded by the qCMOS camera, and the

SPD activation function is applied during this single-photon detection process.

A single pixel on the qCMOS camera is used and emulates a single-photon de-

tector by applying a threshold on the output pixel values. As shown in Figure
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Figure 7.16: An example of weight values to be displayed on the OLED
display during the experiment. This model has N = 100 hid-
den neurons, and we display the weight matrix W (1) of the first
layer (with dimensions 100×784). Each block represents a row
vector in W (1) containing 784 elements. These column vectors
are rearranged to form a 2D block with dimensions 28 × 28,
matching the original shape of the MNIST input images. The
100 rows in W (1), corresponding to the 100 hidden neurons in
the neural network, are arranged in a 10 × 10 grid to be visu-
alized. The weight values have been normalized to a range of
0 to 1 to fit the intensity range of the OLED display. The aver-
age value of each block is indicated at the top. The color map
used in the plot has been selected to emulate the actual color
on the OLED display, as only green pixels are utilized (∼ 532
nm), thereby presenting what could be observed on the OLED
display in the experimental setup.
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Figure 7.17: Test accuracy of individual images with 1 SPD measure-
ment per activation (K = 1). The MLP-SPDNN models with
a varying number of hidden neurons N from 50 to 400 (pan-
els a–e) were evaluated using a single shot per SPD activation
(K = 1). Test accuracy was evaluated for each individual im-
age, and each data point represents the average accuracy ob-
tained from 30 inferences. We have not plotted error bars for
experimental data, but the variance is directly related to the
data shown: since the outcome of each inference is a Bernoulli
random variable with p, the variance is p(1− p). The accuracy
values in the legends are averaged over all test images. The
simulation results used the same SPDNN models as in the ex-
periment and considered the experimental restrictions. The
error bars were calculated by repetitions of the whole process.
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Figure 7.18: Test accuracy of individual images with 2 SPD measure-
ments per activation (K = 2). The MLP-SPDNN models
with a varying number of hidden neurons N from 50 to 400
(panels a–e) were evaluated using 2 shots per SPD activation
(K = 2). Test accuracy was evaluated for each individual im-
age, and each data point represents the average accuracy ob-
tained from 15 inferences. We have not plotted error bars for
experimental data, but the variance is directly related to the
data shown: since the outcome of each inference is a Bernoulli
random variable with p, the variance is p(1− p). The accuracy
values in the legends are averaged over all test images. The
simulation results used the same SPDNN models as in the ex-
periment and considered the experimental restrictions. The
error bars were calculated by repetitions of the whole process.

224



Figure 7.19: Test accuracy of individual images with 3 SPD measure-
ments per activation (K = 3). The MLP-SPDNN models
with a varying number of hidden neurons N from 50 to 400
(panels a–e) were evaluated using 3 shots per SPD activation
(K = 3). Test accuracy was evaluated for each individual im-
age, and each data point represents the average accuracy ob-
tained from 10 inferences. We have not plotted error bars for
experimental data, but the variance is directly related to the
data shown: since the outcome of each inference is a Bernoulli
random variable with p, the variance is p(1− p). The accuracy
values in the legends are averaged over all test images. The
simulation results used the same SPDNN models as in the ex-
periment and considered the experimental restrictions. The
error bars were calculated by repetitions of the whole process.
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7.12, the output signal is primarily discrete in individual photon numbers, with

only slight mixing due to readout noise from the electronic apparatus. Robust-

ness to the false clicks due to the mixing will be discussed in Section 7.5.1. To

control the input light intensity, either the exposure time is varied or light atten-

uation can be achieved through the use of neutral density filters, or a combina-

tion of both, depending on realistic experimental settings. A typical exposure

time value is ∼ 1 ms for one shot of SPD measurement.

Due to the inherent stochastic nature of SPDNN models, the output from

different repetitions of the same test image and weight matrix varies. To assess

the performance of the model, it is necessary to repeat the inference many times

to represent the distribution of the output. This will give us a better understand-

ing of the model’s behavior and its accuracy. In the experimental setup, multiple

repetitions of the inference were obtained by capturing multiple frames with the

camera. Each repetition is identified by a unique frame index number. Note that

this repetition includes the entire inference process. Each repetition of inference

for a given input image involves N ×K SPD measurements, with K shots of SPD

measurements for each of the N neuron activations in the hidden layer.

In our experiments, we collected a set of 30 frames for each test image and

weight matrix combination. Each frame provides us with a measurement of

the stochastic binary output values produced by the SPD activation function,

effectively serving as one-shot activations for each hidden neuron in the model.

The activations for different frames, distinguished by different frame indices,

are considered as distinct repetitions of the inference process.

As explained in Algorithm 2, we can improve the precision of the inference

by employing multiple shots per activation. With K shots, we average the K
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binary values to obtain the actual activation value during that inference. In our

experiment, every K frames are averaged to obtain the activation value during a

K-shot inference. As each frame collected during the experiment is independent

and identically distributed, the specific sequence or arrangement of the frame

indices has no impact on the resulting outcome. Subsequently, the activation

values were used as inputs to the output linear layer, performed digitally with

full precision, to calculate the final output and make predictions for the label of

the test image. The test accuracy results can be found in Table 7.5.

Our experimental results show that the collected SPD activations are capa-

ble of producing similar test accuracy results to those obtained from simulation.

However, simply having similar accuracy values may not be a sufficient indica-

tor of a faithful implementation. To validate this further, we compare the pre-

diction accuracy of individual test images between the experimental and simu-

lated results. The results obtained from 1-shot inferences K = 1 are presented

in Figure 7.17, where we use each frame as a separate repetition of the inference

process, with a total of 30 repetitions performed. For each repetition, if the pre-

diction made was accurate, it was recorded as a 1; otherwise, it was recorded as

a 0. To visualize the distribution of the output accuracy, we then calculated and

plotted the mean values and standard deviations of the test accuracy based on

the 30 repetitions.

We conducted simulations of the same inference process on a digital com-

puter using the same models and input images. To ensure a closer simulation to

reality, we also incorporated realistic experimental restrictions, such as the lim-

ited extinguish value of the SLM, the dynamic range and precision of the LUT

in both the SLM and the OLED display, and the systematic errors in the optical
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MVM.

Similarly, we examined the results of the inferences with K = 2 (K = 3)

shots per activation, which are illustrated in Figure 7.18 (7.19). In this setup, we

combine every 2 (3) frames to be averaged to compute a neuron activation, and

we repeated this process 15 (10) times to obtain the final results.

By comparing the simulation results with the experimental results obtained

from the collected SPD activation values, we aimed to validate the performance

of the latter. The comparison revealed that, for the majority of input images,

the predictions are highly resilient to the inherent stochasticity in the model. In-

terestingly, the results are not as unpredictable as one might expect, as a closer

examination shows that most of the errors stem from a limited number of spe-

cific input images (see Figures 7.17–7.19).

Model K = 1 K = 2 K = 3 K = 5 K = 10
784 − 50 − 10 87.3 ± 2.5% 91.5 ± 2.2% 93.7 ± 1.8% 95.0 ± 0.0% 95.0 ± 0.8%

784 − 100 − 10 92.8 ± 1.9% 95.1 ± 1.5% 96.4 ± 1.2% 96.7 ± 0.7% 97.7 ± 0.5%
784 − 200 − 10 94.6 ± 2.0% 96.3 ± 1.5% 97.6 ± 1.3% 98.3 ± 0.9% 98.3 ± 0.9%
784 − 300 − 10 96.0 ± 1.5% 98.1 ± 0.9% 98.4 ± 1.1% 98.7 ± 0.5% 98.7 ± 0.5%
784 − 400 − 10 96.2 ± 1.5% 98.3 ± 1.3% 98.8 ± 0.9% 99.2 ± 0.9% 99.7 ± 0.5%

Table 7.5: Test accuracy of the experimental SPD activations with differ-
ent shots per activation K. The results are based on 30 rep-
etitions of one-shot binary SPD activations collected for each
model structure. The test accuracy was calculated by averaging
K shots per activation, and the last layer was performed with
full precision. The table displays the mean and standard devia-
tion of the test accuracy obtained from 30/K repetitions of infer-
ence.

The close correspondence between the experimental and simulated results

for these specific “problematic” input images further validates the reliability

of our experimental implementation. Although the experimental results are

slightly inferior to the simulation results, the distribution of accuracy per input

image is highly comparable. In particular, input images that exhibit high sensi-
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Figure 7.20: Visualization of the output vectors of the SPDNN with
given input images. In this figure, the SPDNN model has
N = 400 hidden neurons and K = 1 shot of SPD measurement
per activation (Figure 7.17e). The prediction of a single infer-
ence of a particular test image is stochastic and is either cor-
rect or incorrect. For each test image, we performed 30 infer-
ences for each test image and report the average accuracy. We
have not plotted error bars, but the variance is directly related
to the data shown: since the outcome of each inference is a
Bernoulli random variable with p, the variance is p(1− p). The
output vectors from the 30 repetitions of inference with the
fixed corresponding image are plotted together, with a 10%
transparency on the curves to show the density. These out-
put vectors are computed from the experimentally collected
SPD activations by performing the output layer digitally on a
computer (Table 7.5).
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tivity to the model’s stochasticity tend to result in larger deviations in the exper-

imental results, while input images that are robust to the model’s stochasticity

exhibit high accuracy both in simulations and in experiments. These results pro-

vide strong evidence of the reliability of the experimental implementation and

demonstrate the robustness and noise resilience of SPDNN implementations.

To further understand the characteristics of the stochastic neural-network in-

ference, we examined the output vectors of each input test image. As depicted

in Figure 7.20, the 30 output vectors from different repetitions of each input im-

age are plotted together to demonstrate the stochasticity in the neural network.

These output vectors were computed by the experimentally measured SPD ac-

tivations and digitally implemented output layer, with N = 400 hidden neurons

and K = 1 shot of SPD measurement per activation (Figure 7.17e). No addi-

tional operations were performed after the linear operation of the output layer

(see Algorithm 2).

Each of the 10 values in the output vector corresponds to the classes in

MNIST digit classification, ranging from 0 to 9, as indicated at the bottom. The

curves of the 30 output vectors were plotted with 10% transparency to show the

distribution density.

As shown in Figures 7.17–7.19, most of the test images have very high accu-

racy and are predicted correctly by SPDNN with high certainty, such as image

0 of digit “7” (depicted in the upper left in Figure 7.20). Despite the stochas-

tic distribution of the output values among the 30 repetitions, the value of class

“7” remains consistently higher than the other elements, resulting in a 100% test

accuracy for this image (Figure 7.1a).
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We also examined these “problematic” images, such as image 8 of digit “5”

(lower left), which is predicted to be digit “6” nearly half of the chance. This

misclassification is not surprising to human observers, as the image shares fea-

tures with both digits “5” and “6”. Interestingly, the output values for class 8 in

this case are relatively high but not the highest, which also aligns with human

intuition.

Similar phenomena can be found for the other “problematic” images as

well, indicating that the model has indeed learned meaningful features from

the dataset. These findings solidify the fact that stochastic neural networks can

perform reliable deterministic classification tasks, and the inherent stochasticity

in the model does not compromise its ability to make accurate predictions.

7.4.4 Full-Optical Implementation

In this section, we showcase the full-optical implementation of SPDNN models

by demonstrating the implementation of the last linear layer optically as well,

using the SPD activation values obtained from the inference of the first layer.

This provides a comprehensive illustration of the feasibility of optical imple-

mentation for the entire network. It is important to note that, in conventional

binarized neural networks, the last layer is usually implemented using full pre-

cision, as demonstrated in previous studies such as [225, 249, 250, 243]. Our re-

sults demonstrate that SPDNNs can be implemented entirely using optics with

remarkably low energy requirements. This capability holds promise for further

advancements, especially with the integration of coherent optical computing

platforms, which will be discussed later.
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Similar to the first layer, we use the same setup to perform the optical matrix-

vector multiplication. The difference is that now we do not need to perform

single-photon detection that has to control the light intensity at a few photons

per detection. In fact, the inference of the last linear layer can be implemented

just as the conventional ONNs, where we accumulate a sufficiently high number

of photons to reach a high SNR for each detection. The collected SPD activation

values, as described in Section 7.4.3, are used as inputs to the last linear layer.

