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The preparation, control, and measurement of non-classical states of light are necessary to realiz-

ing optical quantum technologies. The frequency of light – the photon energy or its wavelength –

is one of its fundamental degrees of freedom, within which we can manipulate a quantum state:

for example, we can imagine preparing photons in superpositions of various wavelengths; or en-

tangling photons such that their energies correlate. In contrast to the other luminal degrees of

freedom, however, modifying the energy of photons requires nonlinear optics. The greater diffi-

culty that this introduces in implementing quantum state transformations and measurements has

proven to be an obstacle to the development of experimental methods for frequency-domain quan-

tum optics. However, frequency-domain engineering would allow us to leverage the breadth of

optical bandwidths, hence is advantageous for parallel quantum state generation and information

encoding. In addition, the preparation of squeezed vacuum – the most accessible non-classical

optical state – already relies on a frequency conversion process. This implies that the ability to

combine the preparation and transformation steps into a joint nonlinear process may greatly ben-

efit the efficiency and fidelity of producing the final state.

In this thesis I will present an experimental paradigm which uses ultrafast nonlinear optics

and broadband frequency conversion techniques to enable the transformation and measurement

of frequency-multimode squeezed vacuum states.
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Introduction

It is an understatement to say that modern light sources are important components of the sci-

ence and engineering toolbox: these underpin an extensive series of diverse technologies that we

now take for granted, in areas ranging from medicine, telecommunications, information storage,

sensing and manufacturing – even entertainment. The developments of lasers and LEDs – light

emitting diodes – and the discretion they have afforded us in fashioning electromagnetic waves,

can be regarded as the major scientific breakthroughs of the past century. These scientific advances

were enabled in large part by the advent of quantum mechanics.

The physics of light has always been at the forefront of the quantum sciences: blackbody ra-

diation and the photoelectric effect were among the scientific mysteries that motivated the de-

velopment of quantum mechanics. Indeed, classical physics could not properly explain how the

simple incandescent lamp radiates light – a clue that a quantum theory of light was needed. In

its maturity, quantum mechanics led us to the theories of stimulated emission and electron-hole

recombination, which made lasers and LEDs possible.

Despite the fact that the physics underlying much of light-matter interaction and light emis-

sion requires a quantum-mechanical description, the kind of light generated by the majority of our

sources can be entirely described by classical physics. This excludes a large space of possibilities.

The scientific frontier, arguably, now lies in producing and exploiting non-classical states of light:

states of the electromagnetic field that require a quantum-mechanical description. To date, the

most prominent example of this has been at the Laser Interferometer Gravitational-Wave Obser-

vatory, LIGO [1]. The use of “squeezed” light allows measurements with significantly improved

sensitivity, in a manner that derives essentially from exploiting Heisenberg’s uncertainty relation.
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This, however, is “big science;” the question is whether we can develop and adopt quantum light

more broadly, and whether existing technologies can be enhanced to use quantum light.

The nature, or physical behavior, of light changes first as its wave aspects become more im-

portant, and then once again as the particle aspects become pronounced. Namely, once the math-

ematical description of a state of light requires considering its individual quanta – photons – the

number of degrees of freedom explodes exponentially. This is interesting from a scientific point

of view, since, in principle, it means that quantum light “engineering” may intrinsically require

more control than classical light. Indeed, depending on the context, we may wish to find ways

to either exploit this enormous complexity, or instead to minimize it (often, these two cases must

be satisfied simultaneously, should we need to embed the complexity in one luminal degree of

freedom – space and wavevector; time and frequency; polarization; etc. – while isolating it from

any other).

To motivate why we might need different types of light sources, let us consider the behavior

of light in various, ostensibly different forms, using three illustrative examples: the light emitted

by a flashlight, a laser beam, and a single photon. These sources are inherently different, and

are best described in different ways: the flashlight emits what is essentially an incoherent flux of

electromagnetic (EM) energy, and its intensity is usually a sufficient description of this physical

manifestation of light; the laser tends to emit a wave or wave-packet, which we describe by its EM

field, including a well-defined phase in space and time, and often a polarization; finally, the single

photon – quantum of the EM field – is represented as a Fock state within some Hilbert space.

Nevertheless, on their own, the light emitted from these sources, as different as it may be,

tends to behave in a similar manner. It is only when we combine identical sources that different

behaviors emerge. Consider a balanced beamsplitter, as illustrated in Fig. 1(a), through which
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Figure 1: Different behaviors of classical and non-classical light. a. A flashlight beam, laser
beam and photon represent different states, or physical manifestations, of light. These behave in
a similar manner when propagating singly. E.g. when shining onto a beamsplitter, half the light
goes through each of the two outputs of the beamsplitter, whether we prefer to think of it as an
average intensity, field, or number of particles. b. The role of different types of interference is
what makes the behavior of light unique. Two flashlights do not affect each other; two coherent
laser beams will constructively and destructively interfere; two photons will bunch due to their
probability-amplitude interference. c. What happens when we feed n photons through an M ×M
array of beamsplitters? Can we compute the output distribution of the photons? Is this generally
solvable problem?
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we shine either the flashlight, laser beam, or single photon. The beamsplitter acts on these three

inputs in more or less the same way, sending (on average) half the light one way, half the other.

The interesting, or distinctive, behavior emerges when we use the beamsplitter to combine two

copies of the same source, as illustrated in Fig.1(b), due to the underlying collective state of the

photons involved. Two flashlights act independently: macroscopically the intensities simply add,

and the two output ports of the beamsplitter emit the averaged powers. Not so for two mutually

coherent lasers: the two light waves must destructively or constructively interfere, allowing un-

even transmission to one side or the other depending on the relative phase. The single photon case

also experiences interference, but instead in its probability amplitudes. This results in bunching:

the photons travel together, always forming a pair (known as the Hong–Ou–Mandel effect). The

state of the electromagnetic field at the outputs of the beamsplitter, being perfectly correlated, are

also entangled.

As a thought experiment, we may try to extend or generalize this last scenario. Let us consider

n photons sent through an M ×M array of beamsplitters, as illustrated in Fig. 1(c). What is the

state that comes out on the other side? This is a hard problem, closely related to fundamental

questions in quantum field theory, namely the (many-body) algebras of bosons [2], developed

midway through the last century. From a more modern perspective, however, interest in the

nature, or “hardness,” of this problem arose due to questions in computational complexity and

quantum computing [3].

Quantum computing is based on the premise that entanglement and probability amplitude

interference may be leveraged to improve the algorithmic complexity of a certain class of compu-

tational problems, including what are otherwise believed to be (classically) intractable problems.

However, it involves the fine control of large ensembles of fragile quantum resources, further-
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more, in a manner that must be able to scale as needed. This has been so far out of reach, which

has prompted scientists to consider the possibilities in the near-term, and to find ways to verify

whether quantum mechanics truly does bestow a practical “advantage” in the physical world.

Therefore, in a paper wedding quantum optics to complexity theory, Aaronson et al. proved that

the many-body functions describing these photon ensembles are classically intractable to approxi-

mate [4], and proposed the first Boson sampling protocol. This random sampling problem relies on

the “natural computation” performed by entangled photons, which is impossible to reproduce by

classical means. This was motivated 1 as a near-term way to provide some evidence as to whether

we could indeed produce and manipulate quantum states at a large scale with high fidelity, as

necessary for quantum computing, hinging on photonics being an accessible experimental plat-

form.

This development spurred new interest in the field of optical quantum computing, especially

as it related to building experimental realizations of the protocols described by Aaronson et al.,

or variations thereof, with gradually greater sophistication. This also served as a sort engineering

testing-grounds: what technologies and which architectures are the best for producing these quan-

tum states of light, and therefore eventually useful for the quantum sciences? Best here would be

determined as a combination of three factors:

1. scalability – how large the state can be made, in terms of number of modes and photons;

2. programmability – the control of the quantum state and how many different states can be

prepared;

1From a more fundamental perspective, it is also of physical interest to understand the limit to
the complexity of the “tasks” that the universe can perform – especially as it relates to quantum
mechanics. Related to the Extended Church–Turing thesis, we could imagine that the universe
might have a complexity limit just as it has a speed limit [5].
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3. and fidelity – how reliably the state can be prepared into precisely the one we want.

Developing the technologies necessary to unmistakably demonstrate Boson sampling is consid-

ered an intermediate step towards universal quantum computing using photonics. As Knill,

Laflamme and Milburn showed (the KLM protocol), universal quantum computing is achiev-

able with what amounts to a more general version of Boson sampling, with intermediate photon

measurements and adaptive control of the remaining photons [6].

Within this larger context, our aim was to explore the ways in which light may be controlled

experimentally and theoretically to reveal its quantum nature.

Chapter 1, which makes up the bulk of the work presented in this thesis, aimed to inspire

a paradigm shift in the way experimental quantum optics is done. The publication presented a

novel way to manipulate and measure vacuum squeezing, and broke records in the number of

squeezed modes measured simultaneously by photon counting. The research started with the

realization of three synergistic facts:

1. Optics is incredibly broadband: in principle, the terahertzes of bandwidth have an enormous

capacity for encoding information optically. In addition, nonlinear processes – especially

vacuum squeezing – naturally tend to be highly multimode, with many spectral degrees of

freedom.

2. Different wavelengths of light present different advantages and disadvantages. This is a

question of technology and materials. Namely, the lasers and nonlinear materials available,

especially in the context vacuum squeezing, work best at near-infrared (NIR) wavelengths

The best detectors, however, tend to be at visible wavelengths. Bridging this gap, allows

the benefits of both: high-quality optical materials with strong nonlinearities; and efficient,

low-noise photon-detection.
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3. Nonlinear optics is the field that concerns the conversion of light between different wave-

lengths, and coherent, unitary, wave conversion results in what can be thought of as a

frequency-domain beamsplitting. This beamsplitter can be controlled by the driving field

(pump) and optical device design.

The first point is especially important from a quantum optics perspective, because frequency

(photon energy) is arguably the most fundamental variable in nonlinear optics (closely related

momentum is also important, but it is usually a bijective relationship in a waveguide). Spatial

degrees of freedom can be eliminated by using single-mode waveguides. Temporal degrees of

freedom can be eliminated by using temporally localized driving fields. But frequency remains

somewhat of an experimental headache. There is a fun saying that in quantum mechanics, “any-

thing that can happen, will happen.” It unfortunately applies all-too-well in vacuum squeezing:

when we rely on a spontaneous process to generate photons, we cannot dictate at which wave-

lengths they are created – this “uncertainty” can often span a spectrum of hundreds of THz or

nm. This creates a distinguishability problem: the photons are no longer identical particles, and

do not interfere as such. Indeed many experiments, despite careful engineering effort towards

single-mode spectral behavior, suffer from subtle distinguishability effects [7]. Hence, our origi-

nal thinking was not to fight this fact, but to embrace it, and take advantage of the hundreds of

distinguishable photonic modes generated in conventional squeezing processes.

The second point is mainly due to the fact that vacuum squeezing is a parametric amplifi-

cation process, hence involves down-conversion of light to half the driving field frequency. In

addition, the driving field is usually red or NIR, as most nonlinear materials do not respond well

to high intensity visible light, and especially not ultraviolet light. Related to this is the fact that

a lot of the photonics technology we would like to use of sits at near-infrared wavelengths; it

is no coincidence that the world’s telecommunications infrastructure also operates at that end of
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the spectrum. However, single-photon detection does not work well at those wavelengths: the

quantum efficiency and noise are unacceptable, unless superconducting nanowire single photon

detectors are used. Although gaining in popularity, probably driven by necessity, these – as the

name implies – require single-Kelvin temperatures, and therefore interfacing optics with cryogen-

ics. However, semiconductor devices are another technological pillar, and this includes camera

sensors. Cameras are interesting from a scalability perspective because they are (mass-)produced

with millions of individual detectors – pixels. In addition, the quantum efficiency tends to be very

high, without incurring significant noise due to charge carriers. The production of high-quality

single-photon-detecting cameras a few years prior to this project was fortuitous.

Nonlinear optics allows us to bridge the visible and NIR wavelengths, and – given our use of

a frequency degree-of-freedom encoding – perform frequency-domain transformations. Energy

conservation constrains the conversion, which makes it particularly challenging when compared

to spatial or temporal transformations. Indeed, a monochromatic pump would perform an iden-

tity transformation across the visible-NIR. By using a broadband driving field (pump), we have

access to a broader set of energies and are not limited to bijective transformations. Pulse shaping

– controlling the phase and amplitude of the frequencies within the pump – changes the conver-

sion process and hence the overall transformation. Therefore, instead of physically interacting

with beamsplitters, phase-shifters, active delay lines, or other such devices, the quantum light can

simply propagate while interacting with the classical driving field. The burden of programming

and control falls onto the classical light, so that the quantum light might sustain less loss and

decoherence.

This first work inspired follow-up ideas about controlling spectro-temporal degrees of freedom

of light and new ways to generate squeezed light by using frequency conversion. This is presented
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in Chapter 2. We sought to explore the power of frequency conversion as a tool for manipulating

quantum light. In doing so, we realized that simultaneous frequency conversion and parametric

amplification was a powerful combination. Not only can frequency conversion be used for broad-

band unitary transformations (moving pulses or states around in frequency and time) but it can

be used to hybridize frequency modes. By bringing a state into a spectral superposition of two

wavelengths, we can make a state interact with itself in ways that are not otherwise possible. This

could potentially be applied to engineering single-mode squeezing, and creating optical “traps”:

where one weak light pulse is trapped within a larger light pulse. This work is incomplete and

has yet to be published, but interesting enough to include even in a limited capacity.

Finally, Chapter 3 is a study of spatially-dependent broadband temporal operations in linear

metasurfaces. Metasurfaces are two-dimensional devices composed of sub-wavelength elements

or patterns. These can be designed to control the wavefront of incoming light, by imparting local,

wavelength-dependent phase shifts, deforming the wavefront in unprecedented ways. The most

notable motivation and application has been to replace bulky imaging lenses and objectives with

slim, compact devices: metalenses. The topic of this Chapter is of a different flavor, and the work

builds on the slow light and optical signal processing literature: fields which sought to deter-

mine the bandwidth limits of passive, time-invariant devices in performing temporal operations,

namely time delays. These theories were applied to derive physical limits to the performance of

wavefront shaping by metasurfaces. Specifically, we derive the bandwidth over which a metalens

can have achromatic focusing.
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Background

The following chapters and their appendices are mostly self-contained, so here we will briefly

summarize some fundamentals of nonlinear and quantum optics not covered therein, as can be

found in various textbooks on the subject, such as [8, 9]. Namely we will review the classical

equations for nonlinear wave mixing (frequency conversion), and how to use them quantum-

mechanically.

We start with Maxwell’s wave equation in a dielectric, with no magnetic response:

∇2E =
1

c2
∂2

∂t2

(
E +

P

ε0

)
. (1)

Outside the scope of nonlinear optics, the polarization term P is usually treated as linear, perhaps

with some birefringence or anisotropy, or with an absorption or gain component. However, at

high field intensities, the oscillatory electronic response in the material will eventually become

anharmonic, and these distortions may cause nonlinear effects, known as wave mixing. We can

model the polarization by expanding it as a series, with linear and nonlinear parts:

Pi = ε0

(
χ
(1)
ij Ej︸ ︷︷ ︸
PL

+χ
(2)
ijkEjEk + χ

(3)
ijklEjEkEl + . . .

︸ ︷︷ ︸
PNL

)
. (2)

where the χ terms represent the susceptibilities. Although we only consider only local, instanta-

neous polarization terms, the Raman and Brillouin effects are well-known examples of third-order,

time-dependent phenomena.

We then make a few assumptions that allow us to reduce the wave-mixing physics to a coupled-

mode theory. First of all, we treat the nonlinear responses as a small perturbations to the total

induced polarization. Second, we represent each frequency component of the field in terms of its
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complex amplitude:

E =
∑

n

En(r, t) (3)

En(r, t) =
1

2
En(r)e

−iωnt + c.c. (4)

and similarly with polarization:

P =
∑

n

P (L)
n (r, t) + P (NL)

n (r, t). (5)

This separation of variables reduces the wave equation to the Helmholtz equation, where we

group field and polarization terms at the same frequency:

∇2En − 1

c2
∂2

∂t2

(
En +

P
(L)
n

ε0

)
=

1

ε0c2
∂2P

(NL)
n

∂t2

∇2En +
ω2
n

c2
εn(ωn)En = − ω2

n

ε0c2
P (NL)
n .

(6)

We can then substitute in the wavenumber k2n = εn(ωn)ω
2
n/c

2, by assuming a plane wave or

guided mode,

En(r) = An(z)e
iknz

(
d2A

dz2
+ 2ik

dA

dz
− k2An

)
eiknz + k2nAne

iknz = − ω2
n

ε0c2
P (NL)
n

(
d2A

dz2
+ 2ik

dA

dz

)
eiknz =

(7)

and perform the paraxial approximation to the Helmholtz equation, also known in this context as

the slowly-varying envelope approximation:

∣∣∣∣
d2An

dz2

∣∣∣∣≪
∣∣∣∣2k

dAn

dz

∣∣∣∣→ 2ik
dAn

dz
eiknz ≈ − ω2

n

ε0c2
P (NL)
n . (8)

Finally, PNL is proportional to the products of these fields, and we must match terms appropriately

according to frequency, to ensure energy conservation. For example, for a χ(2) process we have:

P (NL)
n ∝

∑

i,j
ωi+ωj=ωn

AiAje
i(ki+kj)z +

∑

i,j
ωi−ωj=ωn

AiA
∗
je

i(ki−kj)z (9)

11



hence we obtain our coupled mode, or wave, equations:

dAn

dz
∝ i

∑

i,j
ωi±ωj=ωn

AiA
(∗)
j ei(ki±kj−kn)z (10)

ki ± kj − kn = ∆k is known as the phase mismatch, and must vanish for a nonlinear process

to occur efficiently, i.e. without back-conversion. Therefore, it is often said that nonlinear wave-

mixing processes must also conserve momentum.

In this thesis, we are most concerned with χ(2) nonlinearities, as these allows the greatest con-

trol over wave mixing processes, and are the strongest nonlinear effects. Only non-centrosymmetric

materials may have a finite second-order nonlinearity, as it requires a non-symmetric electronic

potential. Hence, only certain classes of crystal possess this nonlinearity, but fortunately, in some

materials this nonlinearity is associated with a ferroelectric effect – typically an atom in a crys-

tal lattice with two possible locations. This allows us to flip the sign, or direction, of χ(2)(z)

by flipping the ferroelectric moment – or pole – at that location. This is used to spatially vary

the sign of the nonlinearity and create ferroelectric gratings in the material, usually with a “pol-

ing” period of 2π/∆k. This periodic nonlinearity adds the necessary momentum to eliminate the

phase-mismatch and enable efficient wave conversion.

Finally, we need to introduce quantum mechanics to the wave mixing process, which so far has

been described in a purely classical manner. It is first instructive to understand electromagnetic

waves within the formalism of quantum harmonic oscillators. Here we give a brief, non-rigorous

derivation. The Hamiltonian in linear electromagnetism is:

H =
1

2

∫
d3r

(
D2

ε
+
B2

µ

)
(11)

=

∫
d3r

|D̃|2
ε
. (12)

We denoteD,B as real displacement and magnetic fields, and D̃ as a complex field representation.
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In the latter equation we use that the a propagating wave has equal average magnetic and electric

energy density. (In the context of quantum nonlinear optics quantization with D is considered

more appropriate than E.)

Consider plane-wave solutions with polarization ϵ̂ and wavevector
⇀

k:

D =
∑
⇀
k,ϵ̂

A⇀
k,ϵ̂
ϵ̂D⇀

k,ϵ̂
sin
(
⇀

k · r − ωt
)

(13)

B =
∑
⇀
k,ϵ̂

A⇀
k,ϵ̂

⇀

k × ϵ̂

εc|k|D
⇀
k,ϵ̂

cos
(
⇀

k · r − ωt
)

(14)

To perform quantization, we need to identify the coordinates of the system and their conjugate

momenta, denoted here as q and p. In this case we can essentially pick the electric field components

of the plane waves as the coordinates and the magnetic field components as the momenta. (In a

rigorous treatment, the generalized coordinates should be the components of the vector potential

and their conjugate momenta.) Normalizable wavepackets are superpositions of these plane wave

harmonic oscillators.

Thus the Hamiltonian of the quantized variables becomes

H =
1

2

∑
⇀
k,ϵ̂

∫
d3r

(
q̂2⇀
k,ϵ̂

+ p̂2⇀
k,ϵ̂

)
(15)

=
∑
⇀
k,ϵ̂

∫
d3rℏω

(
â†⇀
k,ϵ̂
â⇀
k,ϵ̂

+
1

2

)
, (16)

where we can now quantize the modes by treating them as an infinite set of independent harmonic

oscillators, with corresponding creation and annihilation operators. We can treat the latter as the

quantized operators of the complex field variable:

D̃ = Aei(kz−ωt) →
√
ℏωei(kz−ωt)â. (17)

This relation is exact if the field modes are normalized such that A has units of
√
ℏω.
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We can now introduce nonlinearities, as a perturbation to the linear Hamiltonian. The energy

density is given by the polarization-field product, and, for example, if we consider the second-

order susceptibility term χ
(2)
ijk:

HNL =

∫
d3rPNL · D

ε
∝
∑

i,j,k

∫
d3rD̃iD̃

(∗)
j D̃

(∗)
k + c.c.+ . . . (18)

→
∑

i,j,k

∫
d3râiâ

(†)
j â

(†)
k + c.c.+ . . . (19)

The takeaway is that the higher-order susceptibilities act to create and annihilate photons, con-

verting photons from some modes to others essentially by combination and splitting.

Lastly, we need to incorporate the quantized fields into the coupled wave equations. Procedu-

rally, we can use Eq. 17 as-is, by simply performing the substitution in Eq. 10. We thus obtain:

d

dz
ân ∝ i

∑

i,j
ωi±ωj=ωn

âiâ
(†)
j ei(ki±kj−kn)z. (20)

To recover the classical picture, we can interpret the above equation as the evolution of the expec-

tation value of the field operators:

d

dz
⟨ân(z)⟩ ∝ i

∑

i,j
ωi±ωj=ωn

⟨âi(z)⟩
〈
â
(†)
j (z)

〉
ei(ki±kj−kn)z. (21)

Indeed, in the context of nonlinear optics, one field must be large enough to induce a nonlinearity.