In the experimental implementation, we choose the data from the model with

N = 400 hidden neurons and K = 5 shots per activation. For the 30 frames of

one-shot binary SPD activations, every 5 frames of them are averaged to ob-

tain the 6 independent repetitions of the inference. The input activation values

to be displayed on the SLM are shown in Figure 7.21. The possible values for

the 5-shot activations are 0, 0.2, 0.4, 0.6, 0.8, and 1. If the linear operation was

performed in full precision on a computer, the mean test accuracy would be

approximately 99.1%. To perform the linear operation with real-valued weight

elements on our incoherent setup, we divide the weight elements into positive

and negative parts. We perform the operation separately for each part and fi-

nally obtain the output value by subtracting the results with negative weights

from those with positive weights. The two sets of weights to be projected onto

the OLED display are shown in Figure 7.22, where the ten blocks of weights

correspond to the ten output nodes. This approach at least doubles the pho-

ton budget required for the last layer and has the potential to be optimized for

greater energy efficiency. However, even with these non-optimized settings, our

results demonstrate that the optical energy budget is already several orders of

magnitude lower than the state-of-the-art ONN implementations.

In the implementation, we adjust the exposure time of the camera to control
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Figure 7.21: Visualization of activation values on the SLM during the
last layer experiment. This figure displays the activations ob-
tained from the data collected for the model of N = 400 hidden
neurons and K = 5 shots per activation. The possible values
for the 5-shot activations are 0, 0.2, 0.4, 0.6, 0.8, and 1. The ac-
tivations of size 400 are rearranged into a 20×20 shape, which
corresponds to their physical layout on the SLM. Panels a to i
display the activations of test images with indices 0, 1, 2, 25,
50, 75, 97, 98, and 99, respectively, each with 6 repetitions of
inference. The average value of the activations in each block
is indicated at the top. The overall average activation value of
the 100 test images is ∼ 0.5219.
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Exposure
time

Photons per
detection (pos.)

Photons per
detection (neg.)

Total photons
in output layer

Total detected photons
in a full inference

Detected photons
per MAC Test accuracy

1.03 ms 79.9 ± 0.10 79.4 ± 0.10 1592.5 ± 1.5 2636.3 (0.98 fJ) 0.008 (0.003 aJ) 84.7 ± 3.2%
2.06 ms 159.9 ± 0.17 158.2 ± 0.20 3184.7 ± 2.5 4228.4 (1.57 fJ) 0.013 (0.005 aJ) 92.0 ± 2.3%
3.09 ms 239.7 ± 0.17 237.8 ± 0.22 4777.4 ± 2.6 5821.1 (2.17 fJ) 0.018 (0.007 aJ) 95.2 ± 2.0%
4.12 ms 320.2 ± 0.21 317.0 ± 0.20 6369.4 ± 2.5 7413.2 (2.76 fJ) 0.023 (0.009 aJ) 96.4 ± 1.8%
7.21 ms 560.1 ± 0.30 555.2 ± 0.33 11145.7 ± 5.1 12189.5 (4.54 fJ) 0.038 (0.014 aJ) 98.0 ± 1.3%

12.36 ms 960.1 ± 0.32 950.2 ± 0.40 19107.3 ± 4.1 20151.1 (7.51 fJ) 0.063 (0.024 aJ) 98.2 ± 1.1%
18.54 ms 1439.3 ± 0.56 1425.8 ± 0.41 28658.1 ± 6.6 29701.8 (11.08 fJ) 0.094 (0.035 aJ) 99.0 ± 1.0%

Table 7.6: Optical energy consumption in SPDNN inference with vary-
ing photon budgets in the optical implementation of the out-
put layer. The first column displays the exposure time of the
camera, which determines the number of detected photons. The
average photons per detection for both positive (pos.) and neg-
ative (neg.) output are calculated from the 6000 dot products
derived from 100 input images, 6 repetitions in the first layer
inference, and 10 output nodes. The total photons in the out-
put layer are determined by averaging 600 inferences of the last
layer, each computing 10 output values. The total detected pho-
tons in a full inference are the sum of photons detected in both
layers. The average photons per MAC is calculated by dividing
the total number of MACs by the total detected photons. Stan-
dard deviations are calculated based on 30 repetitions of the last
layer detection. The total detected number of photons in a full
inference, along with the corresponding optical energy of pho-
tons at 532 nm, are displayed in the fifth column, with standard
deviations omitted for simplicity. These results add the 1043.7
photons used in the first layer. The sixth column displays the
average detected number of photons per MAC during a full in-
ference, dividing the numbers in the fifth column by the total
number of MACs, 317,600. The last column shows the test accu-
racy of the inferences at each photon budget.

the optical energy per detection. In order to perform the inference on the 100

input images and 10 output nodes, along with 6 repetitions of the activation

values and 2 sets of weights, we need to perform a total of 100 × 6 × 10 × 2 =

12000 vector-vector dot products, each with a size of 400. Each vector-vector

dot product detection is repeated 100 times. The results are presented in Table

7.6. The photons per detection of either positive or negative output are each

averaged over 100×6×10 = 6000 dot products. The total photons detected in the
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Figure 7.22: Visualization of output layer weights on the OLED display.
This figure presents the positive and negative weights from a
model with N = 400 hidden neurons and a weight matrix of
shape 400×10. The positive and negative weights are depicted
in panels a and b, respectively. To match the layout on the
OLED display, each weight vector of size 400, corresponding
to one of the 10 output nodes, was rearranged into a block
with a shape of 20 × 20 and displayed using green pixels. The
values were normalized to the range of 0 to 1 and the average
value of each block is indicated at the top.

last layer per inference are averaged over the 100 input images and 6 repetitions,

totaling 100×6 = 600 inferences. The standard deviation of the photon numbers

are calculated based on the 100 repeated detections for each dot product. The

total detected photons in a full inference is the sum of those in the last layer

and the first layer. The average value of the binary activations collected for

the N = 400 model is ∼0.52186, resulting in a total of 0.52186 × 400 × 5 ≈ 1043.7

detected photons per inference in the first layer, with 5 shots per activation. This

number is then combined with the total detected photons in the last layer to

obtain the overall photon count for a full inference. We can see that the photon
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Figure 7.23: Calibration of collected experimental data of the last layer
inference. This figure shows the raw data of “high-SNR” op-
tical measurement on the qCMOS camera with various expo-
sure times, each depicted in a separate panel. For each expo-
sure time, one output value was obtained by measuring the
output from both positive and negative weights. Each plot in-
cludes 6,000 data points, representing 100 test images, 6 rep-
etitions in the hidden layer activation, and 10 output nodes.
The ground truth values were computed using full-precision
operations on a digital computer. Both the raw camera pixel
values and the corresponding detected photon numbers are
displayed on the y-axis, with the average detected photon
numbers for the 6,000 data points noted in each plot.
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budget can be reduced by 5 folds if we only have one shot per inference. In a

full inference with N = 400 hidden neurons and K = 5 shots per activation, the

total number of vector-vector products in the first layer is 400 and that in the

last layer is 10 for the 10 output nodes. With dot products of size 784 in the

first layer and 400 in the last layer, the total number of MACs in one inference

process is equal to 317,600 (400 × 784 + 10 × 400). To calculate the number of

detected photons per MAC, we divide the total number of detected photons

in a full inference by the total number of MACs. The prediction of a given

inference is made by directly evaluating the output values of each of the 10

output nodes. The output values are calculated as the difference between the

positive and negative output intensity. The label of the node with the highest

output value is then determined to be the predicted label. The test accuracy on

the 100 test images is presented with its mean and standard deviation in the

final column of Table 7.6. The standard deviation is determined by considering

both the 6 repetitions of the first layer’s inference and the 100 repetitions of

detections in the last layer.

To visualize the impact of photon noise on accuracy in ONN inferences with

a limited photon budget, the data collected from the last layer inference is de-

picted in Figure 7.23. In each panel, 6000 data points are plotted for either pos-

itive or negative output, considering the 100 input images, 6 repetitions in the

first layer inference, and 10 output nodes. The ground truth dot product values

are computed with high-precision operations on a computer. Both the raw cam-

era pixel values and the corresponding photon count are shown on the vertical

axes. As the number of detected photons per detection increases, the detected

values become less noisy, resulting in a test accuracy that is closer to the ground

truth of 99.2% (Table 7.5). Similar to conventional optical neural networks, the
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Figure 7.24: Experimental results of full-optical implementation with
different SPDNN configurations. In addition to Figure 7.11b,
this figure shows the results obtained with different numbers
of hidden neurons (N) and shots of SPD measurements per
activation (K). Each model uses experimentally collected acti-
vation values as input for the optical implementation of the
output layer. The number of detected photons in the first
784→ N layer to compute the SPD activations in each config-
uration is denoted in the corresponding plot. The noise-free
test accuracies with full-precision output layer are shown in
Table 7.5. The number of detected photons in the N → 10
output layer is varied to control the noise in the optical im-
plementation, which is reflected in the resultant test accuracy.
The total number of detected photons per inference is the sum
of the photon budgets in the two layers.
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decrease in accuracy is primarily due to shot noise.

In addition, we performed the output layer optically for other configurations

as well. The results are represented in Figure 7.24). The activation values col-

lected in experiments of other choices of number of hidden neuron N and shots

of SPD readouts K are used as the input for the output layer. If the output layer

is implemented with full numerical precision, the test accuracies were shown

in Table 7.5. These accuracies are the upper bound for the full-optical imple-

mentation with the presence of noise in optical implementation. For these con-

figurations of numbers of hidden neurons (N) and shots of SPD measurements

per activation (K), one inference through the 784 → N hidden layer involves

N × K SPD measurements to compute the activation vector in the hidden layer

of size N. The detected number of photons for the SPD activation computation

in the hidden layer of each configuration is denoted in the corresponding panel

in Figure 7.24. The total number of detected photons per inference is the sum-

mation of this number and the total number of photons detected in the N → 10

output layer, similar to the procedure we discussed above for the configuration

of N = 400 and K = 5.

Similar to the plot in Figure 7.11b, the test accuracies increase with the de-

tected optical energy in a similar trend to that of the N = 400, K = 5 we discussed

in detail above. Comparing these panels with different configurations, we can

see that models with a smaller number of neurons N exhibit greater resilience

to noise when a similar number of photons are used in the output layer. For

instance, comparing panels d and f, with approximately 2000 photons in the

output layer (the second point from the left), the test accuracy declines more in

the N = 400 model (panel f) than in the N = 100 model (panel d). Although the
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models with smaller N and K suffer from a lower noise-free accuracy due to a

smaller network size and higher stochasticity, as shown in Table 7.5. The final

test accuracy is a combination of these two factors.

7.5 Additional Tests

7.5.1 Robustness to Experimental Errors

The first thing to check is the errors induced by the single-photon detectors.

The two key parameters to consider when choosing commercial SPDs are pho-

ton detection efficiency and dark count rate. Photon detection efficiency refers

to the amount of incident light that can be detected by the SPD. Although low

photon detection efficiency is a common issue in many photon experiments, it

does not add extra noise to our SPDNN models. This is because any attenua-

tion to the light still follows a Poisson distribution and cannot be noisier than a

single-photon detector. Hence, a low photon detection efficiency will only add

to the overall transmission loss in the setup, and the input light power is usually

redundant, so it will not affect the performance much. On the other hand, dark

count rates, or false clicks, could pose a greater challenge in experiments with

SPDs. False clicks are hard to distinguish from real signals, and the output of the

detection is binary. The dark count rate of a functional SPD is typically between

10−5 and 10−2 false clicks per signal, depending on the experimental configura-

tion. In some extreme circumstances, such as when the exposure time is very

long or when it is hard to remove ambient light, the dark count rate could be as

high as one false click in tens of detections, ruining the results of the experiment.
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However, our SPDNN models are resilient to high dark count rates. As shown

in Figure 7.25a, even with a false click in fewer than 10 measurements, we still

obtain relatively good accuracy. The common range of < 10−2 barely affects the

performance of the SPDNNs.

Figure 7.25: Robustness tests for the SPDNN model. a, MNIST test ac-
curacy as a function of dark count rate of each SPD activation
measurement. The dark count rate is varied to test the robust-
ness of the SPDNN to noise in the measurement process. b,
MNIST test accuracy as a function of the relative errors in the
vector-vector multiplications (VVMs, or dot products) in the
first layer. The errors are introduced at a fixed ratio with re-
spect to the dot product result to simulate systematic errors in
the optical setup. Both panels present results obtained from
the 784 → 400 → 10 incoherent model with one shot per in-
ference (N = 400, K = 1), and the test accuracies are computed
on the full test set of 10,000 images.

As introduced in Section 7.4.1, the dark count rate with our SPD setting is

0.01 per second per pixel. Given the exposure time of milliseconds, the effects

due to dark counts are trivial in the experimental implementation. In sum-

mary, the robustness of SPDNN models to noise obviates the need for selecting

specialized SPDs for experimental realization. Cost-effective SPDs can be em-

ployed for implementing SPDNNs with high performance. Furthermore, con-

sidering the significant power consumption of cooling systems for state-of-the-
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art SPDs, relaxing the dark current requirement can greatly reduce the power

consumption of the detection system.

The precision of linear operations is a crucial factor in neural network in-

ferences. As discussed in Section 7.4.1, the accuracy of vector-vector multipli-

cation may not be optimal when using a single-pixel camera for single-photon

detection. To assess the effect of errors in dot product calculations on the per-

formance, we conducted a simulation test by adding different levels of ran-

dom noise to the dot product results in the first layer, which serve as the pre-

activations to the SPD activation function. The results, shown in Figure 7.25b,

indicate that SPDNNs are robust to errors in linear operations, even with up to

20% relative noise. This robustness ensures the reliability of the experimental

implementation.

7.5.2 Noise Resilience Compared to Conventional Models

In our SPD activation function, two key features set it apart from conventional

neural networks: the quantization of activation values and the stochastic acti-

vation process. Both of these processes occur naturally through the detection

of single photons. The intrinsic quantization of energy and detection process

results in a nonlinear response to the input light intensity, eliminating the need

for additional nonlinear operations in the neural network. This nonlinearity is

evident in the higher MNIST classification test accuracy of SPDNNs compared

to linear models. Additionally, the intrinsic photon noise in the activation func-

tion makes the output values stochastic. With more averaging, the stochasticity

is reduced, resulting in a more precise output as seen in the implementation of

242



SPD activations in the fully-connected layers. This may imply that the noise is

unwanted in the neural network inferences. However, the stochastic inference

is inevitable in many real-world tasks with a physical device, our stochastic

models demonstrated a high noise-resilience that can still yield reliable outputs

regardless of this amount of stochasticity.

Figure 7.26: Comparison of SPDNNs and QAT models on MNIST clas-
sification. a, The test accuracy of MNIST classification using
models with real-number weights is shown as a function of
photon budget in the hidden layer. The SPDNN model em-
ploys the coherent SPD activation function, while the QAT
models use ReLU as the activation function. b, The test accu-
racy of MNIST classification using models with non-negative
weights is shown as a function of photon budget in the hidden
layer. The SPDNN model employs an incoherent setup with
non-negative weights, while the QAT models use Sigmoid ac-
tivation function. The test accuracies are calculated on the full
test set of 10,000 images. Both panels present results obtained
from the 784 → 400 → 10 model with one shot per inference
(N = 400, K = 1), and the test accuracies are computed on the
full test set of 10,000 images.

To evaluate the noise resilience of our SPDNNs against conventional

continuous-variable models, we conducted experiments to compare the test

accuracy of the models under varying levels of photon noise. We adopted

quantization-aware training (QAT) as a popular noise-aware training method,
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which involves quantizing the weights during training to make the model more

noise-resilient. We trained deterministic QAT models with the same multi-layer

perceptron (MLP) structure of 784→ 400→ 10 and quantized the weight preci-

sion to a specific number of bits. We then compared the MNIST test accuracy of

these models to SPDNNs with the same level of photon noise added during the

neural network inference of the hidden layer.

For the real-valued QAT models that are compared to the coherent SPDNNs,

we chose to use the ReLU activation functions. The QAT models adopted a de-

terministic quantization function and quantized the weights to the correspond-

ing precision. During inferences, we performed computations with full preci-

sion, with the photon noise added to the pre-activation values of the hidden

neurons. Figure 7.26a shows that the ReLU models exhibit high noise resilience,

and harsh quantization does not significantly enhance the noise resilience but

harms the overall precision. In fact, decreasing the quantization levels leads to

decreased model performance at this photon noise level. The accuracy almost

converges at a precision of 5 bits or higher.

For the non-negative QAT models that are compared to the incoherent

SPDNNs, the non-negativity of the weights renders ReLU activation functions

less effective. Hence, we use the Sigmoid activation function, more rigorously,

the positive half of it, to train the QAT models. However, the models are not

as noise resilient as with real-number operations, and stronger quantization is

required to enhance the model robustness. As the simulation results show, the

performance of models of precision 3 bits or more almost converges. It is worth

noting that, despite having over 98% test accuracy without photon noise, the

performance of these models with 3-bit precision or more is worse under such
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noise levels. Decreasing the quantized precision is a tradeoff between noise re-

silience and overall accuracy. We observed that the 2-bit QAT model performs

the best over other precisions. These results showed that all the QAT models are

inferior to SPDNNs in terms of accuracy under the same or lower photon bud-

get. This finding indicates that SPDNNs are more effective in achieving high

accuracy in photon-starved environments.

Our results suggest that natural quantization of optical energy enhances

noise resilience in neural networks, and that stochasticity could aid in searching

for more accurate and noise-resilient models. However, we do not claim that the

SPD activation function is the best way to train a noisy neural network, and we

are open to exploring other noise-aware training methods that could further im-

prove resilience. Our findings demonstrate that with appropriate training that

takes into account the stochastic and quantized nature of optical energy in the

realistic physical computing system, ONNs can achieve high performance even

at very high noise levels, which was not previously possible. What makes it

more intriguing about our approach is that it exploits the natural single-photon

detection process.

7.5.3 Distribution of Expectation Values of SPD Activations

In this study, we explored the use of highly stochastic SPDNN models to achieve

high performance in deterministic classification tasks. At first glance, this may

seem counter-intuitive, as deterministic classification typically requires stable

and reliable outputs, while stochastic models introduce inherent uncertainty.

However, a closer examination of the characteristics of the activation values
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Figure 7.27: Distribution of expectation values for hidden neuron acti-
vations. a, The distribution of expectation values for each
hidden neuron during the inference of a trained model. The
model follows a multi-layer perceptron (MLP) structure of
784 → 400 → 400 → 10 using a coherent SPD activation func-
tion and real-valued weights (Appendix A.2 ). The expecta-
tion values of neuron activations in the first hidden layer are
depicted. b, The evolution of the expectation value distribu-
tion during training. Different expectation value distributions
of hidden neuron activations (as in a) are plotted at six train-
ing epochs to demonstrate changes throughout the training
process.

in SPDNN inferences provides a more intuitive understanding of how this ap-

proach can achieve such high accuracy.

In Figure 7.27a, we present the distribution of expectation values for hid-

den neuron activations. This distribution is obtained using a single shot of SPD

readout (K = 1). Since the activations are binary (either 0 or 1), the expectation

value represents the probability of the activation being 1. We constructed this

histogram by considering the inferences for all input images in the test set and

all hidden neurons’ activation values, so that the distribution is averaged over

many different samples to show the overall picture of the general behavior of
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the network inference. For example, a layer with 400 hidden neurons and 10,000

test input images would yield 400×10, 000 = 4×106 expectation values included

in the histogram. We utilized an optimized SPDNN model with an MLP struc-

ture of 784 → 400 → 400 → 10 to generate this histogram, and we also found

that this distribution is consistent across models with varying numbers of hid-

den neurons or layers, as well as coherent or incoherent SPD detection schemes.

Interestingly, we observed that the majority of neuron activations exhibit

more deterministic expectation values rather than pure randomness. While

some models trained with experimental limitations cannot reach absolute zero

values, the peak at zero value shifts to a less sharp bump close to zero, still dis-

tributing towards either end rather than the middle value of 0.5. In Bernoulli

sampling, an expectation value of 0.5 signifies that the probability of being 0

or 1 is equivalent, indicating that there is no useful information in the process,

and the entropy is at its maximum. Noisy channels with such characteristics

cannot carry valuable information for neural network inference. Consequently,

during the training process, the model should strive to learn from the training

set and update the neural network weights accordingly to capture the essential

features. This process involves storing information in the trained model, which

can be reflected by decreasing the entropy of each stochastic binary neuron.

In Figure 7.27b, we observe that as the model undergoes more training

epochs, the expectation value distribution of activations becomes more concen-

trated towards 0 or 1. This indicates that the model retains more information

and generates more reliable outputs.

However, it is important to note that while the entropy of each individual

neuron decreases, at the network level, the average activation still tends to be
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around 0.5 photons when considering all the neurons, denoting maximum en-

tropy. This suggests that the neural network is effectively utilizing its capacity

to extract information using all its neurons by increasing the overall network

entropy. In fact, a network with all neurons having the same expectation value

(entropy of 0) would not be able to learn any meaningful features.

In summary, while SPDNNs are inherently stochastic, the distribution of

expectation values for hidden neuron activations leans towards deterministic

outcomes, allowing the model to effectively learn features and achieve high

accuracy in deterministic classification tasks. The training process shapes the

probabilistic distribution of the neurons and allocates different neurons close to

either 0 or 1 to learn the patterns of input images and output reliable inferences.

Remarkably, the implementation of this allocation is exceptionally efficient in

optical energy, as each activation only involves a photon click.

7.6 Conclusion and Discussion

Our research is an example of realizing a neural network using a stochastic

physical system. Other ONN platforms can be readily adapted to use our ap-

proach by replacing the photodetectors typically used for readout of neurons at

the end of a layer with single-photon detectors. The free-space matrix-vector

multiplier (Chapter 3) used in our experiments is just one of many possible

choices of architecture.

Beyond optics, our work is related and complementary to recent inves-

tigations in electronic, spintronic, and quantum neuromorphic computing

[8, 251, 252, 253, 254, 255, 256, 257, 258], including training physical systems to

248



perform neural-network inference [41, 259, 260, 261, 262, 263, 264, 265]. Neural-

network models are well-suited for analog devices due to their inherent toler-

ance for low-precision operations. While previous works [25, 266] have studied

energy consumption in analog systems with lower but fixed precision, which is

more akin to digital devices, our research moves beyond the fixed-precision as-

sumption. Instead, we incorporate the stochastic processes inherent in realistic

physical systems into neural-network modeling. Our results demonstrate that

this physics-aware probabilistic modeling allows for significantly lower SNRs when

optimized for specific tasks, thereby achieving much lower energy consumption

compared to conventional noise-mitigation algorithms.

Noise, or uncertainty in signals, is a fundamental feature and the ultimate

limit to energy efficiency in computing with all analog physical systems. It has

long been realized that uncertainty is not always detrimental: not only does it

not necessarily prevent accurate computation, but can in some cases even enable

fundamentally new and more efficient algorithms or types of computation. Our

work shows that using a quantum physical model of a particular hardware’s

inherent stochastic response at the software level can enable surprisingly large

gains in energy efficiency.