This pump or driving field is typically treated as a classical:

d

dz
ân(z) ∝ i

∑

i,j
±ωi±ωj=ωn

A
(∗)
i (z)â

(†)
j (z)ei(±ki±kj−kn)z. (22)

This is the regime of Gaussian quantum optics, where the equations are linear in the quantum

fields (in contrast to the case where a few photons could induce a nonlinearity).

Quantum mechanically, however, we are implicitly including a pair of evolution operators
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C, S:

âi(z) =
∑

j

Cij(z)âj(0) + Sij(z)â
†
j(0), (23)

(a Bogoliubov transformation) whose own equations of motion are:

dCnl

dz
∝ i

∑

i,j
±ωi±ωj=ωn

A
(∗)
i ei(±ki+kj−kn)z




Cjl, âj

S∗
jl, â†j

(24)

dSnl
dz

∝ i
∑

i,j
±ωi±ωj=ωn

A
(∗)
i ei(±ki−kj−kn)z




Sjl, âj

C∗
jl, â†j

(25)

which generalizes to the Heisenberg and density-matrix pictures.

Appendix A in Chapter 1 expands on what was presented in this section to cover the funda-

mentals of multimode Gaussian quantum optics.
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CHAPTER 1

HIGHLY MULTIMODE VISIBLE SQUEEZED LIGHT WITH PROGRAMMABLE SPECTRAL

CORRELATIONS THROUGH BROADBAND UP-CONVERSION

This work was done together with Logan G. Wright, Shi-Yuan Ma, Tianyu Wang, Benjamin K. Malia,

Tatsuhiro Onodera, and Peter L. McMahon [10].

Multimode squeezed states of light have been proposed as a resource for achieving quan-

tum advantage in computing and sensing. Recent experiments that demonstrate multi-

mode Gaussian states to this end have most commonly opted for spatial or temporal modes,

whereas a complete system based on frequency modes has yet to be realized. Instead, we

show how to use the frequency modes simultaneously squeezed in a conventional, single-

spatial-mode, optical parametric amplifier when pumped by ultrashort pulses. Specifically,

we show how adiabatic frequency conversion can be used not only to convert the quantum

state from infrared to visible wavelengths, but to concurrently manipulate the joint spec-

trum. This near unity-efficiency quantum frequency conversion, over a bandwidth >45 THz

and, to our knowledge, the broadest to date, allows us to measure the state with an electron-

multiplying CCD (EMCCD) camera-based spectrometer, at non-cryogenic temperatures. We

demonstrate the squeezing of >400 frequency modes, with a mean of approximately 700

visible photons per shot. Our work shows how many-mode quantum states of light can be

generated, manipulated, and measured with efficient use of hardware resources – in our case,

using one pulsed laser, two nonlinear crystals, and one camera. This ability to produce, with

modest hardware resources, large multimode squeezed states with partial programmability

motivates the use of frequency encoding for photonics-based quantum information process-

ing.
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Figure 1.1: Frequency domain, multimode, visible squeezed state preparation and detection. a.
Highly multimode squeezed vacuum is generated in the degenerate optical parametric amplifier
(DOPA), at near infrared wavelengths. The squeezed modes occupy orthogonal frequency spectra.
This may be represented by a set of squeezing operators Ŝi acting the vacuum state |0⟩. Each oper-
ator squeezes a distinct frequency mode with some squeezing parameter ri. The squeezing occurs
around a central frequency ω0 equal to half the pump central frequency 2ω0. Concretely, these
correspond to the wavelengths 1550 nm and 775 nm, respectively. b. Adiabatic frequency conver-
sion (AFC) efficiently converts the squeezed light to visible wavelengths. The pump, a broadband
pulse centered at 1033 nm (3ω0/2), combines with the broadband 1550 nm signal to yield 620 nm
(5ω0/2) light. This transformation between the two sets of frequencies can be changed by varying
the spectro-temporal profile of the pump. This operation may be represented as a linear unitary
transformation U acting on the infrared and visible fields, represented by the operators âωir and
âωvis . c. The final state, incident on a diffraction grating (DG), is split into frequency modes, and
frequency-resolved photon counting is performed with an EMCCD camera. Each measurement
yields some photon-number sequence, or vector, ⇀

n, whose probability distribution depends on the
state (determined by Ŝi and U ). The camera measures the spectrum in a discrete manner, as the
pixels capture the photons within some frequency “bins,” denoted ∆ωi. Hence, the state’s overlap
with these bin-basis Fock states, |n∆ωi⟩, determines the probability distribution.
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The generation, control, and measurement of entangled multimode Gaussian states of light

are crucial elements of continuous-variable (CV) quantum information processing [11–14]. Most

quantum technologies based on multimode quantum optics benefit from being able to use as many

modes as possible. As an example, a Gaussian boson sampler (GBS) [15, 16] is a special-purpose

quantum computer that can – at least in the ideal case – perform certain calculations that are

believed to be intractable on a classical computer when the number of modes and number of

photons in the GBS are sufficiently large [16, 17]. The recent demonstration of Gaussian boson

sampling in the regime of quantum computational supremacy, with tens to hundreds of squeezed

modes and detected photons per shot [18–21], was a milestone in the development of CV-based

quantum systems that was achieved because of the success in pushing to large numbers of modes

and photons. A GBS executes a sequence of three steps, which are common to many CV quantum-

information-processing protocols: (1) generate squeezed states, (2) apply a unitary transformation

to entangle them, and (3) measure the final state (by photon counting).

Optics gives us the choice of several possible degrees of freedom within which to encode in-

formation – most importantly: space, time and frequency (or any combination thereof). While

large-scale GBS experiments have been realized using space [18–20] and time [21] encodings,

the frequency domain remains to be explored. Frequency encoding offers important potential

advantages over space or time encoding for both the generation and the manipulation (unitary

control) of multimode squeezed light: reduced hardware resources and complexity, and reduced

loss. The extremely broad bandwidth of light enables frequency-encoded systems to operate on

many frequency modes in a compact system [22–28]. Many demonstrations of large-scale mul-

timode squeezing, for example, use the frequency domain, e.g., in broadband frequency combs

[26, 27, 29–41]. Linear unitary operations in the frequency domain, i.e., acting on the frequency

modes, can be implemented in a hardware-efficient way, operating on all frequency modes in par-
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allel [42, 43]. One approach is to use one or more electro-optic modulators [42–46] (although there

are limitations on the unitary from the driving microwave bandwidth being ≲100 GHz); another

is to use nonlinear wave mixing to convert photons in each frequency mode to photons in a com-

bination of other frequency modes [47]. Unitaries based on nonlinear wave mixing mediated by a

classical field, such as four-wave mixing [48], provide a route to realizing programmable unitaries

that can operate over wide bandwidths, in compact hardware with low loss. The programming

of the unitary can be done by shaping the classical field(s) used to control the wave mixing of

the modes containing quantum light, and the wave mixing can be implemented compactly in a

single-spatial-mode waveguide. However, a programmable, frequency-domain unitary working

over optical (>1 THz) bandwidths for quantum light has yet to be realized at even moderate scale

(more than 2 modes [48]).

The final step, state measurement by photon counting, is a challenge for many multimode ar-

chitectures. Since the preferred nonlinear optical materials for generating squeezed vacuum work

best at longer wavelengths, squeezing at wavelengths centered near 1550 nm is typical [18–21, 25–

36, 41], also in part due to the convenience of being able to use optical components from telecom-

munications technologies. However, good (high quantum-efficiency, low dark-count) single-photon

detectors at 1550 nm, namely superconducting nanowire detectors [49, 50], are very expensive and

require cryogenic cooling. Silicon-based camera sensor technologies – both charge-coupled device

(CCD) and complementary metal–oxide–semiconductor (CMOS) detectors – are well-established,

comparatively inexpensive and compact, and each camera comprises 105–106 individual pixels,

i.e., detectors. Cameras capable of detecting single photons with low noise have recently become

available, and there is a growing literature of quantum-optics and sensing experiments that were

performed with visible wavelengths and these cameras [51–56]. Electron-multiplying CCD (EM-

CCD) cameras are arguably the current state-of-the-art, and low-noise CMOS photon-number-
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resolving cameras are also a promising tool within this domain [57, 58].

Here, we demonstrate how to use frequency conversion [59] to enable the use of these visible-

light cameras in combination with techniques for strong squeezing possible at longer wavelengths.

In addition, our demonstration is an improvement over existing methods of quantum frequency

conversion: previous demonstrations are limited to either modest bandwidths or efficiencies [60–

66]. However, adiabatic frequency conversion (AFC) essentially eliminates this trade-off [67, 68].

We show how this method allows us to obtain robust, efficient and broadband conversion over

>45 THz (1390–1750 to 590–650 nm) and near-unity efficiency. Furthermore, it allows unitary

control of the multimode entanglement (with, in principle, no additional loss) by manipulation

of the complex profile of the broadband pump used to drive the conversion. This architecture

provides the best of both worlds: squeezing at telecommunications wavelengths, and photon de-

tection at visible wavelengths. We will show that we are able to generate strong squeezing in over

400 frequency supermodes, resulting in states having a measured mean photon number of nearly

700. By using AFC to efficiently convert the squeezed light to visible wavelengths, and using the

highly parallel photon counting made possible by a modern EMCCD, we can directly measure

these states. We will also show that we can control the entanglement between different modes

by using different spectrally shaped classical fields as the pump of the AFC process, resulting in

different measured correlations between photon detections across the frequency modes.

Results

The experimental setup is illustrated in Fig. 1.1; an overview is as follows. We use a waveg-

uided degenerate optical parametric amplifier (DOPA) pumped with a pulsed laser: this pro-
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vides squeezing in a single spatial mode and over many frequency modes (known as the “su-

permodes”). An adiabatic frequency conversion (AFC) crystal subsequently converts this near-

infrared squeezed light to the visible. The temporal profile of the AFC pump pulse is shaped,

which controls the conversion process – the linear transformation between infrared and visible

light frequencies. Finally we detect the visible squeezed light with an electron-multiplying CCD

(EMCCD) camera, serving as an array of high-quality photodetectors.

In the following section, we present characterizations of each of these stages. We first measure

the properties of the squeezed light in the infrared, directly out of the DOPA. Our characteriza-

tions enable us to measure the bandwidth of the squeezed light, estimate the number of modes,

and verify squeezing. We then demonstrate efficient conversion using AFC. In addition, with

the camera, we are able to observe spectral photon-number correlations throughout the whole

bandwidth at high resolution. With this ability, we generate qualitatively different joint spectra

as a proof of concept of frequency-domain unitary transformations by pulse shaping. Finally, we

discuss detection and the photon numbers generated by this architecture. Refer to the Methods

section for details on the DOPA, AFC, pulse shaper, the photon-counting spectrometer, as well as

specific experiments.

Highly multimode squeezing in the frequency domain

We begin by studying the degenerate optical parametric amplification (DOPA) process, and look-

ing for behavior consistent with highly multimode squeezing. Three experiments were performed

to verify numerical predictions: a spectrum measurement, a parametric gain measurement and a

coincidence detection measurement. The purpose of the first is to verify that the bandwidth is

indeed as broad as predicted. The second is to infer the number of modes, based on how the out-
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put energy scales with pump energy. The third is to verify that this light is made up of squeezed

states, through photon statistics.

The DOPA was first simulated, and the photon-number covariance is plotted in Fig. 1.2a,

which has a notable “X” shape. The anti-diagonal is due to the non-classical frequency correla-

tions of entangled photons (the joint spectral intensity, or “entanglement correlations”) and energy

conservation dictates its shape: down-converted photon pair energies must add up to the pump

photon energy. The diagonal represents the photon-number variance, and the correlations are

classical (“thermal correlations,” as these statistics have the same properties as those of thermal

states [69]): this has a finite width, given by the phase-matching function of the OPA (typically a

sinc function for periodic poling). The Bloch–Messiah decomposition helps us interpret how the
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Figure 1.2: Frequency-multimode squeezing in a lithium niobate waveguide optical parametric
amplifier. a. Simulated photon-number covariance matrix of the state produced in the degenerate
optical parametric amplifier (DOPA). This is made up of classical “thermal” correlations (due to
photon-number variance) and non-classical entanglement correlations. b and c show the decom-
position of the simulated state into single-mode squeezed states, referred to as the supermodes.
The plots share the vertical axis, which indexes these modes. b. Simulated average photon num-
ber (⟨n⟩) and squeezing values of the first 1000 supermodes. c. Simulated supermode basis of the
DOPA. Each row represents a mode and its spectrum is represented by the colormap. The high
gain supermodes are approximately Hermite–Gauss functions while the weaker supermodes re-
semble two-mode squeezed vacuum (TMSV) states with two distinct frequency peaks. For a-c, the
pump power is approximately equivalent to the highest used in the experiment. d. Measurement
of the DOPA output spectrum and comparison to simulation. As the detector quantum efficiency
(QE) vanishes at longer wavelengths, the simulation spectrum is also plotted multiplied by the
nominal relative QE for comparison. e. Parametric gain of the DOPA, fit to the number of modes,
and comparison to simulation. The photon number ⟨n⟩ is obtained by dividing the average power
measurement by the repetition rate and the photon energy at the central wavelength. In the fit: M
represents the number of modes; η the detection efficiency; P the pump power; P0 the fitted scal-
ing factor. f. Coincidence detection, comparing squeezed light, attenuated laser light (coherent)
and broadband incandescent lamp (thermal). The prediction model is derived in Appendix C.
Error bars represent standard error. Sketches of the experimental setups corresponding to c–e are
shown below their respective plots. The DOPA output is measured with either a single-photon
avalanche diode (SPAD) or a power meter (PM), after isolating the signal with a long-pass filter
(LPF).

DOPA generates squeezing [70, 71], by reducing the output to a set of supermodes and their cor-

responding squeezing or anti-squeezing values. These are shown in Fig. 1.2b and c. For a 4 cm LN

waveguide, and 775 nm 200 fs pulse pump, we predict ∼600 supermodes with substantial average

photon numbers, spanning over 50 THz, or over 400 nm. The weakly squeezed supermodes (in-

dices above 200) resemble two-mode squeezed vacuum (TSMV) states, occupying two sinc peaks

on opposite sides of the central wavelength. The highly squeezed supermodes (indices below

200) appear to approximately be the typical Hermite–Gauss functions [70]. The supermodes are

not constant with respect to the pump power, and tend to transition from TMSV to Hermite–Gauss

as the parametric gain increases.
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The spectrum measurement, whose outcome is shown in Fig. 1.2d, confirms that the spectrum

is broad, spanning hundreds of nanometers. The spectrum could not be measured past about

1700 nm due to the detector response cut-off. The spectrum may be thought of as the incoherent

sum of the supermodes, scaled by average photon number.

The parametric gain experiment (Fig. 1.2e) measures the output power of the DOPA at vary-

ing pump powers. The number of down-converted photons scales linearly with the number of

supermodes M and the detection efficiency η, while each mode responds nonlinearly, containing

on average ⟨n⟩ = sinh2
√
P/P0 photons, for pump power P and scaling factor P0. We may esti-

mate the number of modes by fitting to ηM sinh2
√
P/P0, which assumes equally squeezed modes

(not truly the case, as shown in Fig. 1.2b, hence this is a lower bound). From this measurement

we infer the presence of at least M ≥ ηM = 431 squeezed modes – on the order of 650 squeezed

modes accounting for average detector responsivity, η ≈ 71%. In order to achieve a sufficently

high – measurable – average output power, this experiment requires different operating condi-

tions (a higher repetition rate pump laser), and we estimate that we would measure a slightly

lower number of modes, 386 (465 corrected), under the usual conditions (Appendix I).

The coincidence experiment (inspired by Ref. [72]) is shown in Fig. 1.2f. The DOPA output

beam is evenly split and the photon-number covariance between the two beams is measured. The

coincidences depend on the photon statistics of the state, and at low photon numbers, only the co-

incidence rate of highly-multimode squeezed light is expected to scale linearly with respect to the

average photon number. We performed coincidence detection with the DOPA output, attenuated

1550 nm laser light, and broadband incandescent lamp light; indeed only the former was nonzero.

These three experiments verify our predictions that the DOPA is a source of highly multimode

squeezed light, spanning hundreds of frequency modes. A more thorough discussion of these re-

24



sults, including explanations of the experiment-theory discrepancies, is presented in the Methods.

Adiabatic frequency conversion (AFC) of squeezed light
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Figure 1.3: Broadband, adiabatic frequency conversion (AFC) of squeezed light. Experiments
corresponding to plots a and b use a diffraction grating (DG) to use the EMCCD camera as a
spectrometer. Experiments corresponding to plots c–e use a Wollaston prism configured as a 50:50
beamsplitter (BS). a. Converted spectrum measurement. This is compared to simulation under
similar conditions and with 92% conversion within the conversion bandwidth. The shading in
the simulation curve indicates the unconverted energy, to show that the conversion profile should
be approximately flat within the target bandwidth. b. Measured, wavelength-resolved photon-
number covariance matrix. The diagonal and anti-diagonal features can be recognized as the
thermal (classical) and entanglement (non-classical) correlations. c. Coincidence detection after
conversion. This experiment measures the transmission of the state (the effective fidelity or purity)
as 40%. Error bars represent standard error. d. Parametric gain measured after conversion. The
fit to this curve estimates the number of squeezed modes present in the converted state as 433,
accounting for loss. e. Conversion as a function of pump power. A fit to the saturation curve
estimates the conversion efficiency as 92.5%.
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The next part of the experiment involves frequency conversion of the squeezed light. The in-

frared squeezed light, centered around 1550 nm, is up-converted with a pulsed 1033 nm laser,

to a central wavelength of 620 nm, by sum frequency generation. This ultra-broadband non-

linear process is possible through AFC [67, 68], which acts as a unitary transformation in the

frequency domain, and most importantly allows us to measure highly squeezed light with a sen-

sitive, silicon-based camera. (See Appendix G for the crystal quasi-phase-matching design used

in this experiment.)

In this section we demonstrate frequency conversion of squeezed light, show that it remains

squeezed and measure the overall system fidelity, and provide estimates of the conversion effi-

ciency and the number of converted modes. To this end, two experiments are presented in this

section: one based on our visible light, single photon spectrometer (Fig. 1.3a-b); and one based

on two-mode coincidence detection (Fig. 1.3c-d). The spectrometer uses a diffraction grating to

separate the squeezed light into its wavelength components, which are imaged onto the EMCCD

camera. The coincidence experiment also uses the camera, but a with prism, functioning as a 50:50

beamsplitter, replacing the grating. The two beams are imaged onto the camera, which emulates

two detectors via two small regions of interest on the CCD.

The spectrum measured with the EMCCD camera visible light spectrometer is shown in Fig. 1.3a.

The converted spectrum matches the designed conversion band. The shoulders in the spectrum

(roughly between 590–600 and 640–650 nm), which differ from the simulation, are consistent with

Fig. 1.2c (around 1400 nm): these features are from the original spectrum, not the conversion. The

intensity implies that, on average, the most brightly-illuminated pixels receive almost 2 photons

per pulse.

The photon-number covariance matrix is shown in Fig. 1.3b. Shot-by-shot intensities are ob-
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tained by triggering the camera to capture individual pulses. The camera is used in “analog” mode

(not thresholded) due to the high photon numbers per pixel (see Appendix B). For this experiment,

the AFC is pumped in such a way as to maximize the conversion and to perform a transformation

as close as possible to the identity, although the pump bandwidth causes some broadening (see

Appendix G; an identity would require a monochromatic pump). The photon covariance matrix

has the “X” shape we expect from Fig. 1.2a, with both classical and non-classical correlations.

The results of the coincidence experiment, similar to the one presented in the previous section,

are shown in Fig. 1.3c. We can now use this experiment to measure the effective fidelity purity or

of the state: where the photon statistics lie between those of pure squeezed vacuum and thermal

noise, as parametrized by an effective loss or transmission. For few photons in each supermode,

⟨n⟩ ≪ 1, we expect linear scaling; at intermediate photon numbers, where ⟨n⟩ = sinh2
√
P/P0 ≈

P/P0, we expect the covariance to scale quadratically; and at greater photon number we cannot

predict the scaling without precise knowledge of the supermodes (see Appendix C). In the first

two cases, the coefficient of the linear component gives us an estimate of the overall transmission

(a weighted average over all modes). Hence, we perform a quadratic fit to the lowest photon

number portion of the data. The fit implies a 40% overall effective transmission for all the modes.

The same data is used for Fig. 1.3d, to quantify the parametric gain. By assuming the 40% over-

all (effective) transmission, the scaling implies the presence of over 430 squeezed modes. Some

parasitic second harmonic generation is observed in the DOPA at higher pump energies, which

could reduce the pump energy available for squeezing and possibly cause this value to be slightly

underestimated.

The conversion as a function of AFC pump power is used as an estimate of the conversion effi-

ciency, which is shown in Fig. 1.3e. Conversion efficiency (saturation) is described by the Landau–
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Zener formula: unconverted signal follows an exponential decay with respect to the pump power.

The fit implies 92.5% conversion; this is a reasonable upper-bound estimate on the conversion

efficiency. We have been careful to make the pump beam much larger than the signal, and have

verified that it has minimal spatial chirp, as a fit to the Landau–Zener formula may overestimate

the efficiency if there is substantial mismatch in the spatio-temporal overlap in the pump and sig-

nal. Nonetheless, we can obtain a lower bound estimate from the 40% total fidelity or effective

transmission. By measuring the transmission of each optical element in the squeezed light beam

path and taking into account the camera quantum efficiency (QE), we estimate the end-to-end pas-

sive optical transmission to be at least 60% (excluding AFC). This bounds the conversion efficiency

from below to at least ∼66%. This is a fairly loose bound, as the fidelity figure includes non-loss

decoherence (e.g. detector excess noise; weakly converted photons at wavelengths outside the

conversion band) and the combined linear loss in the beam path probably exceeds 40%. Finally,

we point out that the conversion efficiency is pump-power limited, meaning that achieving close

to 100% over these bandwidths is realistic without requiring phase-locking.