The phenomena observed in our work seemingly relies on two key physical

ingredients. First, the system’s available states are effectively quantized, as in

the photonic quantization of energy in our ONN demonstration, or the binariza-

tion that occurs in low-barrier, stochastic magnetic tunnel junctions [252]. Sec-

ond, the noise in the system results in the quantized outputs of the system being

stochastic. This suggests that ultra-low-SNR physical neural networks should

be possible in many physical hardware platforms beyond photonics. Systems in
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which shot noise dominates are natural matches with our approach and meth-

ods. Our approach could also be relevant to systems in which thermal (Johnson)

noise dominates—as is typically the case in room-temperature electronics—but

this will depend on not just the noise but also the system’s dynamics. Which

hardware platforms and system architectures can yield an overall energy ben-

efit by being operated in a stochastic regime while maintaining computational

accuracy is an important open question.
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CHAPTER 8

IMAGE SENSING WITH ULTRA-LOW OPTICAL ENERGY

In the last chapter, we discussed SPDNN models enabled by physics-aware

probabilistic modeling, which achieve high classification accuracy with very

low optical energy—as low as ∼1 photon per detection in the ONN systems.

We also found that the detected photon energy required to determine the class

of an object image can be as low as a few tens of photons per inference, far below

typical expectations.

For example, in Section 7.4.3 (Table 7.5), we achieved a test accuracy of 92.8%

(N = 100, K = 1) in digit classification by detecting an average of only ∼ 60

photons in total using 100 neuron activation values measured by single-photon

detectors. With only tens of photons detected, obtaining an image frame with

sufficient SNR to discern the digit is impossible. This demonstrates that under

very restricted photon budgets on the detector, such as limited integration time

on the camera or fragile samples that cannot be exposed to bright illumination,

operating the optical linear operation of an SPDNN model in the light field can

significantly increase classification accuracy. In this chapter, we will further ex-

plore the possibilities of low-light sensing applications.

8.1 Background

8.1.1 Compressive Sensing and Single-Pixel Imaging

Compressive sensing is a framework that exploits the sparsity of signals to re-

construct them from a significantly reduced number of measurements [267].
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This approach diverges from traditional methods by focusing on the underlying

structure of the signal rather than the raw data volume, thus enabling efficient

and effective signal reconstruction.

Single-pixel imaging [268], also known as computational ghost imaging, is

an innovative application of compressive sensing that reconstructs images using

a single photodetector rather than a high-resolution sensor array. This technique

is particularly advantageous in scenarios where traditional imaging sensors are

impractical or too costly.

Single-pixel imaging involves illuminating the scene with a sequence of

known patterns, such as random binary patterns or Hadamard patterns. Each

pattern is projected onto the scene, and the light reflected from the scene is mea-

sured by a single photodetector. For each illumination pattern, the single-pixel

detector captures a single intensity value, which represents the aggregated light

intensities modulated by the pattern. This process is repeated for a series of

patterns to collect sufficient data for image reconstruction.

The measurements obtained from the single-pixel detector are utilized to re-

construct the image using compressive sensing algorithms. Given that the pat-

terns and measurements are known, the reconstruction algorithm can solve for

the original image by identifying the sparsest solution that matches the mea-

sured data.

Compressive sensing and single-pixel imaging have transformed the fields

of signal processing and imaging by enabling high-quality reconstruction from

minimal measurements. By leveraging the sparsity of natural signals and uti-

lizing advanced computational algorithms, these techniques offer efficient and
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effective solutions for data acquisition and processing.

8.1.2 Image Classification with Pattern Illumination

In many applications, such as anomaly detection and cell cytometry, the pri-

mary goal is to determine the class or category of an object rather than acquiring

detailed spatial information. In these cases, achieving high-resolution spatial in-

tensity distribution is unnecessary. Instead, a more efficient approach involves

using pattern illumination combined with advanced computational techniques

to classify objects with minimal measurements.

Pattern illumination involves projecting a sequence of designed patterns

onto the object and capturing the resultant light interactions. By carefully se-

lecting and optimizing these patterns, sufficient information can be extracted

for classification without the need for full image reconstruction. This method

leverages principles similar to those in compressive sensing and single-pixel

imaging but focuses on classification.

The primary benefit of using pattern illumination for classification is the sig-

nificant improvement in sensing efficiency. By reducing the number of measure-

ments and focusing on classification, the system conserves resources and oper-

ates faster. This method is particularly advantageous in low-light conditions or

when the power budget is constrained, as it minimizes the need for extensive

illumination and data processing. Moreover, this approach could also enhance

system robustness, as classification relies on key features extracted through pat-

tern interaction rather than detailed spatial data, making it less susceptible to

noise and distortions.
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Recent advancements in computational processing in the optical field have

further optimized the information flow before the detection bottleneck [269, 270,

271]. Among these, end-to-end optimization through neural-network computa-

tion shows promise with the rapid advancement. This concept can be referred

to as a “neural sensor” [269], which integrates neural network processing with

sensor technology to enhance classification accuracy and efficiency.

8.1.3 Image Sensing with Limited Optical Energy

Low-light applications are crucial in various fields, including medical imag-

ing, astronomy, surveillance, and environmental monitoring. The challenge of

working with limited optical energy necessitates innovative approaches to en-

sure efficient and accurate image sensing.

The need to operate under strict power budgets in portable and battery-

operated devices, such as medical imaging equipment and remote sensors, ne-

cessitates efficient low-light sensing techniques. High-intensity light can dam-

age samples or reduce the effectiveness of fluorescent markers in biological

imaging. Low-light environments, such as deep space or underwater, inher-

ently restrict the available optical energy. By focusing on classifying objects

with minimal measurements, it is possible to achieve high detection efficiency.

Pattern illumination combined with advanced computational techniques can

extract sufficient information for classification without the need for detailed im-

age reconstruction, thus enhancing sensing efficiency in low-light conditions.
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8.1.4 Direct Imaging vs. Image Sensing under Restricted Opti-

cal Energy

Direct imaging and image sensing under restricted optical energy differ signif-

icantly in their approaches and effectiveness, particularly in low-light condi-

tions. Direct imaging involves capturing a high-resolution image of the object

and then applying digital processing to the captured image. This approach faces

challenges when optical energy is limited, as the detection signal-to-noise ratio

(SNR) decreases, adversely affecting imaging accuracy.

In low-light scenarios, direct imaging requires longer exposure times or

higher sensitivity sensors to capture sufficient light, introducing noise and arti-

facts that reduce image quality and accuracy. High-resolution images demand

substantial computational resources for processing and analysis, which can be

inefficient under power constraints. By applying operations in the optical field

first and using a few optimized optical measurements, it is possible to achieve

better classification accuracy with the same optical energy. Pattern illumination

techniques enhance the SNR by focusing on key features necessary for classi-

fication rather than capturing detailed spatial information. Advanced compu-

tational techniques, including machine learning, can optimize the classification

process, making it more robust to noise and distortions.

Comparing the two approaches highlights the advantages of pattern illu-

mination for image classification under restricted optical energy. While direct

imaging struggles with low SNR and computational inefficiencies in low-light

conditions, pattern illumination and advanced computational techniques offer

a streamlined solution for efficient and accurate object detection and classifi-
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cation. This method significantly improves sensing efficiency by reducing the

number of measurements needed and focusing on the critical task of classifica-

tion, making it ideal for applications where optical energy is limited.

Fewer
detectors

High-resolution
camera

Measure in 
pixel basis

Measure in 
feature space

Pattern
illumination

Uniform 
illumination

Direct imaging

Image sensing
It is a cat

Object

Object

Figure 8.1: Diagrams of direct imaging and image sensing. The top dia-
gram illustrates the direct imaging scheme, where the object is
illuminated uniformly and captured by a high-resolution cam-
era, measuring in the pixel basis. This image is then processed
by a computer to classify the object, such as determining that
the object “is a cat.” The bottom diagram shows the image sens-
ing scheme, where the object is illuminated with specifically
designed patterns. The detected features corresponding to the
illumination patterns, rather than the pixel values in the image,
are then processed by a computer to classify the object. This
method requires fewer detectors, which measure the scene in
feature space rather than pixel basis. The green arrows denote
the optical signals, while the grey arrows denote the electrical
signals.
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8.2 Task-Specific Incoherent Image Sensing Using Single-

Photon Detectors

Building on the SPDNN models introduced in Chapter 7, it is natural to extend

their application to task-specific incoherent image sensing. As detailed in Sec-

tion 7.3.1, we assume the optical system employs incoherent light to encode and

modulate information through light intensity.

The linear operation achieved by optical linear processors is fundamentally

realized through the natural propagation of light, which is analogous to light

behavior in any image sensing setup. In this section, we focus on an incoherent

setup where linear operations are performed via the attenuation of light inten-

sity.

8.2.1 Incoherent Single-Photon Detection (SPD) Neural Sen-

sors

Consider the scenario where input images are static objects that passively atten-

uate light. The pixel values of these images range from 0 to 1, determining the

transmission rate of the corresponding spatial mode. A pixel value of 1 indicates

that the object is completely transparent to the light signal, while a pixel value

of 0 signifies that the object is entirely opaque and blocks all light. For pixel

values between 0 and 1, the object partially attenuates the light passing through

it. For example, an image with a resolution of d = 28×28 = 784, the input image

can be represented by an input vector x⃗ of size 784. This setup is typical of any
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Figure 8.2: Diagram of dot product operations in the incoherent single-
photon detection (SPD) neural sensors. In this setup, the
object in image sensing passively attenuates incoming light.
Weight vectors are encoded as illumination patterns that shine
on the object. The attenuated light then undergoes an optical
fan-in process, completing the dot product operation.

object located on the image plane of an incoherent imaging system.

As illustrated in Figure 8.2, we apply a pattern illumination represented by

another vector w⃗1 of the same size of x⃗. Each element in the vector w⃗1 represents

the light intensity of the corresponding spatial mode. When the pattern vectorw⃗1

propagates through the object represented by x⃗, it undergoes element-wise mul-

tiplication by the attenuation of the object, resulting in w⃗1 ◦ x⃗. The optical fan-in

process then sums up the optical intensity detected by the detector, effectively

computing the dot product result y1 = w⃗1 · x⃗.

This process is similar to what’s shown in Figure 3.1, only with x⃗ and w⃗1

exchanged. In this setup, the input vector no longer requires a fan-out process as

it remains static and passively attenuate the incoming light pattern represented

by the vector w⃗1. In the context of neural networks, w⃗1 represents one row of the
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weight matrix W in the linear operation.

For a specific classification task, the incoherent SPDNN model is trained as

described in Section 7.2 and Appendix A.1. Assume we use a simple MLP archi-

tecture as detailed in Section 7.3.1, with the weight matrix of the first linear layer

W having dimensions N × d, where N is the number of neurons in the hidden

layer and d is the dimension of the input vectors. To perform the first linear op-

eration of the SPDNN model, y⃗ = Wx⃗, we need to implement N different weight

vectors w⃗i for i = 1, 2, · · · ,N.

8.2.2 Pattern Multiplexing Schemes

In the image sensing scheme, since the input vectors now represent passive at-

tenuations, the absence of the fan-out process for the input vectors necessitates

some form of multiplexing of the weight vectors w⃗i to complete the full linear

operation. This can be achieved practically by implementing the weight vectors

sequentially over time or encoding them at different frequencies and detect-

ing them simultaneously with different detectors, as illustrated in Figure 8.3.

This multiplexing approach allows the system to handle the linear operations

efficiently, maintaining the benefits of incoherent single-photon detection while

facilitating complex image sensing tasks.

Time Multiplexing Scheme The time multiplexing scheme is a prevalent

choice in compressive sensing and single-pixel imaging [?], as well as in some

ONN implementations [24, 16]. In this scheme, the illumination patterns are

sent sequentially. This method efficiently implements optical linear operations
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with a relatively simple experimental setup. Although there might be concerns

about speed loss in certain situations, the high sampling rate of SPDs generally

makes this approach feasible for most applications.

Frequency Multiplexing Scheme The frequency multiplexing scheme is also

common among ONN implementations [16, 21, 60]. A nuance here is that un-

like optical computing techniques such as wavelength-division multiplexing

(WDM) [21], sending illumination patterns of different frequencies to the same

target may suffer from dispersion. However, as demonstrated in Section 6.2, our

single-photon spectrometer with approximately 400 modes spans a wavelength

range of only roughly 590 nm to 650 nm (Figure 6.4). This result indicates that

our SPD neural sensors, which typically only have tens of neurons, should not

be significantly affected by dispersion. Besides, ONNs are generally believed to

be robust to dispersion [46], so we do not anticipate significant issues in practice.

Furthermore, for situations where sensing speed is a critical concern, frequency

multiplexing is particularly advantageous due to its capability for simultaneous

measurement.

8.2.3 Estimation of Optical Energy Budgets

In this section, we detail the methodology for estimating the optical energy

budget in the implementation of the SPD neural sensors. During the inference

phase, we set the slope variable η to 1, such that the value of the optical energy

λ is measured in units of photon number (see Appendix A).

The total detected photon energy is estimated directly from the activation val-
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Figure 8.3: Multiplexing schemes for the single-photon detection (SPD)
neural sensors. In the time multiplexing scheme (upper row),
the illumination patterns (weight vectors) are sent to the ob-
ject at different times but at the same frequency. The readouts
on the single-photon detector (SPD) at the corresponding times
are recorded as the activations of the respective SPD neurons.
In the frequency multiplexing scheme (lower row), different il-
lumination patterns (weight vectors) are sent simultaneously
but at different frequencies. Before detection, a grating sep-
arates the different frequencies, which are then processed to
correspond to the activations of the respective neurons.
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ues in the hidden layer. For a given input image x⃗ and the first layer weight ma-

trix W, the activation vector in the hidden layer is determined by a⃗ = fSPD(Wx⃗).

Since fSPD is a probabilistic sampling function, the actual values of a⃗ of each rep-

etition of inference are random variables. Besides, for K shots of SPD measure-

ment per activation, each activation value of neuron index i is an average of K

repetitions of the binary SPD readout values, ai =
1
K

∑K
k=1 a(k)

i ∈ {0, 1/K, 2/K, . . . , 1}

(see Section 7.2.2, Algorithm 3 in Appendix A.1). Therefore, the total number

of detected photons for a given input image x⃗ is Ea⃗

[
K

∑N
i=1 ai

]
. For the entire

test dataset, the total detected number of photons per inference must be aver-

aged over all test images in the dataset, resulting in Ex⃗

[
Ea⃗

[
K

∑N
i=1 ai

]]
, where

ai = fSPD(w⃗i · x⃗) and w⃗i is a row in W.

In some applications, such as photobleaching in biomedical imaging, the

concern is more about the illumination optical energy delivered to the samples

rather than the detected energy. In the SPD neural sensors, the pattern illumi-

nation is determined by the weight matrix W. The input images have values in

the range [0, 1], representing intensity attenuation. During the training process,

the values of the weight matrix W are optimized and restricted to non-negative

numbers due to the incoherent setup, but no maximum value constraint is ap-

plied. Therefore, the value range of W is [0,wmax]. Since the slope variable η is

set to 1 during inference (see Algorithm 3 in Appendix A.1), the value of an ele-

ment in W represents the illumination optical energy in units of photon number.

Thus, the total number of photons used for illumination per inference is the sum

of all elements in W. Considering the K shots per activation, the total number

of illumination per inference is estimated as K
∑N

i=1
∑d

j=1 Wi j.

This total illumination is a constant value for any input image, determined
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solely by the illumination patterns represented by the optimized weight matrix

W. The entire image sensing setup, including the illumination light field and

detection scheme, remains consistent throughout the experiment. The single-

photon detectors (SPDs) continuously collect data over time, and the output

values change dynamically as the object changes.

8.2.4 Direct Imaging with Set Detected Optical Energy

In the previous sections, we introduced the SPD neural sensing scheme and the

methodology for estimating photon budgets. To demonstrate the advantages of

SPD neural sensing in terms of photon efficiency, we must compare its perfor-

mance with that of the direct imaging scheme under the same optical energy

constraints.

As shown in Figure 8.1, the direct imaging scheme represents the conven-

tional imaging process, wherein an image of the object is captured. Uniform

illumination light is used to shine on the object, and an image is recorded on the

image plane. However, with limited optical energy upon detection, the result-

ing image can be very noisy due to photon noise (Figure 7.1b) and other noise

sources such as camera readout noise. We set a specified value for the total num-

ber of detected photons per image, equivalent to the sum of photons detected

across all pixels in the image. As illustrated in the inset panels of Figure 8.4,

the SNR in the object images scales with the set value of detected optical energy

per image. As expected, the higher the detected optical energy, the less noisy the

image becomes. These noisy images are then used as inputs to a neural network

on a digital computer to perform the image classification task.
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Because the illumination is uniform, the illumination optical energy per im-

age in the direct imaging scheme can be estimated by dividing the detected

optical energy per image by the average attenuation of the object, which corre-

sponds to the average value of the input vector. To obtain the average illumina-

tion optical energy per inference across the entire test dataset, we simply divide

the detected optical energy by the average value of every input image in the test

dataset.

In contrast, SPD neural sensing employs illumination patterns that are

specifically optimized for the given classification task. This optimization serves

two primary purposes:

• Reducing the number of detections required, and

• Optimizing the light field to mitigate the information loss due to the un-

certainty inherent in the highly stochastic photon detection process.

Therefore, we expect that SPD neural sensing will more effectively extract use-

ful information from the light field for image classification, despite the highly

stochastic nature of photon detection when the detected optical energy is very

low.

8.2.5 Performance Comparison

By comparing these two schemes, we aim to highlight the enhanced photon ef-

ficiency and robustness of SPD neural sensing in low-light conditions, demon-

strating its potential for applications requiring high classification accuracy with

minimal optical energy.
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Figure 8.4: Test accuracy with different detected and illumination pho-
ton budgets. The figure presents a comparison of mean test
accuracy as a function of the number of detected (left column)
and illumination (right column) photons per image for both
direct imaging and incoherent SPDNN sensing for Fashion-
MNIST (upper row) and cell classification (lower row) tasks.
In all subfigures, the blue curves represent simulated results
for direct imaging with ideal shot noise, and the red curves
show the experimental results for the incoherent SPDNN sen-
sors with different number of hidden neurons N.
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We present the results of two classification tasks: the benchmark FashionM-

NIST dataset and a flow cytometry dataset for cell classification. As detailed in

Sections 8.2.1 to 8.2.4, we trained the incoherent SPDNN models using a multi-

layer perceptron (MLP) architecture with one hidden layer, as described in Sec-

tion 7.3.1. For the FashionMNIST classification task, we collected experimental

data from the trained SPDNN models using the setup introduced in Section 7.4.

The results are shown in Figure 8.4.

In Figure 8.4, the left column (panels a and c) shows the mean test classifica-

tion accuracy with varying detected optical energy, while the right column (pan-

els b and d) shows the test accuracy with varying illumination optical energy

(Section 8.2.3). The upper row presents the results for FashionMNIST, where the

SPDNN models have varying numbers of hidden neurons (N = 10, 25, 50, 100,

300, 500). The lower row presents the results for cell classification, with models

having different numbers of hidden neurons (N = 10, 15, 20, 40, 100). Through-

out all experiments, the number of shots per activation (K) was set to 1 (1 shot

per activation), and variations in the photon budgets of SPDNN models were

solely due to differences in the number of hidden neurons N.

The direct imaging results were estimated entirely through simulation by

adding ideal shot noise to the images corresponding to the respective photon

budgets. This simulation serves as an upper bound for practical scenarios, as

images collected in realistic experiments would typically exhibit more noise

than this ideal case. This approach slightly biases the results in favor of direct

imaging, allowing us to clearly illustrate the absolute performance gap between

the two schemes.

The experimental results demonstrate that SPD neural sensing consistently
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outperforms direct imaging under identical optical energy constraints. This

superior performance is attributed to the optimized illumination patterns in

SPDNN, which efficiently utilize limited photons for accurate classification. In

low-light conditions, where photon budgets are severely restricted, SPD neu-

ral sensing maintains high classification accuracy, proving its robustness and

efficiency.

These findings underscore the potential of SPD neural sensing for various

applications that require precise image classification with minimal optical en-

ergy. By leveraging the advantages of optimized illumination and efficient

photon usage, it provides a compelling alternative to traditional direct imag-

ing methods, particularly in scenarios demanding high sensitivity and low-light

operation.

8.3 Real-Time Sensing of Moving Objects

In addition to the performance advantage over direct imaging, we also explore

the practical application of SPD neural sensors in real-world scenarios. Many

low-light sensing applications, such as night vision and biomedical imaging,

involve objects that are not static but moving at high speeds. The ability to

capture fast-moving objects is therefore essential for the realistic application of

SPD neural sensors. Here, we demonstrate the real-time sensing capabilities of

our SPD neural sensors.
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8.3.1 Constant Illumination Field

As discussed at the end of Section 8.2.3, our SPD neural sensors maintain a

constant sensing field while operating. The sensing scheme does not need to

change while the detectors consistently collect data dynamically. The spatial

calibration of the illumination patterns determines the field of view (FoV) of the

sensor. Since the illumination is confined to the FoV, objects outside this area

are not perceived by the SPD neural sensor.

Using the frequency multiplexing scheme as an example (the time multiplex-

ing scheme should exhibit similar performance, though with a reduced maxi-

mum speed due to the time multiplexing factor), each illumination pattern or

weight vector is encoded in the light field at its corresponding frequency and

detected by the respective detector. Once calibrated, the intensity level of the

light field, the imaging system, and the detector integration time remain con-

stant throughout the sensing period.

8.3.2 Continuous Data Collection

Although the experimental settings remain unchanged, the detectors continu-

ously collect data with a given integration time. The data collection speed is

limited only by the sampling rate of the SPDs, which can reach up to 100 GHz

[272]. This rate also defines the time resolution for the real-time image sensor.

Each detector, representing a neuron in the hidden layer, continuously collects

data (a click or no click) with a fixed integration time. For each time cycle, the N

readouts from the detectors form a neural activation vector of length N (K = 1

for all image sensing applications). These detected signals are then transferred
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to a digital computer to perform a small linear operation, resulting in an output

vector. With the number of hidden neurons N typically in the tens and the num-

ber of classes usually a few, the size of the linear operation remains manageable,

not exceeding a few hundred parameters. This linear operation produces the

output vector for each time cycle, determining the classifier’s prediction in real

time.

8.3.3 Demonstration of Real-Time Sensing

To demonstrate the real-time sensing of moving objects, we use the flow cy-

tometry dataset for cell classification (Section 8.2.5). A typical transit time for

cell sorting can be in microseconds [273], which is well within the range of the

SPD neural sensor. Besides the five classes, we added a “Null” class to indicate

no cell detected. Training samples of empty and largely cropped frames were

included to fit this “Null” class.

For the demonstration, we used an incoherent SPDNN model with N = 50

hidden neurons and trained it for this six-class classification task, including the

“Null” class. In the simulation, we spatially shifted the input images to emulate

the process of cells moving into the FoV of the SPD neural sensor. The ground

truth input images at different phases of entering the FoV, along with the cor-

responding real-time output vectors, are shown in Figure ??. The FoV images

from left to right demonstrate the process of the cell gradually entering in the

FoV of the incoherent SPD neural sensor. Before the cell enters the FoV, the out-

put amplitude of the “Null” class is the highest. As the cell fully enters the FoV,

the neural sensor correctly detects the cell class from the third image onward.
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Cell entering the field of view (FoV)

Figure 8.5: Demonstration of the object cell entering the field of view
(FoV) of the single-photon detection (SPD) neural sensor.
From left to right, a cell gradually enters the FoV of the inco-
herent SPD neural sensor with N = 50 hidden neurons. The
corresponding output vectors are displayed below the FoV im-
ages. The vectors were normalized by the Logmax function for
better visualization. The red boxes indicate correct detection of
the cell by the image sensor.

This demonstration highlights the capability of SPD neural sensors to per-

form real-time sensing and classification of moving objects, showcasing their

potential for practical applications in dynamic and low-light environments.