Upconversion as a frequency-domain unitary transformation

Most quantum sensing or computing protocols require unitary operations to be performed on

the overall state, because each application requires some specific entanglement structure. Here

we demonstrate how the covariance matrix can be transformed by implementing frequency uni-

taries through the broadband sum frequency generation process. The unitary is applied during

the conversion; shaping the AFC pump pulse affects the nonlinear dynamics, changing which

wavelengths convert to which. This means that, within certain constraints, we can program the

pulse to achieve a desired transformation.
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Figure 1.4: Preparing the joint spectrum via frequency conversion. By pulse shaping the AFC
pump A(ωp), we can modify the linear unitary transformation U performed by the AFC process,
hence the state and the measured spectral photon-number correlations. The pump spectral inten-
sity and phase both play a role in the transformation. a. Pulse shaping involves two operations:
intensity and phase modulation. The former (µ(ωp)) changes the spectral intensity of the pump,
which in turn mainly affects the magnitude of elements of U , and the latter (ϕ(ωp)) changes the
spectral phase of the pump, which mainly affects the complex phase of the elements of U . b. The
phase-averaged linear transformation performed by the AFC. The rows of the unitary strongly re-
semble the pump spectrum, as shown in the subplots: the first pair shows how it compares to the
original spectrum, and the second is an example of how it changes given an intensity-modulated
pump. The frequency-difference axis is shared among the pump and unitary-row subplots. c.
These plots show how a phase-modulated pump affects the conversion process and produces
more complicated correlation structure. Example spectral intensity correlations are plotted on the
right, and the corresponding (inferred) pump intensity profiles on the left. Specifically, we plot the
entanglement contribution to photon correlation matrices (correlation matrices with thermal-like
components subtracted). The first shows the same data in Fig. 1.3b, for reference, with no pulse
shaping. The next three are the result of random pulse shaping. The corresponding pump intensi-
ties, plotted on the right, are not measured directly, but estimated based on the phase modulation
applied and the pulse shaper calibration.

Intuitively, the relative phase of a pump frequency affects the phase of a signal it converts,

thereby constructive and destructive interference may promote or suppress the conversion of a

signal from one frequency to another, effectively forming a frequency-domain interferometer net-

work. This is illustrated in Fig. 1.4a-b. We discuss this further in Appendix D.

Some examples of this process and how it influences the covariance matrix are shown in

Fig. 1.4c. Phase modulations are applied with the pulse shaper, on top of a fixed quadratic phase

(chirp) to guarantee a certain pump pulse duration. The predicted pulse shapes (inferred from

the applied phase modulation) are shown for each example. For clarity, we show the correlation

rather than covariance matrices, and we subtract a fit to the thermal (classical) part in order to

show only the entanglement contribution (the joint spectrum). For reference, Fig. 1.4a is derived

from the same data as Fig. 1.3b. As we do not measure the relative phases in the covariance, we
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focus on transformations in the joint intensity.

In our experiment the bandwidth of the pump (<5 THz) is much smaller than the bandwidth

of the squeezed light (∼47 THz), which prevents all-to-all coupling (the pump frequencies me-

diate the change in signal frequency). Additionally, the AFC pump peak intensity is reduced by

pulse-shaping, therefore reducing the efficiency. Despite these limitations, it is possible to achieve

qualitatively different joint spectra by simply changing the pulse shape.

Multimode quantum state sampling at visible wavelengths

The final ingredient in any quantum-optical computing or sensing protocol is measurement, and

in this work we focus on photon-counting measurements. Any quantum advantage for computing

or sensing typically scales with the number of photons detected so high average photon numbers

and high detection efficiency are crucial. Here we demonstrate sampling of the photon-count

distribution of our generated states using an EMCCD camera.

We used 5 rows and all 512 columns of a 512×512 pixel EMCCD camera, whose CCD sensor

has a QE of ∼95% at 620 nm [73]. The receiver operating characteristic (ROC) curve for threshold-

ing for this camera is shown in Fig. 1.5a: this characterizes the false click rate against the photon-

detection efficiency (PDE), parametrized by the threshold value (Appendix B). The green marker

indicates the threshold used to generate the subsequent plots, resulting in a competitive photon-

detection efficiency of ∼80%.

Fig. 1.5b shows a histogram of the number of photons detected per shot. Blue (left) is prior

to thresholding, green (right) is with thresholding. The gain noise in EMCCDs is large, which

makes it practically impossible to distinguish between photon numbers ≥1 incident on one pixel.
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Figure 1.5: Parallel single-photon detection for multimode-quantum-state measurement: sam-
pling the many-mode, many-photon distribution. a. Receiver operating characteristic (ROC)
curve for the EMCCD camera’s detectors. This quantifies the trade-off between false click rate
and photon-detection efficiency (PDE). b. Histogram of the total photon number per event: ana-
log (noisy) and thresholded. We use the term photoelectrons to refer to the amplified charge on
the CCD divided by the gain. Some example, high-photon-number events, are labeled on the
histogram with callouts i–iv; these are referenced in the subsequent subfigures. c. Example un-
processed camera image from one sampled event. d. Samples integrated vertically (left) and
thresholded then summed vertically (right). The experimental schematic (bottom) refers to the
experimental configuration for collecting the data shown in b–d. The data in a consists of dark
frames collected with a closed shutter (see Appendix B and H.)
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However, statistical averages tend to be accurate, as this is zero mean noise [74] (see Appendix B).

Henceforth, we use the term photoelectrons to refer to the amplified charge on the CCD divided

by the gain: since the gain is a noisy process, this is not quantized. The first histogram implies

an average of almost 700 photons per shot; with thresholding the average number of clicks is just

under 500 per shot. The discrepancy is due to both the effective QE and the high rate of multiple

photons incident on one pixel. In Appendix G we analyze the contribution of dark counts and

photons from parasitic processes: these are not significant in number compared to the squeezed

light photons.

For these frequency-resolving experiments we use more than one pixel-rows of the camera.

This is done in order to capture all the photons, due to the spectrometer’s point spread function

occupying a space larger than one pixel (Gaussian width of σPSF ≈ 0.6 pixels). An example of

a raw sample is shown in Fig. 1.5c, in units of photoelectrons. With this configuration we could

sample at a rate of just over 800 Hz. Using a single row would allow an average sampling rate of

15.7 kHz, which is limited by data readout times. Fig. 1.5d shows samples integrated vertically,

for each frequency bin mode. The point spread function in the vertical direction can allow a

thresholding camera to act as a pseudo-photon-number resolving detector, by illuminating more

pixels (via astigmatic focus) (an established method [75–77] used e.g. in Refs [20]). The point

spread function in the horizontal dimension, however, acts as an effective decoherence and must

be carefully engineered to fit within the dimensions of a pixel (see Appendix E).

33



Discussion

The creation, manipulation, and detection of highly squeezed, highly multimode entangled states

are important ingredients of many continuous-variable (CV) schemes for quantum computing,

sensing, and communication using photonics. When compared to space or time encoding, fre-

quency encoding has significant advantages for integration and scalability, but it is not always

practical to perform unitary transformations on frequency modes without substantial loss. We

have experimentally demonstrated efficient, broadband, quantum frequency conversion of highly

multimode squeezed light generated in the near infrared into the visible using adiabatic frequency

conversion (AFC). This simultaneously allows efficient, parallel photon counting across over 400

squeezed and 500 detection modes using CCD-based photon-detector arrays, and the program-

ming of frequency correlations in the multimode squeezed light. Our approach requires no active

phase locking, uses a single optical beam path for the quantum light, and the number of modes

and shot rates should be scalable well beyond what we have demonstrated. The frequency-

domain unitary is programmed by shaping a classical pump pulse before it interacts with the

quantum light; the spectro-temporal shaping of the AFC pump pulse can be lossy and so long as

the pulse energy is sufficient to fully drive the AFC process, this loss will not affect the quantum

light. This is in contrast to the methods for realizing programmable unitaries with space or time

encodings, which typically involve a tradeoff between programmability and loss.

To the best of our knowledge, the quantum-optical states we produced are the largest par-

tially programmable, photon-counted, multimode squeezed states produced by a moderate factor

(about 2–4 times larger than previous results, albeit with different limitations and caveats), and by

an order of magnitude the largest in the frequency domain (see Appendix J). Our work provides

a path to constructing large-scale Gaussian boson samplers using frequency encoding.
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Our experiment has limitations on the connectivity and programmability of the unitary trans-

formation realized by AFC, as well as limited detection resolution and speed. We explain these

limitations and present prospects to overcome them in Appendix K.

We will conclude with some thoughts on future research that could build on what we have

already shown. First, engineering the bandwidth of the squeezed light to be compatible with the

bandwidth of the pump will enable all-to-all correlations. Second, there are many opportunities

for improvements using integrated, on-chip, devices [78, 79]. For example, one could implement

the combined DOPA and AFC source on a single chip, with single-spatial-mode waveguiding.

This could: eliminate detrimental spatio-temporal effects in AFC; allow for longer interaction

lengths than in free space (limited by Rayleigh length) and allow for high intensities with less

power, both resulting in more powerful unitary control; and eliminate most interface losses of the

quantum light prior to detection. Using integrated photonics would also allow the engineering of

dispersion to optimize the squeezing bandwidth, the number of modes in the DOPA, and the in-

teraction complexity imparted by AFC pump. Frequency-encoded squeezed light is not restricted

to using supermodes of a continuous basis: quantum states can be engineered to inhabit a (more

conventional) basis of (ultrafast) frequency combs lines or discrete frequency bins [30, 80–83].

Shaping the DOPA pump (and possibly the domain poling) to engineer the DOPA joint spectrum

[30, 80–82, 84] provides additional avenues for programmability, including the squeezing level of

each individual supermode. Finally, understanding how to program the AFC unitary, e.g. through

the development of more quantitative models and better calibration procedures, is a valuable av-

enue of research; it is also important to understand what parts of the state (Hilbert) space can be

reached through DOPA and AFC pulse shaping, as well as potentially incorporating additional

frequency-domain operations (Appendix D discusses the theory of AFC transformations). Over-

all we hope our work will enable more widespread study of many-mode, many-photon entangled
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quantum states, and provide a useful building block for large-scale frequency-encoded CV quan-

tum technologies.

Methods

Highly multimode squeezing in the frequency domain: details

To study the squeezing process, the DOPA is first simulated with a split step-based partial differ-

ential equation solver, based on material properties of LN, and the pump laser (such as dispersion

and nonlinearity; pulse duration and energy). The Green’s function, which describes how the

DOPA acts on the vacuum, is computed with this solver. The Bloch–Messiah decomposition is

then applied: this helps us interpret how the DOPA generates squeezing [70, 71], by reducing the

Green’s function to a set of supermodes and corresponding squeezing or anti-squeezing values.

These are shown in Fig. 1.2a and b. For a 4 cm LN waveguide, and 775 nm 200 fs pulse pump,

we predict ∼600 supermodes with substantial average photon numbers, spanning over 50 THz,

or over 400 nm. Refer to Appendix A for the DOPA equations of motion and the relationship

between the Green’s function and the Bloch–Messiah supermodes.

Three experiments were subsequently performed to verify the numerical predictions: a spec-

trum measurement, a parametric gain measurement and a coincidence detection measurement.

The purpose of the first is to verify that the bandwidth is indeed as broad as predicted. The sec-
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ond is to infer the number of modes, based on how the output energy scales. The third is to verify

that this light is made up of squeezed states, through photon statistics. The spectrum may be

thought of as the incoherent sum of the supermodes, scaled by average photon number, while for

the parametric gain, we measure the total photon number as a function of pump power.

The spectrum is measured by monochromation of the DOPA output beam to 1 nm resolution

and detecting with a single-photon avalanche diode (SPAD). The spectrum could not be measured

past about 1700 nm, due to the SPAD’s InGaAs detector response cutoff. As predicted by simula-

tion, the output is broad, spanning hundreds of nanometers (see Fig. 1.2c). The spectrum is in fact

broader than simulation, with a shoulder appearing and extending beyond the prediction around

1400 nm: we believe this might be due to pump higher order spatial modes phase-matching the

OPA process at the outer wavelengths. The 775 nm pump, unless otherwise specified, is generated

from a 200 fs, 1033 nm laser by nonlinear frequency conversion.

The parametric gain experiment involves measuring the output power of the DOPA with a

power meter at varying pump powers (see Fig. 1.2d). A high repetition rate laser is necessary to

obtain a sufficiently high average output power, hence an 80 MHz Ti:S laser is used to pump the

DOPA. The data is fit to the function ηM sinh2
√
P/P0, where η represents overall transmission,

M number of modes, P pump power, and P0 power scaling factor (a single squeezed state has

⟨n⟩ = sinh2 r, with squeezing parameter r ∝
√
P ). This fit assumes M equally squeezed modes

each contributing the same number of photons (thus, a lower bound). Remarkably, the simula-

tion, which includes the responsivity of the detector as a function of wavelength, scales ostensibly

the same (albeit with a different nonlinear efficiency P0). From this measurement we can infer the

presence of at least 430 squeezed modes – on the order of 650 modes if accounting for detector

responsivity. The Ti:S pulses, 100 fs, have more bandwidth than the 200 fs upconverted 775 nm.
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This is accounted for in simulation, which predicts that the squeezing bandwidth will be moder-

ately broader, hence a marginally larger M than in the 200 fs case, but the central squeezed modes

are not significantly affected. If a 200 fs experiment were possible at a lower repetition rate, we

predict a slightly lower measurement of ηM (see Appendix I for comparisons).

The coincidence experiment (inspired by Ref. [72]) involves splitting the DOPA output beam

with a broadband 50:50 beamsplitter. Each beam is detected by a gated SPAD, with the goal of

measuring the photon-number covariance between the two beams. The coincidences depend on

the photon statistics of the state (namely the bunching, which may also be thought of in terms

of g(2) or Mandel Q). Fig. 1.2e shows the covariance between SPAD clicks against the average

click rate (as these are threshold detectors). At low photon numbers, only the coincidence rate of

highly-multimode squeezed light is expected to scale linearly with respect to the average photon

number (see Appendix C for details). To verify this, we performed coincidence detection with the

DOPA squeezed light, attenuated 1550 nm laser light, and broadband incandescent lamp light.

Indeed, only the squeezed light has nonzero, linear covariance where ⟨n⟩ ≪ 1. As the threshold-

ing detectors yield Bernoulli random variables, the covariance between the two is restricted to a

parabola, hence the covariance curves back down around ⟨n⟩ = 1/2. The slope of the function

depends on the transmission (loss). In the next section we use this method as one way to estimate

the purity of the detected visible light, but due to the significantly inhomogeneous responsivity of

the detectors, this is not possible in the infrared. We can, however, compare to theory (“Predicted”

in Fig. 1.2e): a simple model (see Appendix C) can approximately predict the output, based on the

spectrum in Fig. 1.2c and the detector QE, assuming biphotons centered around 1550 nm. It pre-

dicts a similar scaling to the one measured. As this coincidence measurement is quite sensitive to

wavelength-dependent loss, the prediction estimates a decoherence amounting to 98% effective

loss while we measured 96%, hence the factor of two between measurement and prediction. This
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deviation is due to inaccuracies in the QE and spectrum measurement. We emphasize that this

decoherence is due to the limited spectral range and QE of the detector, and not due to the purity

of the squeezed states.

These three experiments verify our predictions that the DOPA is a source of highly multimode

squeezed light, spanning hundreds of frequency modes.

DOPA Waveguide

The DOPA waveguide consists of 4 cm MgO-doped LN ridge waveguide (Covesion WG-1550-40

WGCK40), poled for second harmonic generation of 1550 to 775 nm and designed to be single-

mode at near-IR wavelengths. The LN device is mounted in an oven (Covesion PV40). The oven

is mounted with a V-shaped mount (Thorlabs VC3C) and a 3D-printed sleeve to ensure horizontal

orientation. The oven and objective lenses (Newport 5726-B-H, 5726-C-H) are mounted on linear

axes stages (Newport 562-XYZ, 561D-XYZ-LH, 561D-XYZ respectively). Prior to the waveguide

input, a dichroic mirror is used to merge the 775/1550 nm pump and alignment beams (Layertec

109068). A custom mirror (Layertec) is used following the output to separate the pump and signal.

The output pump beam is imaged onto a camera (Basler acA800-510um) to view and optimize the

pump’s spatial profile in the waveguide.

AFC

The crystal used for AFC is a 3 cm poled KTP crystal (Raicol Crystals). The poling profile is

designed such that the spatial frequency (inverse of the poling period) varies linearly over the

length of the crystal, except at the facets of the crystal. The poling spatial frequency is designed
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to phase match the conversion of all the target wavelengths. The front and back 0.25 mm of the

crystal are poled with a rapidly varying tanh profile. This improves the rapid passage of the

wavelengths that convert near the ends of the crystal. See Appendix G for more details. The

crystal is designed for use at 48°C and held in an oven (Eksma Optics HP30), mounted on a 7-axis

mount (Thorlabs K6XS, SM1P1).

To optimize the conversion efficiency, bright CW laser light is sent through the DOPA: it thus

has same spatial mode as the squeezed light. This alignment beam is used to optimize the spatial

overlap of the pump with the signal. The conversion efficiency of the squeezed light is then opti-

mized by maximizing the temporal overlap. This consists of a sweep of the time delay, followed

by a sweep of the pump pulse chirp (i.e. duration). As AFC is phase-insensitive, there is no need

for phase stabilization. The delay line, a motorized stage with a retro-reflecting right-angle mirror,

adjusts the timing of 775 nm pump prior to the DOPA waveguide. The chirp is programmed by

adjusting the spectral phase profile of the pulse shaper. See the spectrometer section below for

more details.

To mitigate spatio-temporal effects in the AFC, we designed the pump to have a beam waist of

300 µm, and the signal beam to have a waist of approximately 70 µm when focused in the crystal.

To measure the phase-averaged response of the AFC process, monochromated super-continuum

(NKT Origami, Thorlabs HN1550, and the infrared monochromator described below) is sent through

the AFC, one wavelength at a time, and the resulting visible spectrum measured on the EMCCD

camera spectrometer (described below).
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775 nm generation from 1033 nm

Pulsed 775 nm light is generated by cascading a second harmonic generation (SHG) and OPA

process. Both processes use lithium triborate (LBO; Newlight Photonics). Both crystals are tem-

perature tuned and non-critically phase matched (the optical polarization are aligned to the crys-

tal axes, to avoid spatial walk-off). The lengths are designed to match the temporal walk-off

of the 200 fs pulses. The first crystal, 6 mm long, held at 182.6°C, generates 517 nm (y-axis

polarized) from 1033 nm (z-axis). The second, 10 mm long, held at 145.4°C, carries out the

517 nm (y) − 1548.5 nm (z) → 775 nm (z) process. The 1548.5 nm seed is generated by a diode laser

(ILX Lightwave 79800C), amplitude-modulated by a stabilized (Oz Optics MBC-SUPER-PD-3A)

electro-optic modulator (EOM) (Eospace AZ-DS5-10-PFA-PFA-LV-LR), to generate 10 ns square

pulses. These seed pulses are optically amplified (Pritel PMFA-20), following an isolator. The

EOM pulsing is triggered by the Amplitude Satsuma 1033 nm laser, with an appropriate time

delay (IDQuantique ID900). The EOM is driven by a pulse/function generator (HP-8116A).

Parametric gain measurements

For this measurement, the DOPA is pumped with a 775 nm, 80 MHz Ti:S laser (Spectra-Physics

Tsunami). (All other experiments use the 775 nm pump generated from a 1033 nm laser.) The high

repetition rate ensures a sufficiently high average power of squeezed light. The 1550 nm output

beam power is measured with a pW-sensitive power meter (Thorlabs S150C), after coupling into

multimode fiber (Thorlabs FG200LEA), which is about 95% efficient. The DOPA pump power is

removed with a dichroic mirror (Layertec) and measured concurrently (Thorlabs S130VC/S130C).

The squeezed light is filtered further with long-pass filters (Thorlabs FELH1150).
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At visible wavelengths, the 620 nm power is measured on the camera by integrating the signal

on all illuminated pixels, after appropriate filtering of the pump (Thorlabs DMLP900; Semrock

FF01-632/148).

Single photon spectrometers

The infrared wavelength spectrometer is based on a diffraction grating on motorized rotation

stage (Thorlabs GR25-0616; K10CR1). The first order reflection couples into SMF-28 single mode

fiber (Thorlabs F260APC-1550), which monochromates the input. The fiber coupling efficiency is

approximately 35%. For single photon detection, this coupled into a InGaAs SPAD (IDQuantique

ID Qube NIR Gated), set to the nominal 15% QE. The wavelength-angle correspondence is cali-

brated using tunable lasers (JDSU mTLG-C1C1L1) between 1527 nm and 1609 nm and fitting to

the grating equation,mλ = d(sin(θi0+∆)−sin(θir−∆) = 2d cos[(θi0+θr0)/2] sin[(θi0−θr0)/2+∆],

where d is the grating constant, θi0, θr0 are some reference incidence and reflection angles, and ∆

is the rotation angle of the grating. The extrapolation to uncalibrated wavelengths is deemed cor-

rect as the spectrum stops sharply at 1150 nm, which matches the long pass filter cutoff (Thorlabs

FELH1150). However, the coupling efficiency as a function of wavelength uncalibrated.

The visible light spectrometer is based on a diffraction grating (Ibsen PCG-1908/675-972) im-

aged by an objective lens (Olympus UPLFLN4x) onto the NüVü HNü 512 IS EMCCD camera. See

Appendix H for more details. The wavelength-pixel correspondence is calibrated by monochro-

mating supercontinuum (NKT Origami, Thorlabs HN1550) with the infrared monochromator, and

converting this light through AFC. The AFC pump is amplitude-modulated to a narrow band-

width, thus also effectively monochromated. The monochromated supercontinuum wavelength-

to-angle is calibrated with an optical spectrum analyzer (Ando AQ6317B). An EM gain of 3000 is
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used on the camera.

The SPAD and camera are triggered by the Amplitude Satsuma laser, with an appropriate time

delay (IDQuantique ID900).

Coincidence detection

In the infrared, the beam out of the DOPA is split with a broadband beamsplitter and achromatic

waveplate (Thorlabs UFBS50502, AHWP10M-1600). The two beam paths are coupled into two

SPADs (IDQuantique ID Qube NIR Gated) using fixed collimators (Thorlabs F260APC-1550). The

SPADs are set to the nominal 15% QE. The fiber coupling efficiency is approximately 85%. Data

acquisition and triggering is configured with an IDQuantique ID900 time controller. This includes

feedback for enforcing a global dead time after either of the SPADs fired, and reducing the trig-

gering rate to 2 MHz (maximum SPAD response rate) when using the 80 MHz Spectra-Physics

Tsunami Ti:S.

The coincidence detection of visible light is performed with the NüVü EMCCD camera. The

diffraction grating is replaced with a Wollaston prism (Thorlabs WP10-A) rotated to achieve 50:50

in the two output beams, at around 45°. The beams are focused with a 30 mm lens (Thorlabs

AC254-030-A-ML). The camera is configured to detect in two separate regions of interest (opposite

corners of the CCD). The signal from these two 16×16 pixel regions are integrated to obtain the

overall power. An EM gain of 500 is used on the camera, which is used in analog mode.

The SPADs and camera are triggered by the Amplitude Satsuma 1033 nm laser, with an appro-

priate time delay (IDQuantique ID900).
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Refer to Appendix C for a theoretical motivation for these experiment.

Temporal pulse shaper

Light diffracted by a transmission grating (Ibsen Photonics PCG-1765-808-981) is focused by a

150 mm cylindrical lens (Thorlabs LJ1629L2-B) onto an spatial light modulator (SLM; Meadowlark

P1920-0600-1300-PCIe). A vertically-oriented blazed grating is written on the SLM (orthogonal

to the direction that frequency components are dispersed). The SLM is oriented such that the

light reflected in the 1st order travels back through the cylindrical lens and grating, following the

same path except for a slight downward angle, such that backward-traveling beam is separated

by a pick-off mirror. The spatial phases (vertical translations) of the blazed grating along the

wavelength axis impart spectral phases to the pulses. Amplitude modulation is also possible by

reducing the grating amplitude at a given wavelength, thereby reducing the diffraction efficiency.

The pixel-column-to-wavelength calibration is performed by writing narrow Gaussian-shaped

amplitude modulation patterns along the wavelength axis of the SLM. The beam is then measured

with an optical spectrum analyzer (Ando AQ6317B) to determine the transmitted wavelength.

The distance between the three optics is optimized by rounding the ellipticity in the beam

shape, as viewed on a camera, and minimizing the pulse duration, measured with an autocor-

relator (APE Pulsecheck). The orientations of the SLM, grating, and input mirrors are tuned to

eliminate the spatial chirp after the initial alignment. The spatial chirp as a function of the trans-

verse directions of the beam is measured by translating the end of a multimode fiber connected to

an optical spectrum analyzer (Ando AQ6317B).

The pulse shaper is about 60% efficient without any phase modulations. Phase modulations
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can reduce the efficiency if the features are smaller than the imaging resolution of one wavelength

onto the SLM.

This pulse shaper is based on the design in Ref. [85].

EMCCD camera operation

The NüVü HNü EMCCD camera is water-cooled by a thermo-electric chiller (Solid State TCube

Edge), and the camera operates with a CCD temperature of -60°C, cooled by the built-in TEC. The

camera is mounted on one rotation and two linear stages (Newport RS65; Thorlabs PT1A). One

linear stage is used to center the camera with respect to the beam. The other two are actuated

by motorized micrometers (Thorlabs Z812B; Newport TRA25CC), in order to align the camera to

the objective’s focal plane, such that the entire spectrum is in focus when used as a spectrometer.

These two degrees of freedom are optimized by minimizing the point spread function of two

different wavelengths, alternating until convergence.

The laser repetition rate of the Satsuma is chosen to match the maximum frame-rate of the cam-

era (under a given experimental configuration), and the camera is triggered by the laser (IDQuan-

tique ID900 is used to adjust the delay). The blanking and exposure times are generally set to

0.1 ms, as these values do not adversely affect the frame-rates within the experimental configura-

tions reported.

The camera digital readout (“pixel value”, p) is converted to photo-electrons, ⟨ne⟩, by subtract-

ing the bias b and dividing by the total gain. The latter is comprised of the electron multiplication

(EM) gain and the analog-to-digital conversion factor k (here 21.43 photoelectrons per pixel unit).

Hence ⟨ne⟩ = kp/g − b. Bias subtraction is calibrated per pixel where possible, as these exhibited
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small variations. See Appendix B for an explanation of the measurements performed with an EM-

CCD.

See Appendix F for photographs. Fig. 1.6 shows a experimental diagram of the experiment.
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Figure 1.6: Simplified experimental diagram. EDFA: erbium doped fiber amplifier. WG: waveg-
uide. NLF: nonlinear fiber. CW: continuous wave.

A Photon statistics in multimode Gaussian quantum optics

The aim of this section is to provide a working knowledge of the physics of multimode Gaussian

quantum optics, especially as it relates to our experiments. We provide an explanation of the
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underlying theory in our preferred formalism, show how to apply the nonlinear optics equations,

and how to predict the supermodes and squeezing values. Finally, we describe the photon number

properties of Gaussian states.

We refer to as “Gaussian” the class of states that are fully described by the first two moments

of its field operators, or, equivalently, whose phase space distribution is a Gaussian. These states

are the most typical in experimental quantum optics (this is a consequence of weak optical nonlin-

earities and the large – classical – driving fields that are required to achieve them). Furthermore,

while multimode or multivariable quantum-mechanical states have generally exponentially large

representations, Gaussian states have efficient phase-space representations. This makes working

with large multimode Gaussian states tractable.

The bosonic covariance matrix

To fully characterize a zero-mean Gaussian state, we must know the squeezing, the thermal noise,

the loss and the correlations between all modes; all this information is encoded in the covariance

matrix. In typical convention [86, 87]:

σ =
1

2

〈{
ξ̂, ξ̂†

}〉
−
〈
ξ̂
〉〈

ξ̂†
〉
, ξ̂⊺ =

[
â1, . . . , âM , â

†
1, . . . , â

†
M

]
, (1.1)

where â†i and âi are the bosonic creation and annihilation operators for some mode i, defined

in the usual manner. σ is Hermitian and, for later convenience, we can write it in terms of the

submatrices:

σ =



V + IM/2 U

U∗ V ⊺ + IM/2


 (1.2)

such that V is Hermitian and U is symmetric; IM is the M ×M identity. As we shall see, V ∼

⟨â†i âj + h.c.⟩ contains the information pertaining to the state’s classical properties and thermal
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correlations, andU ∼ ⟨â†i â
†
j+h.c.⟩ encodes the entanglement and higher-order-correlation physics.

Note that it is more common in the quantum optics and information literature to see the

quadrature covariance matrix, which use the real-valued canonical variables x̂ ∝ â + â† and

p̂ ∝ â − â†. The quadrature basis has the advantage of being a real-valued symplectic space.

However, the â-basis is a more natural convention for photon-number properties of the field.

Overall, the Gaussian states defined by σ have 2M2 free parameters (real numbers), plus an

additional M local phase degree of freedom that may be ignored, as they have no effect on the

photon number statistics.

Constructing and decomposing the covariance matrix

Here we summarize some of the body of work pertaining to the matrix representations of multi-

mode Gaussian systems. For more depth, see Refs. [13, 70, 71, 86–89].

In this formalism, the space of Gaussian states is closed under Gaussian operations, some of

which are represented as linear transformations. We call the transformation a Green’s function if it

represents the outcome of a process described by a linear differential equation. In a discrete basis

of â-operators, any lossless Gaussian operation can be represented as:

âout = Câin + Sâ†in (1.3)

ξ̂out =

(
C S

S∗ C∗

)
ξ̂in = Gξ̂in (1.4)

or in a continuous basis parametrized by ω:

âout =

∫
C(ω, ω′)âin(ω

′) + S(ω, ω′)âin(ω
′)†dω′. (1.5)
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S may only be nonzero only if there is squeezing (if the Hamiltonian contains an â†â† + c.c. term).

In our experiment, specifically, we are interested in the Green’s function of the OPA process, a

combination of parametric amplification and dispersion described by the differential equation:

dâ

dz
(∆ω) = iD(∆ω)â+ iA(z,∆ω) ∗ â† (1.6)

where D represents the dispersion (phase matching, group velocity difference, and higher order

dispersion), and the coupling termA represents the classical pump field, convolved with the quan-

tum field. This equation is the same as you would find in classical nonlinear optics, but with the

operator â replacing the classical field term. Classically, we could interpret this as the expectation

value of the field operator and its evolution; quantum mechanically, we should think of this as the

evolution of C, S that act on the operator. In our experiment, we expect S to be predominantly

anti-diagonal due to energy conservation, and C to depend on the phase-matching function.

Such a Green’s function can be decomposed by the Bloch–Messiah decomposition, which in-

forms us of how much squeezing there is and over what modes. To take advantage of standard

computational methods, this is performed in the quadrature basis of x̂, p̂ (denote this Green’s func-

tion byG′). This matrix decomposition returns canonically conjugate squeezed and anti-squeezed

“supermodes.” Concretely: 1

G′ = OoutΣO
⊺
in (1.7)

Σ = 1
2diag({si}Mi=1, {s−1

i }Mi=1) =
1
2diag({eri}Mi=1, {e−ri}Mi=1) (1.8)

where si are the symplectic eigenvalues, related to the squeezing parameters ri, and orthogonal

matricesO contain the “input” and “output” symplectic eigenvectors or supermodes, which come

in pairs (squeezed and anti-squeezed). The input supermodes are not important if the initial

1Note: this assumes the convention x̂ = â† + â and p̂ = i(â† − â).
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state is vacuum, as the squeezed vacuum only depends on the output supermodes. Intuitively,

Bloch–Messiah may be thought of as a singular value decomposition that preserves commutation

relations. These bases diagonalize the Green’s function into single mode squeezing operations.

Fig. A.7 illustrates the process. Each si represents an independent squeezed mode, and a source of

photons with ⟨n⟩ = sinh2 ri distributed over the modeOout,i, or from a quantum noise perspective,

a 20 log10 si dB noise reduction in the modeOout,i. A change of basis from x̂, p̂ back to â transforms

the orthogonal matrices into unitary, and the diagonal matrix into a matrix where the quadrants

are diagonal:

σ =

(
diag({cosh ri}Mi=1) diag({sinh ri}Mi=1)

diag({sinh ri}Mi=1) diag({cosh ri}Mi=1)

)
. (1.9)

With vacuum input, a covariance matrix can be generated as follows:

σij =
1
2{Gikξ̂k, Gjkξ̂k} ⇒ σ = 1

2GG
†. (1.10)

Additional operations can be similarly applied to the covariance matrix:

σ → GσG†. (1.11)

Note that vacuum σ = I2M/2.

As previously mentioned, (going back to the x̂, p̂ basis) the input supermodes cancel out in the

vacuum case:

1
2G

′G′⊺ = 1
2OoutΣO

⊺
inOinΣO

⊺
out =

1
2OoutΣ

2O⊺
out (1.12)

and we see that the Bloch–Messiah decomposition is also valid on the the covariance matrix, al-

though one must account for squared diagonal matrix (however, we note that the Williamson

decomposition must be used when the state is not pure: in the case of loss, thermal noise, or if the

state has been partially traced out).
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Input Basis Output BasisParametric
Amplification

Vacuum
Input:

Quadrature Noise Distribution Squeezing

Phase-Dependent Amplification

Bright
Input:

a

b

Figure A.7: Parametric amplification and the Bloch–Messiah decomposition. The Bloch–
Messiah decomposition reduces the parametric amplification to a phase-dependent amplification
of an orthogonal set of modes. Each input mode is transformed to an output mode during this
process: these modes are generally not the equal due to other effects in the OPA that may alter
the signal (e.g. dispersion). a. In the case of vacuum input, squeezed vacuum is generated in each
output mode independently. b. In the case of bright input, a signal may be decomposed into input
modes, mapped to output modes, and each component is (de)amplified depending on the phase.

We can observe that:

σ = 1
2GG

† =
1

2

(
SS† + CC† CS⊺ + SC⊺

C∗S† + S∗C† S∗S⊺ + C∗C⊺

)

=

(
SS† + I/2 (CS⊺ + SC⊺)/2

(C∗S† + S∗C†)/2 S∗S⊺ + I/2

)
=

(
V + I/2 U

U∗ V ⊺ + I/2

)
. (1.13)

Note that for the U quadrants to be nonzero, a squeezing operation must be involved through a

nonzero S. No unitary C applied to any thermal state can populate U . On the other hand, the

squeezing contributes to “thermal” components V , as it adds photons to the field, thus increasing
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the photon-number variance.

The formalism introduced so far – where all the operations are unitary or symplectic and pre-

serve commutation relations – cannot account for losses or inefficiencies that must be considered

during the frequency conversion and detection steps of our experiment. In both cases, the state oc-

cupies unobserved modes, that are traced out. Tracing out modes in a covariance matrix is simply

equivalent to removing the corresponding rows and columns, in other words, taking a principal

submatrix that omits the traced out modes. For example, this is used to derive the action of a

lump loss or noise on a covariance matrix (modeled as passing through a fictitious beamsplitter

and tracing out the second port):

σ → √
ηη⊺ ◦ σ + (1− η) ◦ ν ◦ I (1.14)

where η is the transmission, ν = n̄ + 1/2 represents any thermal noise added (1/2 for vacuum).

Both are vectors in the general case. The ◦ operator is the element-wise or Hadamard product.

We now use these results to describe the physics relevant to our experiment: we convert the

infrared squeezed light to visible, but do not detect the remaining infrared light. For notational

simplicity let ξ̂ = [
⇀̂
avis,

⇀̂
a†vis,

⇀̂
air,

⇀̂
a†ir]. The initial state is:

σtot(z = 0) =

(
σvis σvis,ir

σ†vis,ir σir

)
=

(
I2M/2 0

0 σir(0)

)
. (1.15)

The AFC (over crystal length L) acts as a unitary on the entire state:

σtot(z = L) =

(
Gvis,vis Gvis,ir

Gir,vis Gir,ir

)(
I2M/2 0

0 σir

)(
Gvis,vis Gvis,ir

Gir,vis Gir,ir

)†

. (1.16)

Expanding and tracing out the infrared modes we obtain the covariance matrix of the observed

visible modes:

σvis(L) = Gvis,irσir(0)G
†
vis,ir +Gvis,visG

†
vis,vis/2. (1.17)
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As the conversion tends to unity, Gvis,ir becomes unitary and Gvis,vis vanishes.

The sum frequency generation equations that yield the Green’s function in this case are:

dâvis

dz
(∆ω) = iDvis(z,∆ω)âvis + iA(z,∆ω) ∗ âir

dâir

dz
(∆ω) = iDir(z,∆ω)âir + iA∗(z,∆ω) ∗ âvis

(1.18)

where, again, A is the pump field and D is the dispersion, which is notably a function of z, due to

aperiodic poling.

Photon number properties of zero-mean Gaussian states

For convenience, in the context of photon number statistics, we can make the covariance matrix

symmetric and complex-valued, by defining the transformation X , as first introduced in [16]:

σ′ = σ − I2M/2, Xσ′ =

(
U V ⊺

V U∗

)
,

X =

(
0 IM

IM 0

)
.

(1.19)

σ′ defined in this manner is useful, because we can use it to find any of the following photon

number expectation values:

〈∏

i

n̂mi
i

〉
=

〈∏

i

(
â†i âi

)mi

〉
= Haf(Xσ′⇀

m
),

⇀
m ∈ {0, 1}M . (1.20)

using the conventional definition of the Hafnian (Haf). σ′⇀
m

indicates the principal submatrix with

indices given by ⇀
m. Suffice to say, the Hafnian function is central to the (Gaussian or perturbative)

multimode physics of bosons, since it can be thought of as an implementation of Wick’s theorem

for Gaussian integrals; for zero-mean Gaussian variables xij :

⟨xi1 . . . xi2m⟩ =
∑

P
⟨xk1xk2⟩ . . . ⟨xk2m−1xk2m⟩ (1.21)
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where the sum is over all pairings P – all possible ways to group the i-indices into m pairs of

k-indices – hence the Hafnian, a function defined for this very purpose [2]. And of course the

operators âi are jointly Gaussian (in their quasi-probability distributions).

The general case with ⇀
m ∈ NM is more complicated, as it requires more careful consideration

of operator ordering. Indeed, we were being hasty: â is not a random variable, it is an operator.

However, Wick’s theorem tells us that this was allowed as long as the state and operator have

compatible representations. For example, one way to “treat our operators as though random

variables” is by converting our expression to Weyl ordering (denoted by :. . .:W ). This requires a

prescribed order of â’s and â†’s, and once we have this expression, we may move the operators

within without incurring a commutation relation, e.g. :â†â:W = :ââ†:W . The correct procedure is

to expand out the operator expression into Weyl-ordered expressions, and replace each one with

the corresponding Hafnian, i.e.:

⟨n̂m1
1 n̂m2

2 . . .⟩ = ⟨(â†1â1)m1(â†2â2)
m2 . . .⟩

=
∑

orderings

corder⟨:â†1
morder1

â
morder2
1 . . .:W ⟩

=
∑

orderings

corder


 ∑

P(order)

∏

(k1,k2)

⟨:âk1 âk2 :W ⟩




=
∑

orderings

corderHaf(Xσm̄order).

(1.22)

It is well known how to relate normal (operator expressions where all the â† precede the â, de-

noted by :. . .:) and Weyl forms [87, 90], in our case:

:â†
m
âm: =

m∑

k=0

k!

(
m

k

)2(
−1

2

)k

:â†
m−k

âm−k:W (1.23)

and all modes are treated separately. Additionally, the normal form of (â†â)m can be obtained

by repeatedly applying commutation relations. This can be generalized to a sum represented by
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Stirling numbers S [91]:

(â†â)m =
m∑

i=1

S(m, i)â†
i
âi. (1.24)

In the case of ⇀
m ∈ {0, 1}M , as above, â†â = :â†â:W −1/2, and we can subtract the constant di-

rectly from the covariance matrix as we did for σ′ (σ is conventionally defined as above, with the

anticommutator, such that it is conveniently in Weyl form). 2 Similarly, for the second order case,

⟨n̂2⟩ = ⟨(â†â)2⟩ = ⟨:â†2â2 + â†â:⟩ = ⟨:â†2â2 − â†â:W ⟩ ⇒ Haf(Xσ(2))− Haf(Xσ). (1.25)

In this example we use σ(2) to denote a larger covariance matrix where we repeat the rows and

columns of σ for this mode.

These equations involving Hafnians will look familiar to the reader familiar with the recent

Gaussian Boson Sampling literature. Indeed, for multimode Gaussian states, calculating the prob-

abilities is largely the dual of calculating the expectation values. The photon number distribution

is essentially a generalized Bose–Einstein distribution that incorporates modes, interference and

entanglement. To quote the result proven in [15, 16], the probability of a given measurement,

⇀
n ∈ NM , has the form:

P (
⇀
n) =

1
⇀
n!|σ + I2M/2|1/2

Haf (XA⇀
n)

A = I2M − (σ + I2M/2)
−1,

⇀
n! =

∏
ini!

(1.26)

where the Hafnian’s argument refers to the principal submatrix with indices given by ⇀
n. To gain

some intuition, one may notice the Bose–Einstein resemblance via σii = ⟨â†i âi+h.c.⟩/2 = ⟨ni⟩+1/2,

so (σ + I/2)ii = ⟨ni⟩+ 1, thus in some limiting cases:

|σ + I/2|−1/2 → 1

⟨n⟩+ 1
, I − (σ + I/2)−1 → ⟨n⟩

⟨n⟩+ 1
(1.27)

2Note, however, that because in this case n̂1 = â†â is already normal ordered, we end up
implicitly converting σ to normal ordering by subtracting I/2 (i.e. σ′ii = ⟨:â†i âi:⟩ = ⟨â†i âi⟩ from
σii = ⟨:â†i âi:W ⟩ = ⟨{â†i , âi}⟩).
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More precisely, the Bose–Einstein distribution, which is simply geometric, can be thought of as

stemming from the recurrence relation:

PBE(n) = PBE(n− 1)a = PBE(0)a
n =

1

⟨n⟩+ 1

( ⟨n⟩
⟨n⟩+ 1

)n

(1.28)

while this general version follows the similar, yet more complex, Hafnian (Wick’s theorem) recur-

sive property:

∀i s.t. ni > 0, P (n1, . . . , nM ) =
P (0, . . . , 0)

⇀
n!

2N∑

j=1
j ̸=i

aijHaf(XA⇀
n−{i,j}), N =

∑

i

⇀
ni (1.29)

where the notation A⇀
n−{i,j} denotes the subtraction of rows and columns i, j from the matrix A⇀

n

(note e.g. with j = i+N , Haf(A⇀
n−{ij}) ∝ P (n1, . . . , ni − 1, . . . , nM ), aij = P (0, . . . , ni = 1, . . . , 0)).

From the quantum computing and complexity theory perspective, the Hafnian is of interest as

it belongs to #P, a class of classically intractable functions [4, 16, 17].

A brief sketch of a derivation of the probabilities is as follows; it is perhaps a bit more cumber-

some than using phase space formalism (which abstracts away the use of operators and orders)

but it is hopefully more transparent. We use the normal form, as this allows us to use a conve-

nient representation of the photon-number Fock state projection operator: the vacuum projection

is known to be

|0⟩⟨0| = :exp(−â†â): (1.30)

(see, for example, [92] Eqns. 17–19 for a short proof), and it follows that [87]:

|⇀n⟩⟨⇀n| = |n1, . . . , nm⟩⟨n1, . . . , nm| =
∏

i

(â†i )
ni |0⟩⟨0|

∏

i

âni
i /ni! = :

M∏

i=1

exp(−â†i âi)

(
â†i âi

)ni

ni!
:

P (
⇀
n) = ⟨|⇀n⟩⟨⇀n|⟩ = 1

⇀
n!

〈
:

M∏

i=1

exp(−â†i âi)
(
â†i âi

)ni

:

〉
=

〈
:

M∏

i=1

e−n̂i n̂ni
i

ni!
:

〉
.

(1.31)

Since the operator is normal-ordered, we must also use the normal-ordered covariance matrix,

which is σ′ as defined above (since, e.g. for the first matrix quadrant, σ′ij = ⟨:â†i âj :⟩ = ⟨â†i âj⟩ =
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⟨{â†i , âj}⟩ − δij = ⟨:â†i âj :W ⟩ − δij = σij − δij). Lastly, notice that we can set

|0⟩⟨0| = :exp
(
−1

2 ξ̂
†
ξ̂
)
: (1.32)

so that the notation is compatible with that of the state’s covariance matrix.

Hence, the problem is reduced once more to calculus; multivariate Gaussian integrals. We first

find P (0), and the rest of the probabilities follow from Wick’s theorem, with a modified covariance

matrix due to the above |0⟩⟨0| Gaussian. The former can be solved with the usual tricks. Let

Z ∼ N (
⇀

0, I) be a vector of standard normal random variables. By affine transformation, we can

transform it to a vector of arbitrary jointly Gaussian variables: σ′1/2Z + µ. Since we are only

interested in the case of zero displacement, let the means µ = 0. We thus simplify our calculation

by computing the expectation over the multivariate standard normal distribution:

〈
exp

(
−1

2(σ
′1/2Z)†σ′1/2Z

)〉
= (2π)−M

∫

R2M

dZ exp
(
−1

2Z
†(σ′ + I)Z

)
= |σ′ + I|−1/2. (1.33)

This is the zero-photon probability. We note that σ′ + I = σ + I/2 corresponds to the anti-normal

covariance matrix (all the â precede the â†).