8.4 Discussion

In this chapter, we demonstrated that the incoherent SPDNN models can sig-

nificantly enhance image sensing accuracy even with highly restricted photon

budgets. Compared to directly capturing an image of the object, our SPD neu-

ral sensor achieves higher accuracy with the same amount of optical energy de-

tected or illuminated. This approach has potential for various low-light sensing

applications, such as biomedical imaging, where illumination light is limited

due to concerns like photon bleaching [274].
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The high sampling rate of single-photon detectors enables rapid inference

in SPD neural sensors, making them highly suitable for detecting fast-moving

objects, especially under very low photon budgets. Even in scenarios where the

optical power is not extremely low, high sampling rates and short integration

times, as required for fast-moving objects, etc., can result in low detected optical

energy as well. In these situations, our SPD neural sensors demonstrate reliable

performance due to their high efficiency with the available photon energy.

As discussed in Sections 7.4.2, 7.5.1 and 7.5.2, our SPDNN models exhibit ex-

cellent robustness to various sources of fluctuations, noise, and errors. This ro-

bustness translates to the corresponding incoherent SPD neural sensors, ensur-

ing reliable implementation and operation. The inherent resilience of SPDNN

models to such perturbations contributes significantly to their practical applica-

bility.

Furthermore, as shown in Section 7.3.2, coherent SPDNN models with real-

number weights exhibit superior performance compared to their incoherent

counterparts. Therefore, implementing SPD neural sensors using coherent se-

tups is expected to yield even better performance. Additionally, ONN platforms

with coherent setups [12, 57, 13, 56, 63, 17, 16] typically have the capability to

implement arbitrary unitary operations (i.e., complex-number weights). This

capability can be further exploited for efficient image sensing in complex coher-

ent light fields, such as imaging through diffusing media.

In conclusion, the SPD neural sensors, leveraging both incoherent and co-

herent SPDNN models, offer a promising solution for low-light sensing ap-

plications, especially in low-light and dynamic environments. Their ability to

maintain high accuracy and robustness under low photon budgets and rapid in-
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ference requirements makes them a versatile tool for advanced optical sensing

technologies.
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CHAPTER 9

FUTURE DIRECTIONS

9.1 On-Chip Implementation

One significant shortcoming of the projects presented in this thesis is that they

were all implemented with bulky free-space optical components. An obvious

solution is to integrate these components onto a chip.

Integrating the approach presented in Chapter 7 onto a chip is straightfor-

ward, as it does not require a specific specific physical realization of the optical

linear operation. The existing on-chip ONN platforms [51, 12] are readily com-

patible to the applications, with the only major concern being a sufficient system

size.

For the work reported in Chapter 6, there are also numerous opportunities

for improvements using integrated, on-chip devices [275, 276]. For example,

one could implement the combined DOPA and AFC source on a single chip,

with single-spatial-mode waveguiding; this could eliminate detrimental spatio-

temporal effects in AFC. It would allow for longer interaction lengths than in

free space (limited by Rayleigh length) and allow for high intensities with less

power, both resulting in more powerful unitary control. Combining the DOPA

and AFC processes into one device would also eliminate most interface losses

of the quantum light prior to detection. Using integrated photonics would also

allow the engineering of dispersion to optimize the squeezing bandwidth, the

number of modes in the DOPA, and the interaction complexity imparted by

AFC pump. Frequency-encoded squeezed light is not restricted to using su-
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permodes of a continuous basis: quantum states can be engineered to inhabit

a (more conventional) basis of (ultrafast) frequency combs lines or discrete fre-

quency bins [158, 277, 278, 279, 280], through dispersion and pump engineering.

9.2 Beyond the Current Capability

Another natural future work could explore the extension of our research to

neural networks with larger sizes (wider and more layers, which could both

improve the capability of the neural network and further amortize the energy

cost of the final, high-SNR layer, if used), more sophisticated classification tasks

(beyond MNIST and CIFAR-10 image classification—such as has been shown

with conventional binary neural networks [249, 281, 250]), and generative or

other probabilistic tasks—for which the stochasticity can be harnessed rather

than merely tolerated. Beyond machine-learning tasks, an SPDNN layer could

be used as the core of a single-photon-regime photonic Ising machine [282] for

heuristically solving combinatorial-optimization problems, realizing an optical

version of p-bit computing [231].

9.3 Fast All-Physical Computing Systems

A practical limitation of our experiments introduced in Chapters 6 and 7 is that

they were conducted with a relatively slow1 single-photon-detector array, lim-

iting the speed at which a single execution of a layer could be carried out, and

the detector array was not optimized for energy efficiency. For our fundamen-

1Maximum frame rate ∼ 10 kHz, mostly restricted by the readout time.

274



tal approach and methods to be applied to make ONNs that offer a practical

advantage over state-of-the-art electronic processors as generic neural-network

accelerators, there remains important work to be done in engineering an overall

system that operates sufficiently fast while minimizing total energy cost. Re-

cent progress in the development of large, fast arrays of single-photon detectors

coupled with digital logic [283] suggest that there is a path towards this goal.

Ref. [284] has also pointed out the possibility of using fast superconducting-

nanowire single-photon detectors for realizing spiking neural networks.

Apart from trying to increase the speed of the electronic devices, a possible

alternative is to construct a device that performs SPD with high efficiency and

gives the measurement result as an optical signal that can be directly used as an

input to the next layer in the ONN. Designing and demonstrating such a device

is an interesting potential avenue for future work in applied quantum nonlinear

optics [258, 285, 286, 287, 288], and could lead to both lower electronic energy

consumption and higher speed for single-photon-detection ONNs.

9.4 Hardware-Software Co-Optimization of Physical Systems

We trained our demonstration SPDNN in silico using backpropagation, but if

SPDNNs with high overall energy efficiency are built, it would be a boon use

this efficient hardware not only for inference but also for training. To this end, it

could be interesting to study how to adapt in situ training [289, 290, 22, 291],

including backpropagation-free (e.g., Refs. [292, 293, 294, 295]), methods for

SPDNNs.

While there are many reasons computer science has traditionally favored
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the abstraction of hardware from software, our work is part of a broad trend,

spanning many different physical platforms [9, 296, 297], in which researchers

engineer computations in a physics-aware manner. By short-circuiting the ab-

straction hierarchy—in our case, going from a physics-aware software descrip-

tion of a stochastic neural network directly to a physical optical realization of

the constituent operations—it is possible to achieve orders-of-magnitude im-

provements in energy efficiency [15, 2] versus conventional CMOS computing.

Physics-aware software, in which software directly incorporates knowledge of the

physics of the underlying computing hardware—such as in the physics-aware

probabilistic modeling we used in this work—is understudied compared to purely

software-level or hardware-level innovations (i.e., “at the top” or “at the bot-

tom” of the hierarchy [298]). It is thus ripe for exploration: within the domain

of neural networks, there are a multitude of emerging physical platforms that

could be more fully harnessed if the physical devices were not forced to con-

form to the standard abstractions in modern computer architecture [41]. Beyond

neural-network accelerators, communities such as computational imaging [299]

have embraced the opportunity to improve system performance through co-

optimizing hardware and software in a physics-aware manner. We believe there

is an opportunity to make gains in even more areas and applications of com-

puting technology by collapsing abstractions and implementing physics-aware

software with physical hardware that could be orders of magnitude faster or

more energy efficient than current digital CMOS approaches but that doesn’t

admit a clean, digital, deterministic abstraction.
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9.5 Optical Quantum Sensing Using Optimized Systems

While the low-light sensing applications discussed in Chapter 8 benefit from

optimized light-field distribution through neural-network model optimization,

the entire optical system remains classical (or, quantum in a “Planck sense”).

This optimization allows for higher sensitivity with a restricted photon budget

for a given classification task. However, being a classical system, it cannot sur-

pass the fundamental limits of classical light. Specifically, the SNR for detecting

classical light is constrained by the square root of the detected optical energy

(Figure 7.1b).

However, this shot-noise limit, or standard quantum limit in the context of

quantum sensing, can be surpassed using non-classical light, such as squeezed

light [300]. The field of optical quantum sensing has long utilized exotic quan-

tum optical states to enhance sensing applications [301]. It has been shown that,

with the aid of machine learning algorithms, optical quantum sensing can be

extended to broader applications and achieve higher performance [302, 303].

In these applications, achieving good performance requires a complex mul-

timode light state and an effective algorithm to optimize the system’s operation

[304]. The work introduced in Chapters 6 and 7 perfectly meets these require-

ments. By using the highly-entangled multimode states along with efficient

operations proposed in Chapter 6, we can apply physically-aware probabilistic

modeling of the quantum optical system to maximize performance. This pro-

cedure is similar to what we did in Chapter 7 for classical systems, except that

the probability function governed by the physical process now comes from a

quantum system.
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9.6 Quantum Machine Learning Using Highly-Correlated

Quantum Optical States

Apart from image sensing applications, the complex correlations in quantum

states can also benefit machine learning tasks in general. It has been demon-

strated that complex quantum states with high correlations can enhance ma-

chine learning tasks such as generative tasks [305, 306]. Utilizing the highly-

multimode quantum states discussed in Chapter 6, which possess significant

correlations (Figure 6.9), we can foresee that a quantum-enhanced machine

learning application is possible.

Additionally, in Chapter 7, we explored probabilistic modeling of highly-

stochastic samples, which closely resemble the highly-stochastic quantum sam-

ples obtained from multimode photon-counting (Figure 6.6). These samples,

despite their high stochasticity, exhibit substantial correlations and complexity

[146, 307]. Learning from these models could inform and enhance our approach

to handling quantum samples in machine learning tasks.
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APPENDIX A

MODELING OF SPDNNS

In this Appendix, we introduce the details of simulation of the single-photon-

detection neural networks (SPDNNs). Each neuron activation in an SPDNN,

corresponding to a readout on a single-photon detector (SPD) in an experiment,

is modeled as a binary stochastic process [220, 227, 237]. For each SPD mea-

surement, the single-shot output is either 0 or 1, with probabilities determined

by the incident optical energy. The exact form of the activation function is de-

fined by the actual physical process of single-photon detection. For an incident

beam with optical energy of λ photons per detection, due to Poissonian pho-

ton statistics, the probability for an SPD to detect a click is PSPD(λ) = 1 − e−λ,

as shown in Figure 7.2. The detected binary results are used to compute the

activation values. However, due to the stochasticity and discretization in the

single-photon-detection process, estimating the gradients in the loss function

is challenging, and conventional backpropagation algorithms fail to train these

models.

Training stochastic neuron models has been investigated for many years.

One of the major families of algorithms dependent on such neurons is the

Boltzmann machine [308, 219]. REINFORCE algorithms (RA) [309] update the

weights in the direction of the gradients of expected reinforcement without ex-

plicitly computing them. These algorithms have been investigated and applied

in different tasks to train stochastic neural networks effectively [310, 311]. In

[222], many methods of estimating gradients through stochastic neurons are

studied. They found that the fastest training in their experiments was achieved

by the “straight-through estimator” (STE), which was previously introduced in
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Hinton’s course, lecture 15b [312]. In our simulation of SPDNNs, we were in-

spired by both methods and found an estimator that trained our SPDNNs ef-

fectively, with the activation induced by the physical single-photon detection

process. When using STE in a binary neural network, the binarization process,

either deterministic or stochastic, is regarded as identity function during back

propagation. However, if we directly use the STE to go “straight through” the

entire SPD process, the training performance is not very good. This is because

the STE is a biased estimator of the gradients [222, 313], meaning the expecta-

tion value of the estimator is not the same as the true expectation value of the

real random variable. The biased estimation of gradients harms training accu-

racy over a large number of epochs. Then we looked for an unbiased estimator

inspired by RA [309, 222]. We can conceptually break the single-photon detec-

tion process into two parts, a determinisic probability function PSPD, and the

Bernoulli sampling that introduces the stochasticity. For a Bernoulli distribu-

tion, the expectation value is the probability of 1 itself, so PSPD is also the expec-

tation value of the activation. Instead of going “straight through” the entire SPD

process, we only skip the Bernoulli sampling process to avoid the uncertainty in

backpropagation and include the gradients induced by the probability function

to meet the expectation values of the random variable.

To enhance training effectiveness in certain cases, we introduced a slope

variable, η, which modifies the intensity value within the SPD activation func-

tion: Pη

SPD(λ) = PSPD(ηλ). The incorporation of a technique called “slope anneal-

ing” [314] allows controlled alteration of the gradients of the activation function,

leading to more efficient navigation of the model’s parameter space. Addition-

ally, we impose an upper limit on the intensity by clamping it to a maximum

value λmax. This prevents the occurrence of vanishing gradients resulting from
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excessively large values and the plateauing probability function. Both the appli-

cation of the slope variable and intensity clamping can be utilized exclusively

during the training phase. In optical implementation, the annealing factor can

be absorbed in the mapping from the trained weights to the controlled parame-

ters on the experimental setup.

The details of the backpropagation and training process are shown in Algo-

rithms 1 and 3, with the exact activation functions of incoherent and coherent

optical setups, respectively. In the following sections, we introduce the two

SPDNN setups in detail and test their performance with different tasks and ar-

chitectures.

A.1 SPDNNs with Incoherent Optical Setups

When an optical neural network (ONN) operates with incoherent light, the val-

ues of the vector elements are encoded as the intensity of light. The encoded

values are non-negative, and the operations are performed by modulating the

intensity of light. Thus, for an optical matrix-vector multiplier (optical MVM)

operating with incoherent light, the values in an output vector z are readily the

intensity to be measured by the detector, i.e., λ = z. The probability of having

the SPD measurement of 1 is then PSPD(λ(z)) = PSPD(z). This probability PSPD is

determined by the pre-activation value z. Thus, the SPD activation is a Bernoulli

sampling of the probability PSPD, f Incoh
SPD (z) = 1t<PSPD(z), where t is a uniform ran-

dom variable t ∼ U[0, 1] and 1x is the indicator function on the true value of x,
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i.e.

f Incoh
SPD (z) =


1 with probability p = PSPD(z),

0 with probability 1 − p,
(A.1)

where the probability function PSPD(z) = 1 − e−z. The activation in the forward

propagation is calculated as a = f Incoh
SPD (z).

In the backward propagation, the stochastic Bernoulli sampling process is

regarded as an identity function (“straight through”), so that the gradients can

propagate through the whole model as it were deterministic. In this way, the

SPDNNs with stochastic binary neurons can be efficiently trained. The train-

ing procedure of incoherent SPDNNs is detailed in Algorithm 1. With L layers

in the neural network, the SPD activation function is applied after every layer

except the output layer. In the lth layer (l , L), z(l) = a(l−1)W (l) is the direct out-

put of the optical MVM that encodes the information of the dot product results.

In an incoherent optical setup, the output values are directly encoded in light

intensity, λ(l) = z(l). In the training process, we clamp the intensity to a maxi-

mum value λmax to avoid vanishing gradients with large values. Meanwhile, the

clamped intensity vector λ(l) is multiplied by the slope variable η to compute the

probability of detecting a click on the SPDs according to PSPD: p(l) = PSPD(ηλ(l)).

Then the activation values are the Bernoulli sampling of the computed proba-

bilities: a(l) = 1t<p(l) , which are sent to the next layer in the forward propagation.

In backward propagation, our gradient estimator assumes the gradients of the

stochastic sampling process are 1: ∂a(l)/∂p(l) = 1. Thus, during the backward

pass of the lth layer, given the gradient with respect to a(l), ga(l) = ∂C/∂a(l), calcu-

lated from the next layer (previous layer in backward propagation), the gradient
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with respect to the pre-activation z(l) is calculated as follows:

gz(l) =
∂a(l)

∂z(l) ◦ ga(l) =
∂a(l)

∂p(l) ◦
∂p(l)

∂λ(l) ◦
∂λ(l)

∂z(l) ◦ ga(l) = 1 ◦ P′SPD(λ(l)) ◦ 1 ◦ ga(l) = P′SPD(z(l)) ◦ ga(l) ,

(A.2)

so the gradients with respect to the weights W (l) are gW(l) = g⊤z(l)a(l−1). In this

way, the gradients can be efficiently calculated to optimize the weights using a

gradient-based optimizer with a learning rate.

Note that for an incoherent optical setup, the elements in the weights (real-

ized by intensity modulations) are also non-negative, so the updated weights

need to be clamped to non-negative values after each optimization step. After

each optimization step, the slope variable is updated by multiplying by a fac-

tor θ, as the “slope annealing” trick [314] to improve the training performance

when necessary.

During the inference of a trained model, the forward pass of test inputs is

similar to the training process, except that the maximum clamping λmax is not

applied. Additionally, to control the level of uncertainty in the stochastic neural

networks, we can choose to use multiple shots of SPD measurements during

each inference. In a “K-shot” inference, we use K shots of binary SPD readouts,

and the final activation value of the neuron, denoted as a[K], is the average of the

K independent stochastic binary values. This process essentially involves inte-

grating a few more photons using the SPD, as is usually done for conventional

ONN implementation [21].
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Algorithm 1: Physics-aware probabilistic modeling of an SPDNN with an inco-
herent optical setup. Nbatch is the batch size, Nl denotes the number
of neurons in layer l and N0 is the input size. C is the loss function.
L is the number of layers. PSPD(λ) is the function of the probability
to detect a click on the single-photon detector (SPD) with respect to
the incident light intensity λ (in number of photons). Sample() is a
probabilistic sampling function. In SPDNNs, it refers to Bernoulli
sampling, Sample(p) has a probability of p to be 1 and a probabil-
ity of 1 − p to be 0 (i.e. Sample(p) ≡ 1t<p, t ∼ U[0, 1]). In experi-
ments, an SPD detection intrinsically consists both of the process,
the SPD activation function fSPD(λ) = 1t<PSPD(λ), t ∼ U[0, 1]. The λ is
equivalent to the pre-activation z in an incoherent setup. Output()
determines the function applied to the pre-activation right before
the final output, such as Softmax or LogSoftmax. Update() speci-
fies how to update the parameters given the calculated gradients,
using optimizers such as SGD [239], Adam [315] or AdamW [240].

Require: A batch of inputs a(0) (Nbatch × N0) with corresponding targets y, current
weights W (l) (Nl × Nl−1, l ∈ {0, 1, . . . , L}), current slope variable η, slope annealing
factor θ, current learning rate α, decay coefficient γ and the clamped photon num-
ber λmax.

Ensure: Updated weights W (l) (l ∈ {0, 1, . . . , L}), slope η and learning rate α .
1: I. Forward pass
2: for l = 1 to L do
3: z(l) ← a(l−1)W(l)⊤ ▷ Linear operation to compute the pre-activation values
4: λ(l) ← z(l) ▷ For incoherent light, intensity is directly modulated
5: λ(l) ← min(λ(l), λmax) ▷ Clamp the maximum intensity
6: if l < L then
7: p(l) ← PSPD(η · λ(l)) ▷ The probability of detecting a click, with the slope η

applied
8: a(l) ← Sample(p(l)) ▷ SPD activation values
9: end if

10: end for
11: a(L) ← Output(λ(L)) ▷ Final output function
12: II. Backward pass
13: Compute ga(L) = ∂C

∂a(L) knowing a(L) and y.

14: gz(L) ← ∂a(L)

∂z(L) ◦ ga(L)

15: for l = L to 1 do
16: if l < L then
17: gp(l) ← ga(l) ▷ “Straight-through” here, skip the Bernoulli process

18: gz(l) ← P′SPD(z(l)) ◦ gp(l) ▷
∂p(l)

∂z(l) =
∂p(l)

∂λ(l) ◦
∂λ(l)

∂z(l) = P′SPD(λ(l)) ◦ 1 = P′SPD(z(l))
19: end if
20: ga(l−1) ← gz(l)W(l)

21: gW(l) ← g⊤
z(l)a(l−1) ▷ The gradients for W (l)

22: end for
23: III. Parameter update
24: for l = 1 to L do
25: W(l) ← Update(W(l), gW(l) , α) ▷ Update the weights
26: W(l) ← max(W (l), 0) ▷ Clip the weights to be non-negative for the incoherent

setup
27: end for
28: η← θη ▷ Update the slope
29: α← γα ▷ Update the learning rate284



For a single shot of SPD measurement per activation, a[1] = a ∈ {0, 1}, while

for K shots, a[K] = 1
K

∑K
k=1 ak ∈ {0, 1/K, 2/K, . . . , 1}. This approach reduces the

uncertainty in the models, resulting in more precise output values. In the ideal

case where an infinite number of shots are integrated (K → ∞), the activation

a[∞] would converge to the expectation value without stochasticity, denoted as

a[∞] = E[a] = PSPD(z). As we will see in 7.3.1, the SPDNN models have higher

test accuracy as the shots per activation K increases. The detailed inference

procedure is explained in Algorithm 2.

Algorithm 2: Inference of an SPDNN with an incoherent optical setup. L is the
number of layers. Nbatch is the batch size, Nl denotes the number
of neurons in layer l and N0 is the input size. K is the number of
shots used in one inference. Sample() is a probabilistic sampling
function. The predictions of an inference is based on the label of
the output node with the maximum output value.

Require: A batch of test inputs a(0) (Nbatch × N0) and trained weights W(l) (Nl × Nl−1,
l ∈ {0, 1, . . . , L}), slope annealing factor η.

Ensure: The output a(L).
1: for l = 1 to L do
2: z(l) ← a(l−1)W (l)⊤ ▷ Linear operation to compute the pre-activation
3: λ(l) ← z(l) ▷ For incoherent light, intensity is directly modulated
4: if l < L then ▷ SPD activation process
5: p(l) ← PSPD(η · λ(l)) ▷ The probability of detecting a click, with the slope η

applied
6: for k = 1 to K do ▷ K shots in one inference
7: a(l),k ← Sampling(p(l)) ▷ SPD output for each shot
8: end for
9: a(l) ← 1

K
∑K

k=1 a(l),k ▷ Average over all K shots for the activation values
10: end if
11: end for
12: a(L) ← λ(L) ▷ Use the output intensity directly in the inference
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A.2 SPDNNs with Coherent Optical Setups

In coherent optical MVMs [12, 63, 52, 13, 56, 17, 16], the information is conveyed

through both the amplitude and phase of light states. These multipliers have the

potential to encode complex numbers using arbitrary phase, but in most appli-

cations, only phases of 0 and π are used for positive and negative real-number

values, to align with conventional machine learning models. Our work focuses

on real-valued coherent optical MVMs. Now that the information is encoded in

the amplitude and phase instead of the intensity, the photon detection process

involves measuring the square modulus of the complex number, which adds

an extra square function to the pre-activation values. Thus, the coherent SPD

activation function is f Coh
SPD (z) = 1t<PSPD(z2), where t is a uniform random variable

t ∼ U[0, 1] and 1x is the indicator function on the true value of x, i.e.

f Coh
SPD (z) =


1 with probability p = PSPD(z2),

0 with probability 1 − p,
(A.3)

where PSPD(z2) = 1−e−z2 . The activation in the forward propagation is calculated

by a = f Coh
SPD (z). The expectation of the coherent SPD activation is E[ f Coh

SPD ] =

PSPD(z2).

The coherent activation function, depicted in Figure 7.6a, exhibits a distinct

“V” shape due to the additional square operation, which is symmetric about

the y axis. It could be problematic as an activation function [316]. One possible

solution is to modify the information encoding and detection scheme to alter

the exact form of λ(z) (e.g. [56]). However, in this section, we have chosen to

employ the most straightforward intensity-detection scenario, which does not
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Algorithm 3: Physics-aware probabilistic modeling of an SPDNN with coherent
light. Nbatch is the batch size, Nl denotes the number of neurons in
layer l and N0 is the input size. C is the loss function. L is the
number of layers. PSPD(λ) is the function of the probability to de-
tect a click on the single-photon detector (SPD) with respect to the
incident light intensity λ (in number of photons). Sample() is a
probabilistic sampling of the probability. In SPDNNs, it refers to
Bernoulli sampling, Sample(p) has a probability of p to be 1 and
a probability of 1 − p to be 0 (i.e. Sample(p) ≡ 1t<p, t ∼ U[0, 1]).
For a coherent setup, λ = z2 where z is the pre-activation, output of
a matrix-vector multiplier. Output() determines the function ap-
plied to the pre-activation right before the final output, such as
Softmax or LogSoftmax. Update() specifies how to update the pa-
rameters given the calculated gradients, using optimizers such as
SGD [239], Adam [315] or AdamW [240].