Finally, we can include monomial terms in the integral to calculate other probabilities, using

Wick’s theorem once more, after solving for the effective covariance matrix, A – since the distribu-

tion and operator Gaussians combine:

exp
(
−1

2Z
†Z − 1

2Z
†σ′−1Z

)
= exp

(
−1

2Z
†A−1Z

)
. (1.34)
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A can be found by invoking the matrix inversion lemma:

A−1 = σ′−1 + I

A = (σ′−1 + I)−1

= I − σ′−1(σ−1 + I)−1

= I − (σ′ + I)−1,

(1.35)

as per convention. We have not been completely rigorous, however, since σ′ may not be invertible

(if, in a diagonal basis, sigma has some ⟨:â†i âi:⟩ = 0, 3 in which case the Gaussian tends towards

a delta function); hence, besides for the last line, the above equalities may not be strictly valid.

Nonetheless, the moments exist, which is what we need for the moment expansion in Wick’s

theorem.

Photon number expectation values

We can solve for some lower order photon number moments in terms of σ’s elements. To elimi-

nate local phase degrees of freedom, we set all diagonal Uii terms to be real and positive. Here,

wherever relevant, we have i < j < k (switching order requires taking complex conjugates of

3The field can never be a pure vacuum at finite temperature, although for all intents and pur-
poses it is at optical frequencies, since the photon energy ℏω ≫ kBT (the Boltzmann constant
temperature product) at room temperature.
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some terms and can therefore introduce inconsistencies).

⟨ni⟩ = Haf(Xσ′i) = Vii

⟨ninj⟩ = Haf(Xσ′ij) = |Uij |2 + |Vij |2 + ⟨ni⟩⟨nj⟩

⟨n2i ⟩ = Haf(Xσii)− Haf(Xσi) = |Uii|2 + 2⟨ni⟩2 + ⟨ni⟩

⟨ninjnk⟩ = Haf(Xσ′ijk)

= ⟨ni⟩⟨njnk⟩+ ⟨nj⟩⟨nink⟩+ ⟨nk⟩⟨ninj⟩ − 2⟨ni⟩⟨nj⟩⟨nk⟩

+ 2R
(
U∗
ij(VikUjk + VjkUik) + Vij(U

∗
ikUjk + V ∗

ikVjk)
)

⟨n2inj⟩ = Haf(X(σiij − 1
2δjj)− Haf(X(σij − 1

2δjj))

= ⟨ninj⟩(4⟨ni⟩+ 1) + ⟨nj⟩(|Uii|2 − 2⟨ni⟩2) + 2Uii(U
∗
ijVij + UijV

∗
ij)

⟨nin2j ⟩ = Haf(X(σijj − 1
2δii)− Haf(X(σij − 1

2δii))

= ⟨ninj⟩(4⟨nj⟩+ 1) + ⟨ni⟩(|Ujj |2 − 2⟨nj⟩2) + 2Ujj(UijVij + U∗
ijV

∗
ij)

⟨n2in2j ⟩ = Haf(Xσiijj) + Haf(Xσij)− Haf(Xσiij)− Haf(Xσijj)

= ⟨n2inj⟩(4⟨nj⟩+ 1) + ⟨nin2j ⟩(4⟨ni⟩+ 1)− ⟨ninj⟩(4⟨ni⟩+ 1)(4⟨nj⟩+ 1)

+ 4(⟨ninj⟩ − ⟨ni⟩⟨nj⟩)2 + (2⟨ni⟩2 − |Uii|2)(2⟨nj⟩2 − |Ujj |2)

+ 2UiiUjj(V
2
ij + U2

ij + V ∗
ij
2 + U∗

ij
2) + 8|Uij |2|Vij |2.

(1.36)

A few important observations. The equations for the statistics can be separated into a trivial

component (composed of lower order statistics) and an interference term, due to complex-valued

U and V terms. If the U terms are zero, there are no nontrivial higher order correlations: every-

thing can be described by second- or first-order statistics. Hence why thermal states do not have

interesting higher order correlations.

Relatedly, where U = 0, there are a vast number of states that have the same photon number
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distribution, as there is no information beyond photon number mean and covariance. Measure-

ments carry no information about the underlying supermodes.

The value of Uii ∈ [0, ⟨ni⟩(⟨ni⟩ + 1)], and the two extremes correspond to two-mode and

single-mode squeezing respectively. States that have intermediate values can be thought of as

a multimode generalization of these two concepts, where the value of Uii represents the locality

of the entanglement. When Uii = 0, certain higher order correlations also lose interference terms.

Therefore, measurements of two-mode squeezed vacuum also lack certain information about the

underlying state.

Finally, for a state with sufficient information encoded in U , the inverse problem of retrieving

the state and modes from observations is possible, within some limitations. This is within the

realm of possibility and future experiments should seek to achieve this.

Returning to the experiment, the photon covariance matrix in Fig. 1.3b (and the simulation in

Fig. 1.2a) consists of contributions from both the V (diagonal) and U (anti-diagonal) components.

B EMCCD camera statistics

The electron-multiplying (EM) gain process used in EMCCD cameras is what makes these instru-

ments highly sensitive: by magnifying the charge of a few photoelectrons to macroscopic levels,

the camera is capable of detecting single photons. However, the nature of the gain process is

stochastic, which introduces noise. Here we introduce the model for the gain process, and discuss

how it influences the measurements we are interested in.

60



Photon statistics after EM gain

The EM gain process adds a high amount of noise, which typically precludes the possibility of

resolving the exact photon numbers in EMCCD cameras. When n photons are captured as photo-

electrons on the CCD sensor and amplified with EM gain g, the conditional probability of yielding

x amplified electrons follows a gamma (Erlang) distribution [74]:

P (x;n) =
xn−1 exp(−x/g)
gn(n− 1)!

. (1.37)

To estimate the statistics of the EM gain output x, let Pn be the photon-number distribution in-

cident on a pixel. We are first able to calculate the conditional moments of x with respect to n,

use these to calculate (unconditional) moments of x, and finally calculate the photon number mo-

ments:

⟨xk⟩n =

∫ ∞

0
xkP (x;n)dx = gk

(n+ k − 1)!

(n− 1)!
,

⟨xk⟩ =
∑

n≥0

Pn⟨xk⟩n,

g−k⟨xk⟩ =
∑

n≥0

Pn

k−1∏

i=0

n+ i =

〈
k−1∏

i=0

n+ i

〉
.

(1.38)

This can be extended to correlations between multiple variables, e.g.:

⟨xki xlj⟩ =
∑

ni,nj≥0

Pninj ⟨xki ⟩ni⟨xlj⟩nj = gk+l

〈(
k−1∏

m=0

ni +m

)(
l−1∏

m=0

nj +m

)〉
. (1.39)
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We may then solve for the photon number moments by inverting the above equations. Hence we

can write down the formulae for our photon statistics of interest (omitting the gain term g):

⟨n⟩ = ⟨x⟩

⟨ninj⟩ = ⟨xixj⟩

⟨ninjnk⟩ = ⟨xixjxk⟩

⟨n2⟩ = ⟨x2⟩ − ⟨x⟩

⟨n2inj⟩ = ⟨x2ixj⟩ − ⟨xixj⟩

⟨n2in2j ⟩ = ⟨x2ix2j ⟩ − ⟨x2ixj⟩ − ⟨xix2j ⟩+ ⟨xixj⟩.

(1.40)

Finally, the electronic stages between the EM gain process and a digitized pixel value will

introduce additional noise, such as readout noise. However this noise is independent of the signal

x, hence it does not affect the above our ability to estimate the photon number.
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Figure A.8: Electron multiplying gain model and thresholding. a. The probability distribution of
an amplified signal for a given number of photoelectrons, prior to additional noise. We model this
with the Erlang distribution. The signal x is measured in electrons (e−) divided by the gain g (the
expected value of this is the original number of photelectrons). b. The probability distribution
of the signal with Gaussian readout noise. Although the two probability distributions begin to
overlap, in this example, thresholding can be used to distinguish between 0 and 1 (or more) pho-
tons with some degree confidence, incurring a tradeoff between the photon-detection efficiency
and false count rate. The readout noise has standard deviation σ. The inset shows the analytical
(ideal) ROC curve for this example.
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Thresholded operation

As discussed above, the electronic signal x, ensuing an EM process with a gain of g, follows a

random distribution parametrized by the number of photons captured n – this is shown in Fig. A.8.

Due to the stochastic nature of the EM gain process, it is impossible to resolve the original number

of photoelectrons n on the CCD sensor from the number of amplified electrons x. However, if

there are no photons absorbed by the CCD sensor during the detection window, there is no signal

(no electrons) to amplify in the gain process. Hence, there is no excess noise from the EM process,

and the variance of the output signal depends solely on the readout noise σ. With a high EM gain,

the effective readout noise, σ ≪ 1 e−, we can set a threshold on the output signal to discriminate

between the absence or presence of photoelectrons with a high degree of confidence.

We evaluate the EMCCD camera in the single-photon detection mode using a threshold to de-

tect the absence or presence of a photon. The threshold value will determine the photon-detection

efficiency (PDE) and the false click rate. In general, a lower threshold increases the effective PDE

but increases the false click rate, and vice versa. See Fig. A.8b. By varying the threshold value,

we obtain a receiver operating characteristic (ROC) curve to characterize the performance of the

photon counter (Fig. A.8b inset). The ROC curve quantifies the trade-off in the effective quantum

efficiency and dark count rate. In practice, we obtain the false click rate as a function of the thresh-

old by obtaining dark frames – images from the sensor with no illumination – and count how

many times a given threshold is exceeded. We obtain the PDE by determining the readout noise

from this data, and computing the PDE through the model by comparing g and e, multiplied by

the quantum efficiency (QE) of the CCD sensor.

63



C Coincidence detection

In this section we explain how coincidence detection may be used as a tool to distinguish between

different pulsed photonic states, as well as measure the purity of the state.

Derivation

50:50

Figure A.9: Toy model for the coincidence detection experiment.

Consider a beam of squeezed light incident on a balanced beamsplitter, which is followed by

two detectors on each side of the output (Fig. A.9). The first arm of the beamsplitter, with operator

â1, has some ⟨n̂⟩ and Var(n̂) = 2⟨n̂⟩(⟨n̂⟩ + 1), in the lossless case (η = 1). The second input port,

with operator â2 has vacuum input.

The third and fourth ports, defined by operators â3, â4, have ⟨n̂3⟩ = ⟨n̂4⟩ = ⟨n̂⟩/2. Evaluating

their statistics:

⟨n̂3n̂4⟩ =
〈
â†3â3â

†
4â4

〉

=
1

4

〈
(â1 + â2)

†(â1 + â2)(â1 − â2)
†(â1 − â2)

〉

=
1

4

〈
n̂21 − â2â

†
2n̂1

〉
(1.41)

⇒ 1

4

(〈
n̂21
〉
− ⟨n̂1⟩

)
, η = 1 (1.42)
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We can now compute the covariance of the number measurements on each detector.

Cov(n̂3, n̂4) = ⟨n̂3n̂4⟩ − ⟨n̂3⟩⟨n̂4⟩

=
1

4

(〈
n̂21
〉
− ⟨n̂1⟩

)
− 1

4
⟨n̂1⟩2

=
1

4
(Var(n̂1)− ⟨n̂1⟩) (1.43)

⇒ 1

4
⟨n̂⟩(2⟨n̂⟩+ 1⟩), η = 1 (1.44)

Note that for coherent states, with Var(n̂) = ⟨n̂⟩, and for thermal states, with Var(n̂) = ⟨n̂⟩(⟨n̂⟩+

1), the covariances are 0 and ⟨n̂⟩2/4, respectively. Similarly, Fock states with Var(n̂) = 0, have neg-

ative covariance; this is the well-known anti-bunching behavior. These different scaling behaviors

allow us to experimentally distinguish these different photonic states.

To account for loss, we introduce a fictitious unbalanced beamsplitter operation such that

⟨n′1⟩ = η⟨n1⟩:

Var(n̂′1) =

〈(√
ηâ1 +

√
1− ηâ0

)† (√
ηâ1 +

√
1− ηâ0

)

(√
ηâ1 +

√
1− ηâ0

)† (√
ηâ1 +

√
1− ηâ0

)〉
− η2⟨n̂1⟩2

= η2
〈
n̂21
〉
+ η(1− η)⟨n̂1⟩ − η2⟨n1⟩2

= η2Var(n̂1) + η(1− η)⟨n̂1⟩

(1.45)

So the covariance will simply change by a factor η2:

Cov(n̂3, n̂4) =
1

4

(
Var(n̂′1)− ⟨n̂′1⟩

)

=
η2

4
(Var(n̂1)− ⟨n̂1⟩) (1.46)

⇒ η2

4

(
2⟨n̂1⟩2 + ⟨n̂1⟩

)
(1.47)

If we consider the case of asymmetric loss, it can be shown that the transmission efficiency can
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be replaced by the individual efficiencies of the left and right arms, η2 → ηLηR.

Finally, in the multimode case, the total covariance is simply the sum of the covariances of all

the individual modes (as a consequence of mode independence/commutation). Therefore, a lossy

multimode squeezed state has:

Cov(n̂3, n̂4) =
∑

i

ηLiηRi

4
(Var(n̂i)− ⟨n̂i⟩) (1.48)

⇒
∑

i

ηLiηRi

4

(
2⟨n̂i⟩2 + ⟨n̂i⟩

)
(1.49)

In the case where all modes have ⟨n̂i⟩ ≪ 1, the covariance is a linear function of the photon

number

Cov(n̂3, n̂4) ≈
∑

i

ηLiηRi

4
⟨n̂i⟩ (1.50)

Notably, the slope is determined by the overall transmission efficiency, η/2 (assuming a constant

transmission), since the average number of photons per detector is

⟨N⟩ =
∑

i

ηi
2
⟨n̂i⟩ (1.51)

Therefore, in addition to being a test for squeezing, this experiment may also serve as a measure-

ment of loss.

To measure loss at slightly larger photon numbers, a quadratic fit may be used:

Cov(n̂3, n̂4) ≈
η

2
⟨N⟩+ η

2
C⟨N⟩2, C ≈

∑

i

(
ηi⟨ni⟩
⟨N⟩

)2

(1.52)

so long as ⟨ni⟩/⟨N⟩ ≈ const. In other words, the photon numbers in the state must scale linearly.

This requires that the squeezed modes remain in the region where ⟨n⟩ = sinh2 ri ≈ r2i . Once again,

the transmission is given by the linear coefficient.
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Threshold detection

Finally, we must consider the case of threshold detectors, where the detector only provides “clicks,”

if it registers any number of photons. This reduces the two observables to Bernoulli variables.

While the total number of photons ⟨N⟩ ≪ 1, the physics remains the same. However, the covari-

ance of Bernoulli variables is bound by a parabola, therefore the photon covariance will behave as

such:

Cov(n3, n4) = ⟨n3n4⟩ − ⟨n3⟩⟨n4⟩

= P (n3 = 1|n4 = 1)P (n4 = 1)

− (P (n3 = 1|n4 = 1)P (n4 = 1) + P (n3 = 1|n4 = 0)P (n4 = 0)) ⟨n4⟩

= (P (n3 = 1|n4 = 1) + P (n3 = 1|n4 = 0)) (1− ⟨n4⟩)⟨n4⟩

(1.53)

where we expect the probabilities to be constant in the many mode, ⟨n̂i⟩ ≪ 1, scenario, where

coincidences are predominantly due to biphotons.

This explains the parabolic curvature in the measurements in Fig. 1.2e.

Predicting coincidence experiment outcomes with wavelength-dependent detector quan-

tum efficiency

The above treatment of coincidence detection assumes a uniform quantum efficiency. However, in

our infrared-wavelength experiment, we have that ηLi, ηRi → ηLi(λ), ηRi(λ). This thermalizes the

state further than uniform loss. Because the QE cutoff is 1700 nm, any photon above this wave-

length will never be detected, it is traced out and its sister photon therefore effectively becomes a

thermal photon. In addition, the spectrum measured in experiment is far broader than in simu-

lation. Therefore, while it is straightforward to derive the covariance expected for a given QE for
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the simulated state, the simulation is not representative of experiment in this case.

To account for this, we derive a simple model to estimate the photon number vs covariance

scaling we expect in the experiment (Fig. 1.2e), using the spectrum measured experimentally. In

addition, we use the specified detector quantum efficiency.

Assume that the number of modes M ≫ ⟨N⟩, the total number of photons, and therefore

the probability of any given mode yielding photon pairs, Pm ≪ 1, where m indexes the mode.

We truncate the wavefunction of each mode in the photon number basis, as per the biphoton

approximation:

|ψ⟩m ≈
√
1− Pm|0⟩m +

√
Pm|2⟩m +O(Pm) (1.54)

Furthermore assume that the probability of producing more than two photons per event is negli-

gible. Then we can define the probability Pm that detected photons arise from any given mode:

⟨N⟩ = 2
∑

m

Pm

∑

m

Pm = 1 ⇒ Pm =
2

⟨N⟩PM

(1.55)

The covariance is a sum over all covariances, which depend on the coincidence of two photons

on the two different detectors:

Cov(n̂3, n̂4) =
∑

m

Covm(n̂3, n̂4) ≈
∑

m

1

2
PmηLηRQE(ωm,1)QE(ωm,2) +O(P 2

m)

=
∑

m

⟨N⟩PmηLηRQE(ωm,1)QE(ωm,2) +O(P 2
m)

(1.56)

By switching to the continuous frequency basis and parametrizing by ∆ω about the central wave-

length ω0, we can obtain the expression:

Cov(n̂3, n̂4) ≈ ⟨N⟩η2
∫ ∆ωmax

0
d∆ωP(∆ω)QE(ω0 −∆ω)QE(ω0 +∆ω)

= ⟨N⟩η2
∫ λmin

λ0

dλ

λ2

[
P(λ)QE(λ)QE

(
2

λ0
− 1

λ

)]/∫ λmin

λ0

dλ

λ2
P(λ)

(1.57)
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where P(λ) is now the spectral density (corresponding to Fig. 1.2c in the experiment). As ex-

pected, the covariance is linear in ⟨N⟩.

For simplicity, it is assumed above that the biphotons are perfectly correlated in frequency,

which for a finite bandwidth pump and finite number of supermodes is not physically correct, but

a reasonable approximation for a narrow phase-matching bandwidth (with respect to dQE/dω).

D Multimode AFC

The aim of this section is to provide some theoretical background and insight into the adiabatic

frequency conversion process. Mainly, we are interested in the frequency linear transformations

realized by the AFC.

The Landau–Zener grid problem

Figure A.10: Multistate Landau–Zener grid in AFC. The diagonal lines give the diabatic states.
There is some probability of a transition when these coupled states cross.

AFC is often modeled as a two-level system, to which the Landau–Zener formula applies.

Energy and time in the canonical system correspond to momentum and space in this nonlinear-

optical analog: instead of the energy separation of the states varying with time, the wavenumber
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difference between the two frequencies varies with propagation distance.

However, when there are many frequency components at play, the equations for broadband

AFC can be generalized to a bipartite system of modes:

d

dz

(
aω

bω

)
= i

(
Daω + β0z K(Aω)

K(Aω)
† Dbω − β0z

)(
aω

bω

)
(1.58)

where, in the rotating frame, 2β0 is the rate of change in the quasi-phase matching (QPM) wavenum-

ber (e.g. such that the central wavelengths are phase matched at z = 0), the matrices D =

diag(∆β1∆ω + 1
2β2∆ω

2 + 1
6β3∆ω

3 + . . .) represent the dispersion, and K(Aω) represents the cou-

pling between modes. K(Aω) is the pump convolution matrix, i.e. Toeplitz matrix of the pump

spectrum A. States in a couple to states in b through the pump A, but there is no intra-band

coupling (unless unrelated nonlinear-optical processes such as cross-phase modulation come into

play).

This kind of bipartite system is sometimes referred to as the Landau–Zener grid, due to the

system’s graphical representation, shown in Fig. A.10. This general problem is mostly unsolved

[93–98], but the concept is straightforward: each level crossing has some transition probability,

and the state can effectively perform a random walk, where amplitudes through different paths

may interfere [99, 100]. Only certain scattering probabilities, or special cases of the system, have

been solved analytically.

The following is an explanation of Fig. A.10. The horizontal axis represents the propagation

distance, and the vertical axis the momentum. The diagonal lines, the diabatic states, represent

frequency modes. When two lines cross they are phase-matched (equal momentum) and it is

possible to have conversion between the modes. The entire process is coherent, hence paths may

interfere. This is why applying a phase profile to the pump results in different transformations.
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Linear transformations on bipartite systems

Consider a bipartite system of discrete modes – without loss of generality: frequency (e.g. a comb)

– such as the one illustrated above in Fig. A.10. An infinite number of modes, and a constant

spacing in D – no higher order dispersion – will result in translational invariance in frequency:

that is, any shift in the input frequencies would result in the same trajectory and a shifted, but

otherwise identical, output. Therefore, up to finite size effects due to a finite length in z, this

symmetry implies that the linear transformations must be Toeplitz.

However, dispersion – uneven spacing between modes represented by D – can break that

symmetry. With appropriately different spacings, the diabatic levels of the modes will cross at

unique points along z, so in principle each crossing may be addressed individually. This could

potentially allow arbitrary transformations, if we extend the model to allow A to not be fixed, but

a function of propagation, A(z). Slowly changing D – as a function of z – may also help to achieve

this.

In the context of ultrafast AFC the pump is fixed: once it is prepared and released, it can-

not be changed as it propagates. This limits the control over the dynamics, which impacts the

programmability. Nonetheless, dispersion at the pump wavelengths will impart relative spectral

phases, and self-phase modulation may occur, hence A may still be as a function of z, even if it is

not controllable.
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Programming the AFC pump to alter the transformation

In order to alter the AFC dynamics and produce a variety of linear transformations, we are able to

perform intensity and phase modulations. We can represent the shaped pump as:

A(ω) = A0(ω)
√
µ(ω)eiϕ(ω), (1.59)

where A0(ω) is the original pump spectrum, 0 ≤ µ(ω) ≤ 1 is the spectral intensity modulation,

and ϕ(ω) is the phase modulation. With a discrete representation, control of µ(ω) and ϕ(ω) allows

us to modify the Toeplitz coupling matrix as follows:

K(Aω) =




. . .
...

...
· · · Aj Aj−1 · · ·
· · · Aj+1 Aj · · ·

...
...

. . .
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. (1.60)

E Spectrometer POVM and spectral discretization

A natural question for our experiment is how to reconcile the fact that we have a continuous

basis (frequency), but a discrete set of measurement modes: the spectrometer pixels. Indeed, it is

common practice in theory and numerics to discretize fields in the manner:

âi =
1

ωi − ωi−1

∫ ωi

ωi−1

â(ω)dω (1.61)

for sufficiently small intervals such that the outcome converges. However, the experimental im-

plications of this procedure are less obvious, especially if the intervals happen to be too large with

respect to the spectral features. The correct procedure is to consider the field in the continuous

limit and classically accumulate the statistics or probabilities. This coarse-binning effect can there-

fore be an effective source of decoherence. The discrete case is recovered in the limit where the

field properties are constant within the bins.
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Additionally, the point spread function when imaging one wavelength onto the pixelated de-

tector must be much smaller than one pixel. This “pixel-arrival” error is otherwise a source of

additional decoherence from a classical process.

F Photographs of the Experiment

Photographs of notable parts of the experiment are shown in Fig. A.11. Important components

are labeled and the beam paths are shown as colored overlays. The apparatus is described in the

Methods. Fig. A.11a shows the pulse shaper, made up of a diffraction grating and spatial light

modulator; b shows the DOPA waveguide and surrounding optics; c shows the AFC crystal; d

shows the spectrometer, composed of a diffraction grating and EMCCD camera; e shows the LBO

crystals used to generate 775 nm pulses from the 1033 nm source; f shows the characterization

setups of 1550 nm squeezed light, separated by flip mirrors, including the parametric gain (“to

power meter”), the coincidence detection (“to SPAD”), and the monochromator, also used with the

supercontinuum source; g shows the DOPA and AFC in succession, the two central components

of the setup.

G Adiabatic frequency conversion design and operation

AFC Design

Fig. A.12a shows the AFC poling period design. The poling spatial frequency is varied linearly

throughout the length of the crystal. As a result, the propagating light experiences a linearly

changing phase mismatch (detuning), which allows rapid adiabatic passage. The front and back
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a.

b. c. d.

e. f. g.

Figure A.11: Photographs of the Experiment. The beam paths are overlaid. Beam color to wave-
length legend: 1550 1033 775 620 516 nm. a. Pulse shaper. b. DOPA. c. AFC. d. Spectrometer.
e. 775 nm pump generation. f. Monochromation and coincidence detection. g. DOPA and AFC
path.
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Figure A.12: AFC design. a. Crystal domain poling; the spatial frequency and domain length are
plotted against position throughout the crystal. b. Spatial frequency distribution of the AFC crys-
tal. This is compared to the quasi-phase matching frequencies of desired and undesired nonlinear
processes.

of the crystal sweep through poling periods more rapidly, with a tanh profile, to provide the

frequencies which convert at the front and back with some propagation distance with detuning.

The domain lengths are quantized to multiples of 0.025 µm.

Engineering the poling period is a matter of finding the instantaneous phase ϕ(z) for a given

varying spatial frequency ∆k(z), and quantizing the sinusoid of the phase into domains χ(z) :

[0, L] → {−1,+1}:

χ(z) = sign(sin(ϕ(z))),
dϕ

dz
= ∆k(z) (1.62)

in our case, for example, we need some linear ∆k(z) ∈ [βi, βf ], hence we use:

∆k(z) = βi +
(βf − βi)

L
z, χ(z) = sign

(
sin

(
βiz +

(βf − βi)

2L
z2
))

(1.63)

The straightforward implementation of this experiment would use the same wavelength to

pump both the DOPA and the AFC. Unfortunately, a quick analysis will reveal that the poling

spatial frequencies required to quasi-phase match (QPM) the SFG process overlap with those of

undesirable nonlinear processes, in both LN and KTP (the two best ferroelectric χ(2) materials
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Figure A.13: AFC input-output transformation. We measure the intensity (phase-averaged) trans-
formation imparted by the AFC for a given pump, with classical light input. a. The visible output
transformation matrix of the AFC for single-wavelength inputs. The individual output measure-
ments are normalized. b. The same measurement while also pumping the DOPA (unnormalized).
The squeezed vacuum light constitutes the constant background spectrum. c. Spectrum of the
supercontinuum source used as an input, prior to monochromation.

with domain poling). Specifically, we would expect phase-matched second harmonic generation,

which would be highly detrimental to the experiment: the pump could lose a majority of its energy

to the second harmonic, possibly also causing damage to the crystal. This problem is avoided by

using the two different pump wavelengths, 775 nm and 1033 nm. Fig. A.12b shows the spatial

frequencies of the AFC poling in relation to possible parasitic processes.

To model the dispersion in KTP we used the z-axis Sellmeier and temperature-dependence

equations from Refs. [101, 102].

As an independent verification that the AFC works correctly, we measure the classical, fre-

quency, intensity input-output relation of the AFC (phase-averaged Green’s function), as shown
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in Fig. A.13a. Monochromated supercontinuum is sent through the AFC, and the resulting visible

spectrum measured on the camera. (As described in the Methods section, this also serves as a cali-

bration procedure for the camera pixel-to-wavelength correspondence, by amplitude-modulating

the 1033 nm laser to monochromate it.) Fig. A.13b shows the transformation with the inclusion of

the DOPA.

Influence of pump shape on frequency conversion

Fig. A.13a shows the (phase-insensitive) experimental measurement of a linear transformation

performed by AFC, where the pump is a simple chirped pulse. Observe that a slice of this trans-

formation function (i.e. for a given input; a column of the matrix) resembles a simple Gaussian:

the pump spectrum. Indeed, in this regime, to good approximation, the pump intensity profile

directly determines the magnitude of the transformation function.

Fig. A.14 demonstrates this effect: by intensity-modulating the pump spectrum (with a fixed

phase), for a fixed monochromatic input, we observe that the output signal closely matches the

pump profile. However, by virtue of reducing the overall pump energy, the efficiency is affected.

In addition, a shift in the input signal ostensibly produces an the same, but shifted, output signal.

While the pump imparts its intensity to the magnitude, the spectral phase of the pump deter-

mines the phase in the transformation, which is why we observe that pump phase modulation can

generate non-trivial differences in the squeezed-light covariance matrices, in Fig. 1.4.

Fig. A.15 shows the simulated conversion process for a broadband signal. The conversion pro-

cess under an unshaped pump converts fairly uniformly, while the process under a shaped pump

is influenced by interference effects, strongly altering the shape of the output. Fig. A.16 shows a
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Figure A.14: Programming the unitary transformation by programming the pump shape: the
effect of the pump spectrum shape on the transformation. Example of how the pump spectrum
affects the frequency conversion profile and linear transformation. a. The converted signal spec-
tral profiles, under unmodulated and modulated pumps. b. The pump spectra for a, unmodulated
and under intensity modulation. The conversion profile of the signal closely matches the pump
spectrum. c. The converted signal spectral profiles, unmodulated and modulated, with three dif-
ferent wavelength inputs. The measured signal intensities are essentially translated in frequency.
d. The modulated and unmodulated pump spectra for c. A random intensity modulation pattern
is applied. λin indicates a monochromatic, infrared input light, and λout indicates the wavelengths
measured by the spectrometer.
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Figure A.15: Example conversion dynamics in AFC. The left panel represents the input modes
centered around 1550 nm, the center panel represents the converted modes centered around
620 nm, and the right panel represents the pump profile used in the simulation. Top: conversion
of a single broadband input with an unshaped pump. Bottom: conversion of a single broadband
input with an shaped pump. The conversion yields a non-uniform spectrum in the converted
wavelength due to interference effects.

series of experimentally-obtained photon spectral correlation matrices as the phase modulation of

the AFC pump is gradually varied.

Fluorescence in KTP

We have noticed that the 1033 nm pumped KTP crystal generates a spectrum centered around

600 nm. This has been previously observed (see [103] and citing articles; [104]). This fluorescence

behavior is likely due to the absorption of green 517 nm second-harmonic light by crystal defects.

The green light is generated parasitically in the crystal.
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Figure A.16: Photon spectral correlations while varying the AFC pump phase modulation. The
top panels are photon number correlation plots, where i is the state generated by AFC with
a chirped pulse, vi with the shaped pulse in Fig. 1.4iv, and the panels in between are with
intermediately-spaced phase modulations of the AFC pump. These six panels show the evolu-
tion of the correlation structure as the phase profile varies. The corresponding temporal profiles
of the pumps, estimated based on the spectral phase modulations, are shown in the bottom pan-
els. In contrast to Fig. 1.4, the diagonal portion of the correlation matrix has not been subtracted.

80



580 600 620 640 660

Wavelength [nm]

0.0

0.1

0.2

0.3

0.4

〈n
〉P

ho
to

ns
/P

ix
el

a Old crystal
New crystal

0 20 40 60 80

Expected Photoelectrons

10−4

10−3

10−2

10−1

Fr
eq

ue
nc

y

b Dark
Fluorescence

0 10 20 30

Counts

10−3

10−2

10−1

Fr
eq

ue
nc

y

c Dark
Fluorescence

Figure A.17: KTP fluorescence. a. Spectrum of the fluorescence background emanating from
KTP. The old crystal (regularly exposed to a high fluence of green light) emits a distinct spec-
trum around 600 nm. Fluorescence from the new crystal is low and almost indistinguishable from
camera noise. b. Cumulative analog signal with dark frames and fluorescence background. c.
Thresholded counts with dark frames and fluorescence background. Experiments b-c were per-
formed with 5×512 pixels.

We also observe that the fluorescing appears to worsen with crystal use. The fluorescence in

a new crystal is practically undetectable, but becomes gradually brighter as it is subjected to high

peak-power green light.

Ref. [103] reported that different growth methods can suppress this behavior in KTP, however,

a different material may have to be considered for future experiments, as this is a problem inherent

to KTP.

Fig. A.17a shows the fluorescence spectrum for a strongly fluorescing crystal, which had been

subjected to a high fluence of green light over time through use as an AFC crystal (compare to

Fig. 1.3a). Below this curve is the background measured in the experiments in Fig. 1.5, performed

with a relatively new crystal. Fig. A.17b and c compare the fluorescence signal accumulated by

the camera, in analog and thresholded mode respectively. For comparison, dark frames are plot-

ted together (camera shutter closed). On average, fluorescence and background light account for

fewer than 10 additional photons per shot.
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Dark counts can be reduced by using fewer rows of pixels, at the cost of pseudo-photon num-

ber resolving (if thresholding). This experiment used 5 rows of pixels (see Fig. 1.5c).

H Spectrometer design and validation

Design

In order to verify the correlation structure between frequency modes generated by our quantum

light source, we design a spectrometer that has a uniformly high spectral resolution and low loss

around λ0 = 620 nm, the central wavelength. Here we outline the design considerations to achieve

the desired spectral resolution.

The number of frequency modes we can resolve is ultimately limited by the number of pixels

in each row of the EMCCD camera. We choose an EMCCD camera with a sensor size of 512 by

512, instead of a larger one (e.g., 1024 by 1024), because the better signal-to-noise ratio that would

likely preserve more information on our light source (see below for considerations in the choice of

camera). The spectrometer is designed for a 60 nm bandwidth (a spectrum between 590 nm and

650 nm). The ideal spectral bin width in each EMCCD pixel is thus ∆λ = 60/512 ≈ 0.12 nm. The

design of the optics must satisfy the following two conditions to provide this resolution:

1. The spatial resolution of the lens must be finer than the pixel size of the EMCCD camera,

which is xp = 16 µm. The focal length of the objective lens we chose (Olympus UPLFLN4x) is

45 mm. To match the focal spot size (1/e2 diameter) to the pixel size, the 1/e2 beam diameter

at the back aperture of the objective lens should be at least 2fλ0/(πxp/2)) = 2 × 45 mm ×

620 nm/(π× 8 µm) ≈ 2.22 mm, which is smaller than the back aperture diameter (11.7 mm).
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2. The angular resolution of the grating must exceed ∆λ, which requires the beam to cover at

least λ0/∆λ = 620 nm/0.12 nm ≈ 5300 grating lines. Since the grating (Ibsen PCG-1908/675-

972) has a line density of 1908 lines per mm, this means the minimum 1/e2 diameter of the

beam on the grating should be at least (5300 lines)/(1908 lines/mm) ≈ 2.8 mm. The grating

has an area of 20 mm × 10 mm, sufficiently large for a beam of this size.

In conclusion, to achieve both high spatial and spectral resolution, the beam size must be at

least 2.8 mm, which is well within the clear aperture size of the grating and objective lens. The

target beam size was designed to be approximately 8 mm, and the actual beam size was slightly

smaller than that.

To maximally preserve the quantum properties of the light, all the optics, including routing

mirrors, grating, and focusing lens, should have uniformly low loss around 620 nm. The over-

all quantum efficiency of the spectrometer, including the EMCCD camera quantum efficiency, is

measured to be around 75% at 633 nm.

Imaging resolution

As mentioned in the Discussion, there are imperfections with the detection setup. As may be seen

in Fig. 1.3a, we do not make full use of the number of pixels: between 10–20% of the spectrometer

measures wavelengths outside the target bandwidth. Ideally, customized optics would allow the

focal length of the objective lens to match the range of the diffraction angles from the grating to

the width of the sensor. As is, the number of detection modes and squeezed modes are close, a

possible cause of decoherence.

83



580590600610620630640650660
Wavelength [nm]

8

9

10

11

12

σ
[µ

m
]

0 100 200 300 400 500

Column

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Fo
ca

lS
po

tσ
[p

ix
el

s]

Target Spectrum

Figure A.18: Focal spot size throughout the image plane. Results of a Gaussian fit to the intensity
spread at every column; the standard deviation σ is plotted. The intensity drops outside the target
spectrum region, hence the sharp transitions in the fits.

Relatedly, the monochromatic focus should be well sub-pixel (16 µm), however, in this exper-

iment we achieved a focus spot with standard deviation σ ≈ 0.6 pixels (Gaussian fit) – on the

order of the size of a pixel. We believe the spatial mode quality of the beam is reduced when it

is converted, reducing the tightness of the focus. This is also a cause of decoherence because it

becomes more difficult to measure the frequency of each photon, and correlations become blurred

(Appendix E).

The focal spot size of the spectrometer is shown in Fig. A.18, throughout the wavelength axis

(columns) of the camera. The average intensity distribution along the 5 vertical pixels of each

column is fit to a Gaussian. The point spread function is a radially symmetric Gaussian in these

experiments. It is fairly constant over the image plane (where illuminated), but higher than ex-

pected.
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Figure A.19: Camera performance. a. ROC curves for different cameras and operational modes.
EMG, EM gain; H, horizontal line rate; V, vertical line rate; FKM, fast kinetic mode.

Evaluation of EMCCD camera settings

In order to quantify the performance of the different configurations of the EMCCD camera, we

consider their ROC curves. As discussed in Appendix B, these represent the trade-off between

the photon-detection efficiency (PDE) and the dark count rate: true positive and false positive

probabilities. These are shown in Fig. A.19.

I Squeezing with the Ti:Sapphire pump laser

1200 1400 1600 1800

Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

P
ho

to
n

D
en

si
ty

[a
.u

.]

a

Simulation
with QE(λ)

0.0 0.2 0.4 0.6 0.8

Average Clicks 1
2〈N1 +N2〉

0.0

0.5

1.0

1.5

2.0

C
ov

ar
ia

nc
e(
N

1
,N

2
)

×10−3b

Predicted
Squeezed States

Figure A.20: Squeezing with the 100 fs Ti:S. (See Fig. 1.2c and e for comparison.) a. Measured
and simulated squeezed light spectrum. b. Coincidence detection.
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Figure A.21: Simulated parametric gain with the 200 fs pump. (See Fig. 1.2d for comparison.)

Fig. 1.2d shows the parametric gain measured with the DOPA pumped by the 775 nm, 100 fs,

Ti:S laser, while the other plots in Fig. 1.2 are measured with pumping from the 775 nm converted

from the 200 fs, 1033 nm laser. Due to the larger bandwidth of the Ti:S pulses, the DOPA output is

slightly different in both cases. Here we show the two other experiments from Fig. 1.2 performed

with the Ti:S, for comparison. These results are shown in Fig. A.20.

Similarly, the simulations of the parametric gain we would expect for the 200 fs pump of the

DOPA are shown in Fig. A.21. These correspond to the simulated spectrum in Fig.1.2c.

J Comparison to previously published multimode squeezing systems

Table A.1 lists previously published results of experiments demonstrating multimode squeezing,

in particular the number of modes and detected photons, where applicable. A subset of these

figures of merit are plotted in Fig. A.22. (As we only include references which use some form of

squeezed light, this excludes experiments using single-photon emitters.)
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Table A.1: Published results in multimode squeezing.

Ref. Domain # Squeezed
Modes

# Photon
Detection

Modes

Average
Total # of
Detected
Photons

ReprogrammabilityNotes

[37] Frequency 15 - - Fixed 4 dB squeezing
[105] Space 4 4 3 Fixed Post-selected
[106] Space 2 6 3 Fixed Post-selected
[107] Space 4 4 4 Fixed Post-selected
[108] Time 10,000 - - Fixed 6 dB squeezing
[38] Frequency 60 - - Fixed 3.4 dB squeezing
[109] Space 4 9 3 Fixed Post-selected
[110] Space 4 13 4 Fixed
[111] Space 4 6 6 Programmable Post-selected
[39] Frequency 9 - - Fixed
[26] Frequency 10 - - Fixed
[112] NA 2 2 80 NA Single two-mode

squeezer
[113] Time 1,200,000 - - Fixed 4.3 dB squeezing
[33] Frequency 6 - - Fixed 6.6 dB squeezing
[114] Space 24 24 5 Fixed
[115] Space 6 12 5 Fixed
[116] Space 4 16 4 Fixed
[117] Time 1,000 - - Partial 1-dimensional

connectivity; 5 dB
squeezing

[118] Time &
Space

24,960 - - Fixed >4.5 db squeezing

[119] Time &
Space

30,000 - - Fixed 4.7 db squeezing

[18] Space 50 100 43 Fixed
[40] Time 61 - - Fixed
[35] Frequency 40 - - Fixed 3.1 dB squeezing
[30] Frequency 2 - - Fixed
[120] Space 8 8 11 Programmable Bipartite connec-

tivity
[19] Space 50 144 70 Fixed Programmable

phases
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[121] Time 10 20 6 Partial 1-dimensional
connectivity

[21] Time 216 216 125 Programmable 3-dimensional
connectivity

[20] Space 50 144 100 Partial Programmable
phases

[34] Frequency 20 - - Fixed 2.5 dB squeezing
[122] Time 32 32 1 Programmable Full connectivity
[123] Space 32 32 2 Programmable

This
work

Frequency 433 512 680 Partial 500 photons
thresholding

100 101 102

Number of Squeezed Modes

100

101

102

A
ve

ra
ge

N
um

be
ro

fD
et

ec
te

d
P

ho
to

ns

[30], [35][31]

[32],
[45], [36]

[37]

[40]

[44] [43]

[49]

[53]

[54]

[55]

[56][57]

[59]

[60]

Space
Time
Frequency
This work

Figure A.22: Published results in multimode squeezing. Graphical representation of the experi-
ments collected in Table A.1 in which single-photon detection (as opposed to homodyne detection)
was performed. The plot axes represent the number of modes that are initially squeezed (before
the application of a unitary, if applicable) and the average total number of photons detected (over
all modes).

K Prospects for quantum advantage

Discussion on improvements to the experiment

Here we expand the discussion on the limitations of our experiment and potential improvements.

As previously mentioned in the Discussion, there are currently limitations to our source, (the

combination of our generator of multimode squeezed light, followed by the AFC, which performs
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a unitary). The class of unitaries we could experimentally realize were limited to fairly local con-

nectivity (approximately to 10% of the nearest frequency modes): hence we could programmably

entangle each mode to at most ∼20% of the rest (Fig. 1.4b-c). Ideally we would like to be able to

realize unitaries with all-to-all connectivity. This may be possible with broader AFC pump band-

widths and higher pump intensities (as shown in simulations presented in Appendix K). In addi-

tion, although we have shown control of the joint spectral probability distributions of the state, we

currently lack a prescription for what pattern we should program on the pulse shaper for the AFC

pump pulse to realize a specific unitary. In principle, this is achievable if our experimental setup

were to have a sufficiently fast means to characterize the realized unitary, allowing us to optimize

the pulse-shape patterns to realize a given unitary. This can be resolved in the future by building

a different characterization setup, for example involving two in-phase, fast-wavelength-sweeping

continuous-wave lasers: this would allows to perform fast, phase-sensitive measurements of our

source.

There are also imperfections with the detection setup, as discussed in Appendix H. Most im-

portantly, the frequency binning is suboptimal, which may be a cause of decoherence. As men-

tioned in the Discussion this could be resolved by: waveguided AFC, to avoid spatio-temporal

effects that can prevent diffraction-limited spectrometer resolution; using custom imaging optics

to optimize the resolution; and switching to a discrete frequency-bin basis rather than a continu-

ous basis.

A disadvantage of using an EMCCD camera instead of, for example, an array of superconduct-

ing nanowire single-photon detectors for measurement is speed: the camera’s frame rate of 800 Hz

is slow. However, the EMCCD camera we used has a linerate of 2 MHz (up to 3.33 MHz with

higher noise), which is in principle the relevant speed when only using a single row (or few rows)
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of pixels, as is the case for our measurements. However, there is currently a practical bottleneck

to reading out the data, which is limited to line readouts at up to 15.7 kHz on our camera model.

Several modern EMCCD cameras, including ours, allow reading out bursts of frames (or regions

of whole frames, including lines) at up to MHz rates for short time windows; this could allow

fast detection for a limited number of shots in the future. Finally, the photon-number sampling

we demonstrated used threshold detection or pseudo-photon-number-resolving measurements;

ideally, future implementations could be capable of true photon-number-resolving measurements

up to high photon numbers per mode (e.g., using ultra-low-noise CMOS cameras [57, 58]).

Influence of pump bandwidth on frequency conversion and entanglement structure

As previously explained in Appendix D, the pump spectrum defines the coupling matrix between

the bipartite set of frequency modes. Specifically, the bandwidth determines the range of output

signal frequency modes that one input frequency mode may be converted to. The pump band-

width is relatively narrow in our experimental realization – compared to the signal bandwidth –

which limited the connectivity within the state’s entanglement structure. However, this is only

a practical constraint, and a broader bandwidth pump, which can be achieved through spectral

broadening methods, can realize far more complex states.