Require: A batch of inputs a(0) (Nbatch × N0) with corresponding targets y, current
weights W (l) (Nl × Nl−1, l ∈ {0, 1, . . . , L}), current slope variable η, slope annealing
factor θ, current learning rate α, decay coefficient γ and the clamped photon num-
ber λmax.

Ensure: Updated weights W (l) (l ∈ {0, 1, . . . , L}), slope η and learning rate α.
1: I. Forward pass
2: for l = 1 to L do
3: z(l) ← a(l−1)W(l)⊤ ▷ Linear operation to compute the pre-activation
4: λ(l) ← (z(l))2 ▷ For coherent light, intensity is the square of the amplitude
5: λ(l) ← min(λ(l), λmax) ▷ Clamp the maximum intensity
6: if l < L then
7: p(l) ← PSPD(λ(l)) ▷ The probability of detecting a click on the SPDs
8: a(l) ← Sample(p(l)) ▷ SPD output for each shot
9: end if

10: end for
11: a(L) ← Output(λ(L)) ▷ Final output function
12: II. Backward pass
13: Compute ga(L) = ∂C

∂a(L) knowing a(L) and y.

14: gz(L) ← ∂a(L)

∂z(L) ◦ ga(L)

15: for l = L to 1 do
16: if l < L then
17: gp(l) ← ga(l) ▷ “Straight-through” here, skip the Bernoulli process

18: gz(l) ← 2z(l) ◦ P′SPD

(
(z(l))2

)
◦ gp(l) ▷

∂p(l)

∂z(l) =
∂p(l)

∂λ(l) ◦
∂λ(l)

∂z(l) = 2z(l) ◦ P′SPD

(
(z(l))2

)
19: end if
20: ga(l−1) ← gz(l)W(l)

21: gW(l) ← g⊤
z(l)a(l−1) ▷ The gradients with respect to W (l)

22: end for
23: III. Parameter update
24: for l = 1 to L do
25: W(l) ← Update(W(l), gW(l) , α) ▷ Update the weights
26: end for
27: η← θη ▷ Update the slope
28: α← γα ▷ Update the learning rate
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necessitate modifications to conventional ONN implementation. Remarkably,

despite its simplicity, this activation function delivers comparable performance

and demonstrates impressive results. By adopting this approach, we allevi-

ate experimental complexities while ensuring reliable inference in our SPDNN

models.
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APPENDIX B

EXAMPLE PYTHON CODE

B.1 Source Code for SPD Activation Functions

1 import torch

2 import torch.nn as nn

3 from torch.autograd import Function

4

5 class PhotonCountingP(nn.Module):

6 """ The probability of 1 photon in photon counting

7 (also the expectation value) with mean flux x """

8 def __init__(self):

9 super(PhotonCountingP, self).__init__()

10

11 def forward(self, x):

12 return 1.-torch.exp(torch.abs(x)*-1.)

13

14 class BernoulliFunctionST(Function):

15 """ The ’Straight Through’ stochastic Bernoulli activation"""

16 @staticmethod

17 def forward(ctx, input):

18

19 return torch.bernoulli(input)

20

21 @staticmethod

22 def backward(ctx, grad_output):

23

24 return grad_output

25

26 class PoissonFunctionST(Function):
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27 """ The ’Straight Through’ stochastic Poisson activation"""

28 @staticmethod

29 def forward(ctx, input):

30

31 return torch.poisson(input)

32

33 @staticmethod

34 def backward(ctx, grad_output):

35

36 return grad_output

37

38 PoissonST = PoissonFunctionST.apply

39 BernoulliST = BernoulliFunctionST.apply

40

41 class PhotonActivation(nn.Module):

42 """ Single-photon-detection activation function taking light

intensity as input """

43 def __init__(self,sampler=’bernoulli’):

44 super(PhotonActivation, self).__init__()

45 self.act = PhotonCountingP()

46 if sampler == ’poisson’: # Photon-number-resolving detection

47 self.sampler = PoissonST

48 elif sampler == ’bernoulli’: # Single-photon detection

49 self.sampler = BernoulliST

50 else:

51 raise

52

53 def forward(self, input, n_rep=1, slope=1.):

54 x = input

55 probs = self.act(slope * x)

56 out = self.sampler(probs)

57 if self.sampler == BernoulliST:
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58 probs = self.act(x)

59 elif self.sampler == PoissonST:

60 probs = torch.abs(x)

61 else: raise

62 if n_rep==0: # Infinite number of shots per activation

63 out = probs

64 else:

65 out = self.sampler(probs.unsqueeze(0).repeat((n_rep,)

+(1,)*len(probs.shape))).mean(axis=0)*torch.sign(x)

66 return out

67 out = self.sampler(probs)

68 return out

69

70 class PhotonActivationCoh(nn.Module):

71 """ Single-photon-detection activation function taking coherent

amplitude as input """

72 def __init__(self,sampler=’bernoulli’):

73 super(PhotonActivationCoh, self).__init__()

74 self.act = PhotonCountingP()

75 if sampler == ’poisson’: # Photon-number-resolving detection

76 self.sampler = PoissonST

77 elif sampler == ’bernoulli’: # Single-photon detection

78 self.sampler = BernoulliST

79 else:

80 raise

81

82 def forward(self, input, n_rep=1, slope=1.):

83 x = input**2

84 probs = self.act(slope * x)

85 out = self.sampler(probs)

86 if self.sampler == BernoulliST:

87 probs = self.act(x)
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88 elif self.sampler == PoissonST:

89 probs = torch.abs(x)

90 else:

91 raise

92 if n_rep==0: # Infinite number of shots per activation

93 out = probs

94 else:

95 out = self.sampler(probs.unsqueeze(0).repeat((n_rep,)

+(1,)*len(probs.shape))).mean(axis=0)*torch.sign(x)

96 return out

Listing B.1: PhotonActivation.py

B.2 Example Code for Different SPDNN Architechture

1 import torch.nn.functional as F

2 import torch.nn as nn

3 from PhotonActivation import PhotonActivation, PhotonActivationCoh

4

5 class incoh_PDMLP(nn.Module):

6 """ MLP-SPDNN models using incoherent light """

7 def __init__(self, n_hiddens=[100,100], n_input=784, n_output=10,

sampler=’bernoulli’,output_bias=True):

8 super(incoh_PDMLP, self).__init__()

9

10 self.sampler = sampler

11

12 self.n_input = n_input

13 self.n_output = n_output

14 self.n_hiddens = n_hiddens

15
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16 n_nodes = [n_input]+list(n_hiddens)

17 self.fcs = nn.ModuleList([nn.Linear(i,j,bias=False) for i, j

in zip(n_nodes[:-1], n_nodes[1:])])

18 self.last_fc = nn.Linear(n_hiddens[-1],n_output,bias=

output_bias)

19 self.act = PhotonActivation(sampler=sampler)

20

21 def forward(self, x, n_rep=1, slope=1.):

22 x = x.view(-1, self.n_input)

23 for fc in self.fcs:

24 x = fc(x)

25 x = self.act(x, n_rep=n_rep, slope=slope)

26 x_out = F.log_softmax(self.last_fc(x), dim=1)

27 return x_out

28

29 class coh_PDMLP(nn.Module):

30 """ MLP-SPDNN models using coherent light """

31 def __init__(self, n_hiddens=[100,100], n_input=784, n_output=10,

sampler=’bernoulli’,output_bias=True):

32 super(coh_PDMLP, self).__init__()

33

34 self.sampler = sampler

35

36 self.n_input = n_input

37 self.n_output = n_output

38 self.n_hiddens = n_hiddens

39

40 n_nodes = [n_input]+list(n_hiddens)

41 self.fcs = nn.ModuleList([nn.Linear(i,j,bias=False) for i, j

in zip(n_nodes[:-1], n_nodes[1:])])

42 self.last_fc = nn.Linear(n_hiddens[-1],n_output,bias=

output_bias)
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43 self.act = PhotonActivationCoh(sampler=sampler)

44

45 def forward(self, x, n_rep=1, slope=1.):

46 x = x.view(-1, self.n_input)

47 for fc in self.fcs:

48 x = fc(x)

49 x = self.act(x, n_rep=n_rep, slope=slope)

50 x_out = F.log_softmax(self.last_fc(x), dim=1)

51 return x_out

Listing B.2: SPDNN MLP.py

1 import torch.nn.functional as F

2 import torch.nn as nn

3 from PhotonActivation import PhotonActivationCoh

4 import numpy as np

5

6 def PDConv(n_in=128, n_out=128, s=1, ks=3, batchnorm=True):

7 if batchnorm:

8 return [

9 nn.Conv2d(in_channels=n_in, out_channels=n_out,

kernel_size=ks, stride=s, padding=int((ks-1)/2*s),bias=False),

10 nn.BatchNorm2d(n_out),

11 PhotonActivationCoh()

12 ]

13 else:

14 return [

15 nn.Conv2d(in_channels=n_in, out_channels=n_out,

kernel_size=ks, stride=s, padding=int((ks-1)/2*s),bias=False),

16 PhotonActivationCoh()

17 ]

294



18

19 def PDConvsAP(n_in=3, n_chan=[128,128], ss=[1,1], kss=[3,3],

batchnorm=True):

20 modules = []

21 n_list = [n_in]+list(n_chan)

22 for i in range(len(n_chan)):

23 modules += PDConv(n_in=n_list[i],n_out=n_list[i+1],s=ss[i],ks

=kss[i],batchnorm=batchnorm)\

24 +[nn.AvgPool2d((2,2))]

25

26 return nn.Sequential(*modules)

27

28 class PDConvNet(nn.Module):

29

30 def __init__(self, n_linear=100, n_output=10, d_input=(1,28,28),

n_chan=[128,128], ss=[1,1], kss=[3,3], batchnorm=True, dropout=

None, last_layer_bias=True, linear_act=’PD’, sampler=’bernoulli’):

31 super(PDConvNet, self).__init__()

32

33 self.sampler = sampler

34 self.n_chan = n_chan

35 self.batchnorm = batchnorm

36

37 self.d_input = d_input

38 self.n_output = n_output

39 self.n_linear = n_linear

40

41 self.convs = PDConvsAP(n_in=d_input[0],n_chan=n_chan,ss=ss,

kss=kss,batchnorm=batchnorm)

42 self.flat = nn.Flatten()

43

44 self.fc1 = nn.Linear(int(n_chan[-1]*(d_input[1]//2**len(
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n_chan)//np.prod(ss))**2), n_linear, bias=False)

45 if linear_act==’PD’:

46 self.linear_act = PhotonActivationCoh(sampler=sampler)

47 elif linear_act==’ReLU’:

48 self.linear_act = nn.ReLU()

49 self.fc2 = nn.Linear(n_linear, n_output, bias=last_layer_bias

)

50 if dropout is None:

51 self.dropout = None

52 else:

53 self.dropout = nn.Dropout(dropout)

54

55 def forward(self, x, n_rep=1, slope=1.):

56 x = x.view(-1, *self.d_input)

57 for layer in self.convs:

58 if isinstance(layer, PhotonActivationCoh):

59 x = layer(x, n_rep=n_rep, slope=slope)

60 else:

61 x = layer(x)

62 x = self.flat(x)

63 x = self.fc1(x)

64 if isinstance(self.linear_act, PhotonActivationCoh):

65 x = self.linear_act(x, n_rep=n_rep, slope=slope)

66 else:

67 x = self.linear_act(x)

68 if self.dropout is not None:

69 x = self.dropout(x)

70 x = self.fc2(x)

71 x_out = F.log_softmax(x, dim=1)

72 return x_out

Listing B.3: SPDNN Conv.py
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