Fig. A.23a shows, in simulation, the influence of the pump bandwidth (Fig. A.23b) on the

state’s covariance matrix, for the same temporal intensity profile (Fig. A.23c). The bandwidth

directly influences the connectivity. The supermode conversion profile (Fig. A.23d, with reference

to Fig. 1.2a), however, becomes less sharp, due to the wider phase matching. The AFC phase-

matching bandwidth would have to be redesigned appropriately for different pump bandwidths

to mitigate this effect.
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Figure A.23: Effect of pump bandwidth on the covariance matrix. These simulations show the
AFC driven with pumps of different bandwidths. The chirp is inversely proportional to the band-
width such that the intensity envelope is the same. The ×1 indicates the bandwidth for a 200 fs
1033 nm pulse, and larger multiples indicate pulses with proportional larger bandwidths. a. The
covariance matrices. b. Corresponding pump spectra. c. Corresponding pump temporal pulse
profiles, chirped appropriately in order to maintain the same profile throughout. d. Conversion
efficiency for the major supermodes (see Fig. 1.2).

Validation of photon-counting cameras for quantum advantage

Boson sampling is an intermediate model of linear optical quantum computation [4]. Realizing bo-

son sampling with a level of post-classical computational complexity requires high performance

quantum light sources: a large-scale, low-loss photonic circuit; and high-efficiency single-photon

detectors – all of which are essential building blocks for universal quantum computation using

photons. Gaussian boson sampling (GBS), a variation on this protocol, exploits squeezed vacuum

states as input non-classical light sources. For GBS, two main strategies for classical simulation

exist. The first uses the non-negativity of quasi-probability distributions (QPD) (generalizations
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Figure A.24: Camera performance vs simulability bound. EMG, EM gain; H, horizontal line rate;
V, vertical line rate. b. Comparison to the variance distance assuming an overall transmission of
η = 40% and squeezing parameter r = 1.

of the Wigner function) as a strategy for simulation. The second uses the fact that in GBS, the

marginal distributions of photon numbers (i.e., the probabilities to observe some subset of detec-

tion events irrespective of the others) are informative about the complete probability distribution.

For the QPD based simulations, an inequality exists that that demarcates the “regime of simu-

lability.” Thus, any finite-sized experiment must pass this inequality to show that it is not simula-

ble by this strategy. The inequality is given in Ref. [124]:

sech
{
1

2
Θ

[
ln

(
1− 2pD/ηD
ηe−2r + 1− η

)]}
> e−ϵ2/4K , (1.64)

where r is the squeezing parameters, η is the overall photon transmission rate, K is the number

of squeezed sources, ϵ is the total variance distance of the experimental GBS samples compared

to the ideal cases, Θ is the Heaviside function, η is the transmission, ηD is the photon detector

efficiency and pD is the dark count rate.

In order to quantify the simulability of the experiment with different photon-counting cam-

eras, we consider the bound for total variance distance ϵ as a function of the parameters deter-

mined by the cameras: photon detector efficiency (ηD) and dark count rate (pD) (as discussed in
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Appendix B). We estimate the total optical transmission rate to be η ≈ 40%. In Fig. A.24 we then

compare these (ηD, pD)-plane trajectories to the left-hand side of the above simulability criterion

equation. We consider two EMCCD cameras: the NüVü HNü 512 IS and the Andor iXon Ultra

888.
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CHAPTER 2

SPECTRO-TEMPORAL OPERATIONS FOR QUANTUM OPTICS USING FREQUENCY

CONVERSION: UNITARY GATES, SQUEEZING AND TRAPS

This work was done together with Ryotatsu Yanagimoto and Peter L. McMahon.

OPA AFC
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OPA
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Single mode OPA

Trapped-mode OPA

=
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Spectrotemporal
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Broadband
Frequency

Beamsplitter

Squeezing of Hybridized Mode
with Single Mode Output

Figure 2.1: Frequency conversion for frequency-domain quantum-optical state engineering.
Adiabatic frequency conversion (AFC) can be used to efficiently manipulate the frequency
degrees-of-freedom of states. AFC enables broadband unitary transformations in the frequency
domain, and, combined with optical parametric amplification (OPA), can be used to engineer
single-mode squeezing and spectro-temporal state traps. a. AFC as a unitary for quantum modes.
Consider an OPA, which prepares two-mode squeezed vacuum: it can be followed by an AFC
process, acting as a broadband frequency beamsplitter, to output two independent single mode
squeezed states. b. Simultaneous OPA and AFC for single-mode squeezing. We may wish to
improve the previous process, for example by converting back and forth between the modes as
we perform OPA, to symmetrize the two-mode process for greater fidelity. Because frequency
generation and OPA share the same eigenstates, it turns out that not only is it possible to perform
the two processes in parallel, continuously; we can engineer the whole process to phase-match
squeezing into a single mode. c. Spectro-temporal mode trapping. Single-mode squeezing can be
further improved by introducing a potential, or trap, which imposes a set of discrete modes. As
we will show, a spectro-temporal trap can be achieved in a combined frequency generation-OPA
system by pump shaping.

Single mode squeezing without numerous higher order modes is challenging in optics. This is
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due to the requirements of energy and momentum conservation that govern the parametric ampli-

fication process used for squeezing, and which tend to make the spontaneously down-converted

photons distinguishable. Typically, in a conventional optical parametric amplification (OPA) pro-

cess, the fewest number of squeezed modes that can be prepared at once is two – in a two-mode

squeezed vacuum state. This is known as spectrally separable down-conversion, and the two

modes must be either different polarizations or frequencies. In order to recover two independent

squeezed states, the two modes must be brought together and interfered with a beamsplitter or

equivalent operation.

However, it is well known that this generation of two-mode squeezed states can only preclude

higher-order modes when the squeezing is low. Once the spontaneously emitted photons in the

squeezed states begin to stimulate further emission, the approximations used to derive the nec-

essary conditions for separability break down, and distinguishability creeps in. This implies the

need for squeezing methods with theoretical guarantees of single-modedness.

In this Chapter, we present three general concepts, which build up from each other, and which

can, in principle, be applied to generating single-mode squeezing. All of these methods rely on fre-

quency conversion to control the OPA modes: both during and/or after the amplification process.

The latter involves sum (or difference) frequency generation (SFG) acting as a spectro-temporal

beamsplitter, or unitary operation. The former is a particularly rich concept, which stems from

the fact that sum frequency generation and optical parametric amplification both share the same

eigenstates. This can be seen from the equations of motion, where κ, γ represent the pumping
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strengths:

SFG OPA

a′ = κb a′ = γb∗

b′ = κ∗a b′ = γa∗

(2.1)

Eigenstates: a± b (2.2)

These concepts are presented in Fig. 2.1. The first involves using adiabatic frequency conver-

sion (AFC: a specific method for SFG) to act as a spectro-temporal beamsplitter. The AFC follows

a two-mode OPA and performs a linear transformation on its output. By appropriately designing

the AFC spatial phase-matching profile, the beamsplitting can, in principle, be implemented over

arbitrary bandwidths and can account for time delays. The second, which is a generalization of the

first concept, is to perform SFG and OPA simultaneously, followed by AFC. This generates single

mode squeezing – in a hybridized mode – that finishes in one of the two modes at the end of the

AFC process. The third and most powerful idea involves pulse shaping an SFG process to create a

spectro-temporal trap over two spectral modes. When this is combined with OPA, squeezing can

only occur in the modes of the trap, or effective potential.

The benefit of the frequency-domain approach is that quantum states can be prepared in a

single pass of a single device, namely a dispersion-engineered nonlinear waveguide. This pre-

cludes the need for physical beamsplitters to interfere the quantum light (as required for spatial

or temporal embeddings). The effective beamsplitters arise from the combined effect of the quasi-

phase matching (ferroelectric poling pattern) of the material, and the amplitudes and phases of

the classical pumps. In addition, simultaneous frequency conversion presents us with a method

to control the squeezing modes in an OPA, by way of spectro-temporal traps. Implementing both

spectro-temporal beamsplitters and single-mode traps could be a robust method of generating
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high quality, multimode Gaussian states, without the distinguishability problems that usually

plague these experiments. This could herald a new paradigm for building programmable quan-

tum light sources.

Results

Broadband spectro-temporal operations with adiabatic frequency conversion

g.

f.

e.

c.a.

b. d.
b

a

b a

Before AFC

c
b

a

c b a
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Here we discuss how to use frequency conversion, namely AFC, to perform unitary transfor-

mations. As an illustrative example, we will discuss how to separate a two-mode squeezed state
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Figure 2.2: Unitary transformations with AFC: converting two-mode squeezed vacuum into
pairs of single mode squeezed vacuum. a. Quasi-phase matching adiabatic frequency conver-
sion. Over the length of the crystal L, we sweep the spatial frequency of the poling kQPM, as
illustrated in b. The sweep passes through ∆ka↔c and ∆kb↔c, the phase matching necessary for
conversion between the pair of modes a, c and b, c respectively. These conversions occur at lo-
cations xa↔c, xb↔c along the length of the crystal. Two pump modes A,B couple a, b to c. c.
Eigenvalue diagram of the system. As kQPM changes, the phase matching between the pairs of
modes a, c and b, c changes. We can choose a rotating frame in which c has constant spatial fre-
quency k̃c (eigenvalue), and while a and b rotate with k̃a and k̃b, changing as a function of x.
Coherent conversion occurs as the eigenvalues cross. Hence, the state can be interpreted to travel
along the trajectories, analogously to the spatial beamsplitter and phase-shifter configuration il-
lustrated in d. The magnitudes and relative phases of pumps A,B determine the transmissions
(tA, tB), reflection (rA, rB), and phase (φA, φB). e. Two-mode squeezed state conversion in the
frequency-domain. The initial state is composed two supermodes: an even and an odd superpo-
sition of a, b, which are thus fully entangled. Following the first conversion, the a component of
both supermodes transfer to c. Following the second conversion, by engineering a balanced beam-
splitter interaction and setting an appropriate phase difference between the pumps, one transfers
to b, and the other to c, disentangling the modes into independent squeezed states. f. Modes in
the time-domain. Two-mode squeezing requires that mode a have greater (lesser) group velocity
than b. In order for the frequency components of the states to interact with each other during
conversion they must be coincide in time. We pick c to have the least (greatest) group velocity,
such that b, c return to each other. At xa↔c, b, c will have a separation of ∆T . We scale this delay
by the group velocity difference ∆β1 to find the necessary distance between the two conversion
points ∆x = xb↔c−xa↔c such that b, c overlap during the second conversion. g. Simulated photon
covariance matrices (join spectral intensity) at the input and output; before and after conversion.
This process can, in principle, be made arbitrarily broadband by appropriately tuning the slope
and curvature of kQPM(x).

into two independent squeezed states. This is an enlightening example since it requires compen-

sating for group velocities and time delays. In addition, this is a novel way to design a device

for single pass, single-mode squeezing. The requirements for achieving spectrally separable, two-

mode squeezing are derived in Ref. [125] and summarized in Appendix E. Here we focus specif-

ically on the case where the two modes have equal bandwidths. Two-mode squeezing requires

that – after the OPA process – the two modes are temporally separated and walking off. However,

in order to interfere the pulses, they must be brought back together to overlap in time. We there-
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fore use an ancillary mode to mediate this interference. Having an additional mode allows more

freedom in the choice of OPA signal and pump wavelengths.

Fig. 2.2 illustrates the concepts and the dynamics of the conversion process. Call the three

modes a, b, c. Fig. 2.2a represents the simplest design that can perform the frequency beamsplitting

to mode sort a two-mode squeezed state into two independent states. The quasi-phase matching

kQPM function can be made linear, crossing through the poling period necessary to convert a, c and

b, c, pumped by (quasi-)monochromatic modes A,B, as shown in Fig. 2.2b. Accounting for time

delay is a matter of appropriately spacing the conversion points based on the differences in group

velocity, and is covered in Appendix A. Similarly, the slope of the AFC phase matching can be

designed to compensate for dispersion, which enables broadband beamsplitting: piecewise linear

to compensate for group velocity mismatch, or nonlinear to account for group velocity dispersion.

This is covered in Appendix B.

Fig. 2.2c represents the eigenvalue diagram. The eigenvalues represent the spatial rotation

frequency ∆k of the modes as a function of position x in the crystal (in this case in the rotating

frame of mode c). The speeds of rotation of a, b and c – k̃a, k̃b and k̃c – change values with re-

spect to each other based on the value of kQPM. When the diabatic trajectories cross, any state in

those two modes will undergo avoided crossings and end up in the other mode. The efficiency

of this process depends on the pumping and the kQPM slope, as given by the Landau–Zener for-

mula. Fig. 2.2d gives an analogy in terms of physical beamsplitters, with a given transmission

and reflection values, phase plates imparting a given phase, and distance imparting a given group

delay.

Fig. 2.2e represents how a two-mode squeezed vacuum state would evolve throughout the

AFC process, in the frequency domain. Two-mode squeezed vacuum is made up of a symmetric
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and antisymmetric supermode of the frequencies ωa and ωb. The fastest mode a is converted into

the slowest mode c with (as close as possible to) unit efficiency. The next conversion, between b, c

is driven to 50% conversion efficiency (a balanced beamsplitter), and the phase of pump B must

be calibrated with respect to pump A. Due to the phase difference in the symmetric and antisym-

metric supermodes, one state ends up completely in c and one in b. Fig. 2.2e represents the same

process in the time domain. Modes a, b begin with a separation in time. After mode a converts

to c, mode b catches up, at which point the b, c conversion occurs, which separates the underlying

states. Fig. 2.2g is a simulation of the joint spectral intensity, or photon number covariance, of a

fully entangled, two mode-squeezed state given as the input to AFC. The output, shown below,

demonstrates the off-diagonal correlations moving into the matrix diagonal, indicating indepen-

dence between the states.

Single mode squeezing of hybridized modes

We can generalize the results of the previous section by symmetrizing the OPA process to make it

more robust, as proposed in Ref. [7]. Distinguishability in the OPA process can arise from differ-

ences in the dispersion of its two modes. Ref. [7] proposed squeezing via two passes in an OPA

while swapping the modes in between, and showed improved single-mode performance. We can

extend this idea further and consider multiple passes through an OPA, alternating with mode

swaps (unit-efficiency AFC), as shown in Fig 2.1b. In the limit of many short steps, this amounts

to simultaneous OPA and AFC.

The details are discussed in detail in Appendix C. In summary, we can think of the physics

in the language of perturbation theory: a strong driving field in the SFG process dictates the

eigenmodes of the system. These are the hybridizations of the two frequency modes a, b: a± b. If
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we consider the OPA process as a perturbation, it will act on the eigenmodes of the system, which

happen to be its own. In addition, it will split the eigenvalues of the degenerate a ± b modes, so

that these are parametrically amplified under different quasi-phase matching (QPM) values.

Fig. 2.3 illustrates this process. Fig. 2.3a shows the interplay between the sum frequency gen-

eration and parametric amplification processes. A hypothetical state embedded in the frequencies

of a, i.e. ωa, is brought to an equal superposition of a, b, and therefore spans both ωa, ωb. Given

that these are the two modes of the OPA process, this enables two mode squeezing of the state

with itself, or, more precisely, single-mode squeezing of the dressed state in the hybridized mode.

After this, the state is brought back into a single mode, becoming a bare state once again.

Fig. 2.3b shows the QPM frequency that can implement this combined AFC-OPA process. The
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Figure 2.3: Direct generation of single mode squeezing via AFC-enabled mode hybridization.
a. Frequency mixing of the proposed process. A state in mode a is input into the device. As
the modes hybridize, by reducing the AFC detuning, a becomes an equal superposition of a, b.
The AFC process is stalled at the halfway point, where the SFG process is phase-matched (zero
detuning). A two-mode OPA process between modes a, b is driven simultaneously, and the hy-
bridized a±bmodes may experience parametric gain. The AFC process is then continued, and the
state finishes in b. (When performing vacuum squeezing, the initial frequency conversion, prior
to squeezing, is unnecessary.) b. Diabatic trajectory of the state with respect to AFC detuning ∆k.
The AFC process begins highly detuned (large |∆k|), where a, b are effectively uncoupled. The
detuning is brought to ∆k = 0, where a, b are hybridized and held constant for some length. The
detuning sweep is then continued towards large |∆k|, ending the process with uncoupled modes.
c. Mode splitting in the OPA. The frequency of the hybridized modes deviate somewhat from a, b,
causing a mode splitting between a ± b. The difference in phase-matching kOPA is approximately
proportional to the magnitude of the coupling (pumping) between the modes κ. d. Single-mode
simulation of the hybridization and parametric amplification process, for the first AFC and OPA
regions. Here the process is seeded with energy in mode a. Approximately half the energy is
converted to b prior to the OPA region, at which point the energy oscillates back and forth be-
tween modes. This additional oscillation frequency causes the mode splitting, which has to be
compensated for in the OPA. (For vacuum squeezing, we would run this process backwards.) e.
Simulated covariance matrix of the state. By using AFC in addition to two-mode squeezing, the
final state is localized to one mode.

AFC process is started with a high detuning ∆k, and brought to the SFG QPM frequency, i.e.

∆k = 0. This QPM is then kept constant for some propagation length, and device is QPM’d for

OPA simultaneously. Finally, the AFC process is continued (or reversed) to a large detuning value.

Note that for vacuum squeezing, the initial AFC process is not necessary, since a optical unitary

transformation does not affect the vacuum state.

Fig. 2.3d is a two mode simulation of the initial AFC and simultaneous SFG and OPA processes.

Approximately half the amplitude of a signal initially in mode a is split into mode b. During the

OPA process, the total signal is amplified, and the amplitude partially oscillates between a, b. This

additional periodicity must be accounted for in the OPA QPM frequency, and it is dependent on

the pump power of the AFC pump, as shown in Appendix C. The mode splitting is approximately
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twice the magnitude of the pumping term in Eq. 2.1: ±2κ.

Fig. 2.3d represents the photon covariance matrix of vacuum squeezed in this manner. (a

multimode version of the simulation in Fig. 2.3d, run in the reverse direction). While ostensibly

fairly circularly symmetric, it is not quite single mode due to side lobes and other minor features.

Apodization techniques could be used to improve single-mode behavior, but this is nontrivial,

since the OPA and SFG must be simultaneously phase-matched. It requires that the strength of

the OPA interaction must be varied while keeping the strength of the SFG interaction constant.

In addition, the phase-matching function that arises from mode hybridization is unusual, as it

tends towards a circularly symmetric function in joint frequency space. This is also covered in

Appendix C.

Mode trapping with a shaped pump

Restoring Force:
Pump Amplitude Gradient

(Conversion)

Momentum:
Group Velocity

Figure 2.4: Spectro-temporal mode trapping by frequency conversion. This is achieved by pump
shaping such that the amplitude (envelope) of the pump field A crosses through zero. The combi-
nation of temporal walk-off and frequency conversion between modes a, b results in an effective
potential. With a linear pump amplitude, the system acts as a harmonic oscillator. The group
velocity mismatch acts analogously to the momentum in an oscillator, such that wave-packets in
frequency-modes a, b travel away from the center in opposite directions. The pump amplitude
increases with the distance from the center, which acts as a restoring force, due to the increased
greater back-conversion.
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Until now, we have been considering a quasi-monochromatic pump for the frequency conver-

sion processes enabling beamsplitting and hybridized squeezing. However, shaping the pump

introduces remarkable physics, under the assumption that the group velocity of the pump is be-

tween that of the two signal modes.

In the stationary frame of the pump, the two signal modes a, b will walk-off in opposite di-

rections (temporally). When a pulse is converted from one mode to the other, it will change its

direction. By “bouncing” a pulse back and forth – by converting it each time it walks off by a given

delay in one direction – we create a temporal trap. The end result is that the pump shape defines

an effective potential. A linear pump field crossing zero will like act as a harmonic oscillator. This

is covered in more detail in Appendix D.

This harmonic oscillator mechanism is illustrated in Fig. 2.4a. The group velocities of the

two signal modes, the tendency for the pulses to walk off in one direction, are analogous to the

momentum. The amplitude of the SFG pump field, and hence the strength of the conversion to

the other mode, acts analogously to a restoring force.

Mode trapping might be an avenue to generating strictly single mode squeezing. It would

appear that combining:

1. an SFG pump shape that corresponds to an anharmonic potential that supports only one

mode;

2. and appropriately pumping the OPA process within this potential.
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A Designing the AFC to compensate for time delay

Consider three frequency modes a, b, c. Their group velocity are assumed to be va > vb > vc

(where the group velocity is the inverse of the first-order propagation constant v = β−1
1 ) such that

the pulse in mode a first converts to c, and experiences a time delay with respect to b. Once the

pulses in b and c overlap, the second conversion occurs. Let ∆T be the original delay between the

two pulses in a and b at the first conversion point, which is due to the propagation length within

the OPA (LOPA) and within the AFC before the conversion point (L′
AFC):

∆T ≈
(
LOPA + L′

AFC
) (
β
(b)
1 − β

(a)
1

)
,

then the distance between the two conversion points, a→ c and b↔ c, must be

LAFC

(
β
(c)
1 − β

(b)
1

)
= ∆T.

Within this distance the quasi-phase matching for the AFC must change from ∆k(ac) = kp +

ka − kc to ∆k(bc) = kp + kb − kc The simplest way to do this is by varying the QPM linearly to

connect the two points. This works sufficiently well, however, as discussed in the next section, for

broadband processes it is preferable to vary the slope according to the dispersion.

Finally, consider some error in the design, such that there is a deviation from the optimal length

LAFC → LAFC + δL.

If modes a, b are at the same frequency (e.g. different polarization modes), then varying the pump

wavelength (hence the central wavelength of mode c) can compensate for this error. The change in

frequency affects kp and kc, hence the effective L′
AFC and ∆T for the new mode c and consequently

LAFC.
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B Designing the slope for broadband conversion

We want to design the slope of the AFC such that the different wavelengths all experience the same

phase and time delay. To achieve this, the conversion points for different wavelengths, occurring

in different locations along the propagation axis of the crystal, must be spaced according to the

dispersion.

The slope is defined as the rate of change in the quasi-phase matching frequency k over the

propagation axis:

S(x) =
dk

dx
.

Let x1 and x2 be the two conversion points for the central frequencies, as discussed previously.

Consider a frequency δω away from the initial central frequency ω0. Due to dispersion, it will

experience a different wavenumber, which will result in a phase and time delay; this can be com-

pensated for by propagation over a longer or shorter distance. Let δk1 = ∆k(δω + ω0) −∆k(ω0),

and similarly δk2, be the difference in the wavenumbers involved in the first and second con-

version. The overall phase delay ϕ (with respect to the central frequency, and which we wish to

eliminate) will be the spatial integral of the wavenumber between the two conversion points, and

its derivative is the time delay ∆T :

ϕ(δω) =

∫ x1(δω)

0
δk1(δω)dx−

∫ x2(δω)

0
δk2(δω)dx

−∆T (δω) =
d

dω

[∫ x1(δω)

0
δk1(δω)dx−

∫ x2(δω)

0
δk2(δω)dx

]

=

∫ x1

0

dk1
dω

dx+ δk1
dx1
dω

∣∣∣∣
δω

−
∫ x2

0

dk2
dω

dx− δk2
dx2
dω

∣∣∣∣
δω

.

These derivatives, dxi/dω, depend on the slope, since dx = dk1/S1. For simplicity let us consider
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the case of linear dispersion, where δk1 = ∆β
(1)
1 δω, δk2 = ∆β

(2)
1 δω. Therefore:

dx1
dω

=

(
dk1
dx1

)−1 dk1
dω

=
∆β

(1)
1

S1
,
dx2
dω

=
∆β

(2)
1

S2
.

Hence, returning to our expression for the delay:

−∆T (δω) =

∫ x1

0
∆β

(1)
1 dx+∆β

(1)
1 δω

dx1
dω

−
∫ x2

0
∆β

(2)
1 dx−∆β

(2)
1 δω

dx2
dω

+O(δω)

=

∫ x1

0
∆β

(1)
1 dx−

∫ x2

0
∆β

(2)
1 dx+


∆β

(1)
1

2

S1
− ∆β

(2)
1

2

S2


 δω.

We need ∆T = 0. Set:

S1
S2

=

(
∆β

(1)
1

∆β
(2)
2

)2

and it remains be to be shown that:

∫ x1

0
∆β

(1)
1 dx−

∫ x2

0
∆β

(2)
1 dx = 0.

By integrating the left-hand side:

∆β
(1)
1 x1 −∆β

(2)
1 x2 = ∆β

(1)
1

dx1
dk

dk

dω
δω −∆β

(2)
1

dx2
dk

dk

dω
δω

=


∆β

(1)
1

2

S1
− ∆β

(2)
1

2

S2


 δω = 0,

where we used that:

xi =

∫
dxi
dω

dω =

∫ (
dki
dxi

)−1 dki
dω

dω.

Hence ∆T (δω) = 0 and ϕ(δω) is constant.

C Parametric amplification of hybridized modes

In this section, we shall describe in some detail the physics of the parametric amplification, or

squeezing, alongside a simultaneous AFC process.
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An OPA, which acts on two modes a and b, is described by the equations:

da

dx
= iγb∗ei∆kOPAx

db

dx
= iγa∗ei∆kOPAx

for some phase mismatch ∆kOPA and coupling γ. When phase-matched, i.e. ∆kOPA = 0, the

eigenstates are the sum and difference of the two modes: (a± b)/
√
2.

Similarly, the AFC can be thought to hybridize the modes, where the eigenstates adiabatically

evolve from the bare to the dressed states and back (cite). The equations of motion are:

da

dx
= iκbe−i∆kAFC(x)x

db

dx
= iκ∗aei∆kAFC(x)x

which can be moved the into the rotating frame (a→ a exp(ikAFCz/2), b→ b exp(−ikAFCz/2)) and

written in the more intuitive form:

d

dx



a

b


 = i




1
2kAFC(x) κ

κ∗ −1
2kAFC(x)






a

b




Indeed the eigenvalues of this Hamiltonian are

±1

2

√
k2AFC + 4κ2

and when the phase-matching condition is met, kAFC(z) = 0, we obtain the same eigenstates as in

the OPA. This implies that we can combine the AFC and the OPA, in order to squeeze the dressed

states (a ± b)/
√
2 and then adiabatically return them to the bare states, and perform an overall

single-mode squeezing operation. This requires the AFC Hamiltonian to dominate, hence κ≫ γ.

Let us now consider the broadband, frequency-multimode case. We are interested in the case

of a broadband OPA pump, but a monochromatic AFC pump. For simplicity, we consider the
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linear dispersion case, where the wavenumbers of the two modes scale as:

ka(ω0 + δω) = ka(ω0) + β1aδω

kb(ω0 + δω) = kb(ω0) + β1bδω

Similarly to the previous section, we might expect that the phase-matching for the AFC and

OPA, for a given frequency, must occur at the same location In other words that the phase-

matching condition of the OPA should also be varied spatially: for any given pair a(ω0 + δω) and

b(ω0 − δω), kAFC = 0 and kOPA = 0 should occur simultaneously, to avoid generating squeezed

vacuum states with undesired, complicated, multimode spectro-temporal structure. As presented

in the previous section, this condition requires

dxAFC

dω
=
dxOPA

dω(
dkAFC

dxAFC

)−1 dkAFC

dω
=

(
dkOPA

dxOPA

)−1 dkOPA

dω
(
dkAFC

dxAFC

)−1

(β1a − β1b) =

(
dkOPA

dxOPA

)−1

(β1a + β1b)

where x represents the phase matching point as a function of ω. However, we can see that as

long as we enforce the condition β1a = −β1b = β1, any spatial variation is unnecessary (this

condition is also required to conventionally obtain two-mode squeezing over equal bandwidths

in both modes).

Therefore, write the AFC Hamiltonian for ∆kAFC = 0 and then transform it into the dressed
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basis:

HAFC(ωi, ω
′
i) =



β1aω δ(ωa − ω′

a) κ δ(ωb − ω′
a)

κ∗ δ(ωb − ω′
b) β1bω δ(ωb − ω′

b)




→ HAFC(ω, ω
′) =




√
β21ω

2 + κ2 δ(ω − ω′) ⊬

⊬ −
√
β21ω

2 + κ2 δ(ω − ω′)




(we include the Dirac delta function δ(ω) to indicate that the AFC pump is monochromatic). The

hybridized eigenstates are:

A =
a+ b√

2
, B =

a− b√
2

and we can substitute these into the OPA Hamiltonian:

HOPA = γ(ωa + ωb)a
†(ωa)b

†(ωb)e
i∆kOPA(ωa,ωb)z

= 1
2γ(ωa + ωb)e

i∆kOPAz

(
A†(ω) exp

(
−iz

√
β21ω

2 + κ2
)
+B†(ω) exp

(
iz
√
β21ω

2 + κ2
))

(
A†(ω′) exp

(
−iz

√
β21ω

′2 + κ2
)
+B†(ω′) exp

(
iz
√
β21ω

′2 + κ2
))

Consider, for example, the A†(ω)A†(ω′) term. The term rotates as

ktot(ω, ω
′) = ∆kOPA −

√
β2ω2 + κ2 −

√
β2ω′2 + κ2

which depends on the pump strength κ. Hence, we would compensate in the phase matching

condition for the central frequency:

∆kOPA = 2|κ|.

(Experimentally we would design a device for some value of κ and sweep the pump strength until

the phase matching condition is met.) Notice also that there is a level splitting: the B†(ω)B†(ω′)

term in the Hamiltonian would require −2|κ|, hence it will not be phase matched. When κ/β1 ≫
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ω, ω′, the phase rotation term is:

ktot(ω, ω
′) = 2|κ| −

√
β21ω

2 + κ2 −
√
β21ω

′2 + κ2

≈ −β
2
1

2κ

(
ω2 + ω′2)

It is fascinating that ktot has circular symmetry (while the quadratic approximation holds) and,

therefore, any phase matching function will introduce no momentum-conservation-related spec-

tral correlations. However, energy conservation will generally introduce spectral correlations. We

can thus expect to be able to engineer single mode squeezing (or approximately thereof) with

this method if the effects of these correlations can be minimized. For example, if the OPA pump

bandwidth is broader than the phase-matching bandwidth, and spectrally flat.

D Pump shaping for mode trapping

The previous section considered the behavior of two spectral modes under the influence of a

monochromatic linearly coupling the two. Even more interesting scenario arises when we con-

sider two pump frequencies, or more generally, shaped broadband pulses. Consider the coupled

wave equations as before, but with a time dependent pump:

da

dx
= iκ(t)b(t)e−i∆kAFC(x)x

db

dx
= iκ∗(t)a(t)ei∆kAFC(x)x.

Moving into the rotating frame, and expanding the phase mismatch about the central frequency:

da

dx
= iκ(t)b(t) + i

(
β0a + iβ1a

d

dt
− 1

2
β2a

d2

dt2
. . .

)
a(t)

db

dx
= iκ∗(t)a(t) + i

(
β0b + iβ1b

d

dt
− 1

2
β2b

d2

dt2
. . .

)
b(t).
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(the Fourier-transform of the dispersion expansion replaces the frequency with the differential

operator ω → id/dt).

If we consider the phase-matched and anti-symmetric linear dispersion case, and change κ →

iκ, we simplify to:

da

dx
= κ(t)b(t) + β1

d

dt
a(t)

db

dx
= −κ∗(t)a(t)− β1

d

dt
b(t)

for which we would like to find the stationary or eigenstates. For this we change to a time-

independent (Schrödinger) equation, using as an ansatz that the time evolution is simply a phase

rotation exp(−iEt):

−iEa = κb+ β1
d

dt
a

−iEb = −κ∗a− β1
d

dt
b

and taking superpositions (assuming real κ:

E(a+ b) = −iκ(a− b) + iβ1
d

dt
(a− b) = −i

(
κ− β1

d

dt

)
(a− b) = −iA†(a− b)

E(a− b) = iκ(a+ b) + iβ1
d

dt
(a+ b) = i

(
κ+ β1

d

dt

)
(a+ b) = iA(a+ b)

Note the resemblance to the quantum harmonic oscillator formalism that arises if we set κ(t) ∝ t.

κ will then act as the restoring force term and −iβ1d/dt will act as the inertial term, and A,A† are
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creation and annihilation operators. Indeed:

E2(a+ b) = AA†(a− b)

=

(
κ+ β1

d

dt

)(
κ− β1

d

dt

)
(a− b)

=

(
κ2 − β21

d2

dt2
+ β1

dκ

dt

)
(a− b)

E2(a− b) = A†A(a+ b)

=

(
κ− β1

d

dt

)(
κ+ β1

d

dt

)
(a− b)

=

(
κ2 − β21

d2

dt2
− β1

dκ

dt

)
(a− b)

which confirms that a + b and a − b are stationary states of the system. The raising operator A†

maps a− b→ a+ b and, inversely, the lowering operator A maps a+ b→ a− b. It also tells us that

the energy gap is 2β1dκ/dt, which is constant given linear κ. Lastly, we infer that a + b and a − b

must be Hermite–Gauss modes (but not necessarily a, b individually).

There are a few ways to make κ(t) ∝ t. The first is a two tone AFC; the sinusoidal temporal

beating of two monochromatic pumps will be linear near the nodes. This could be realized by

modulation of a monochromatic pump. However, because of the periodic nature of the potential,

these are likely to form Bloch waves rather than purely localized states. A second possibility is (a

pulse resembling) the first Hermite–Gauss function, which is linear at the center. This is in prin-

ciple feasible with pulse shaping. However, the Hermite–Gauss function decays too rapidly to

formally contain a bound state (with normalizable wavefunction) in the center region. Mathemat-

ically, a pump resembling a slowly decaying tanh- or sigmoid-like function would be appropriate.
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E A brief review of pump spectrum and phase-matching engineering for squeezed

state generation

Squeezed vacuum states are generated by parametric amplification, which generally follows the

formula:

da(ω, z)

dz
= iA(ω + ω′)g(z)a†(ω′, z) exp(i∆k(ω, ω′)z)

where and ∆k is a phase rotation term between modes at two given frequencies. The nonlinearity,

or coupling, is assumed to be separable in space and frequency: g(z) is the effective nonlinearity

as a function of propagation position; A(ω) is the frequency-dependent coupling, due to the pump

spectrum. Generally, a may be a vector comprised of modes due to various degrees of freedom in

addition to frequency (e.g. polarization, space).

By integrating the equation, we obtain the Green’s function:

a(ω, z = L) =

∫
dω′

[
C(ω, ω′)a(z = 0) + S(ω, ω′)a†(z = 0)

]

or in alternative notation: 

a

a†


 =



C S

S∗ C∗






a

a†


 .

The spectral correlations for vacuum input can then be written as:

1

2




⟨a(ω)a†(ω′)⟩ ⟨a(ω)a(ω′)⟩

⟨a†(ω)a†(ω′)⟩ ⟨a(ω)†a(ω′)⟩


+ h.c. =

1

2




SS† + CC† CS⊺ + SC⊺

C∗S† + S∗C† S∗S⊺ + C∗C⊺




=




SS† + I/2 (CS⊺ + SC⊺)/2

(C∗S† + S∗C†)/2 S∗S⊺ + I/2


 .

Decomposition of this matrix reveals the underlying squeezed vacuum modes.
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It is common practice to take a first order approximation of the differential equation:

a(ω, z = L) ≈ a(ω, z = 0) exp(ik(ω)L) + ia†(ω′, z = 0)A(ω + ω′)Φ(∆k(ω, ω′))

Φ(∆k) =

∫ L

0
dz g(z) exp(i∆kz)

where we refer to Φ as the phase matching function (PMF), which is effectively the Fourier trans-

form of g(z). (Often the approximation is made via exponentiation followed by truncation of the

time-ordering expansion, but this is equivalent.) Hence,

C ≈ δ(ω − ω′) exp(ik(ω)L)

S ≈ iA(ω + ω′)Φ(∆k(ω, ω′)).

SinceC essentially the identity under this approximation, we can analyze the system by inspecting

S.

It has been shown that manipulating A and Φ appropriately can yield approximately two-

mode squeezing, referred to as a “spectrally separable” state. To minimize the rank of S, one must

notice that A tends to generate anti-correlations between modes in ω and ω′. Therefore, Φ can be

designed to introduce equal and opposite correlations. Both may be designed to be Gaussian:

A ∝ exp

(
(ω + ω′)2

2σ2p
+ ic(ω + ω′)2

)

Φ ∝ exp

(
σ2g∆k(ω, ω

′)2

2
+ i

∆k(ω, ω′)L

2

)

where σp and σg are the spectral width of the pump and spatial width of the nonlinearity g(z) in

real space. The pump has an additional chirp term c and the PMF has a translation phase as it is

centered at L/2. The phase mismatch is expanded with respect to the frequency:

∆k(ω, ω′) = k(ω) + k′(ω′)− kp(ω + ω′)

=
(
β1ω +O(ω2)

)
+
(
β′1ω

′ +O(ω′2)
)
−
(
β1p(ω + ω′) + 1

2β2p(ω + ω′)2 +O((ω + ω′)3)
)
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assuming that the process is phase-matched. To remove all spectral correlations from the product

AΦ means to make it separable in ω and ω′, hence – to leading order – have any ωω′ product

terms vanish. By evaluating the exponentiated terms in AΦ we may rederive the two separability

conditions on the widths and spectral phase:

σ2pσ
2
g(β1 − β1p)(β

′
1 − β1p) = −1

c = −1

2
β2pL.

To satisfy the first equation, the group velocity condition requires β1 > β1p > β′1 or vice versa.

Similarly, to have both modes have the same bandwidth requires symmetry: the group velocities

must be equal and opposite relative to the pump: β1−β1p = β1p−β′1. The second equation implies

that the pump must be unchirped at the center of the crystal for best performance.

Finally, we must not forget that higher-order effects will play a role as the amount of gain

increases.
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CHAPTER 3

FOCUSING ON BANDWIDTH: ACHROMATIC METALENS LIMITS

This work was done together with Francesco Monticone [126].

Metalenses have shown great promise in their ability to function as ultracompact optical

systems for focusing and imaging. Remarkably, several designs have been recently demon-

strated that operate over a large range of frequencies with minimized chromatic aberrations,

potentially paving the way for ultrathin achromatic optics. Here, we derive fundamental

bandwidth limits that apply to broadband optical metalenses, regardless of their implemen-

tation. Specifically, we discuss how the product between achievable time delay and band-

width is limited in any time-invariant system, and we apply well-established bounds on this

product to a general focusing system. We then show that all metalenses designed thus far

obey the appropriate bandwidth limit. The derived physical bounds provide a useful met-

ric to compare and assess the performance of different devices, and they offer fundamental

insight into how to design better broadband metalenses.

The field of metasurfaces holds the promise of a revolution in many areas of optics and photon-

ics. In principle, any optical system may be made flat and compact by replacing the conventional

optics with ultrathin devices, with great potential benefits in terms of size, cost, and ease of fab-

rication [127–129]. While metasurfaces can achieve arbitrary wavefront transformations and may

even be used for optical wave-based computing [130, 131], “metalenses” specifically designed for

focusing and imaging represent one of the most important classes of metasurfaces for practical

applications. One of the main challenges in this context is the realization of thin metalenses op-

erating over a broad wavelength range, with minimized chromatic aberrations. In conventional
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optics, it is possible to stack various lenses to correct chromatic aberrations [132], but at the price

of making the overall system more bulky and costly. It is therefore remarkable that, in recent

years, different groups have demonstrated metalenses with a fixed focal length over a large range

of wavelengths, some even surpassing the achromatic performance of conventional lens systems

(at least for normal incidence) [133–148].

Regardless of its implementation, a metalens achieves focusing by changing the phase of an

incoming plane wave, with a phase profile that must vary radially according to the following

equation [127]:

φ(r, ω) = −ω
c

(√
F 2 + r2 − F

)
, (3.1)

where ω, F , r and c are the angular frequency, focal length, radial coordinate and speed of light,

respectively. In the general case, a spatial- and frequency-dependent phase profile, as in (3.1), can

be Taylor expanded around a central frequency ωc:

φ(r, ω) = φ(r, ωc) + (ω − ωc)
∂φ(r, ω)

∂ω

∣∣∣∣
ω=ωc

+
1

2
(ω − ωc)

2 ∂
2φ(r, ω)

∂ω2

∣∣∣∣
ω=ωc

+ . . . (3.2)

where the latter two terms are the group delay and the group-delay dispersion. As discussed

by Chen et al. [133], when the focal length F is frequency independent, (3.2) contains no higher-

order terms than the linear one. Thus, to realize a perfectly achromatic lens, the design should

implement (i) a suitable frequency-independent phase pattern φ(r, ωc), (ii) a spatial pattern of

group delay, and (iii) zero group-delay dispersion and higher-order terms. We also note that, while

here we focus on metalenses for normal incidence, similar considerations apply to different phase

functions in other metasurface devices (e.g., broadband beam deflection and splitting [149, 150]).

Early examples of optical metalenses were based on deeply subwavelength “meta-atoms” (e.g.

plasmonic dipole nano-antennas) operating near a scattering resonance to achieve the phase delay
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φ(r, ωc) over the smallest possible thickness (a fraction of a wavelength), without any considera-

tions of the linear and higher-order terms in (3.2). While this strategy allows realizing arbitrarily

thin metasurfaces, these devices were highly dispersive with large chromatic aberrations, due to

their resonant nature, and could only operate at either a single frequency or a discrete set of fre-

quencies [127–129]. In contrast, the most recent designs at the time of writing have employed

relatively thicker meta-structures (still on the order of a wavelength) that function essentially as

microscopic waveguide segments. The waveguiding approach does not depend on the phase de-

lay obtained through near-resonant light interaction with a scatterer, but rather on the true time

delay obtained via guided-wave propagation, thus allowing significantly larger bandwidths. Con-

ceptually, this new approach is more similar to early examples of flat lenses at microwave fre-

quencies, e.g., [151], than to the first versions of modern optical metasurfaces based on resonant

meta-atoms.

While the results obtained in recent works on broadband metalenses are remarkable, here we

argue that there exists a strict physical bound on the chromatic properties of a metalens, which

stems from the fact that it is not possible to impart an arbitrary group delay to a signal inde-

pendently of its bandwidth. Indeed, the delay-bandwidth product is limited in any linear, time-

invariant system, as recognized in several works, [152–154], and is related to the thickness of the

device. Based on this concept, in the following section we derive fundamental limits on the band-

width of achromatic metalenses, and assess the performance of various existing designs against

these limits.
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Results

Time-bandwidth products — Some attempts at identifying limits on the bandwidth of specific met-

alens designs have been recently made. For example, Shrestha et al. [136] have derived a bound

on metalens bandwidths based on the range of dispersion properties covered by a meta-structure

library, and Fathnan and Powell [155, 156] have derived bandwidth limits on low-frequency meta-

surfaces composed of printed-circuit impedance sheets. Here, instead, we are interested in a fun-

damental limit, applicable in general to any metalens, regardless of its specific implementation.

With this goal in mind, we turn to the concept of delay-bandwidth, or time-bandwidth, product

(TBP): the TBP of a device (a cavity, waveguide, etc.) is the product of the time delay, or interac-

tion time, ∆T , experienced by the signal, and the signal bandwidth ∆ω. Wave physics imposes an

upper bound on this quantity, which can be generally written as

∆T ∆ω ≤ κ, (3.3)

where κ is a dimensionless quantity. Bounds on the time-bandwidth product have been studied

extensively in the field of slow light [152–154]. In particular, as discussed below, different bounds

have been derived in the literature under different assumptions, but κ always depends on some

general properties of the device, for example its length and refractive-index contrast of the mate-

rials involved.

In order to apply the concept of TBP and the associated bounds to our problem, we treat a

metasurface lens as composed of one-dimensional slow-light devices or delay lines. More specifi-

cally, we consider a rotationally symmetric radial array, or continuum, of delay-line buffers, such

that the incident wave is delayed as a function of radius, as illustrated in Fig. 3.1. According

to (3.2), each delay-line buffer must impart a suitable group delay, dispersionless over the given
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ΔT (r0)
ΔT (r1)

ΔT (r1)

ΔT (rN)

ΔT (rN)

φ(r0)
φ(r1)

φ(r1)

φ(rN)

φ(rN)

Figure 3.1: Delay-line model of a thin broadband metalens. Radially arranged delay lines provide
a broadband signal the necessary group delay ∆T (r) to compensate for the difference in arrival
times at the focus, while the phase patternφ(r) creates a spherical wavefront according to Eqs. (3.1)
and (3.2).

band, to compensate for the difference in the arrival times of wavepackets at the focus. The lens

must also impart a frequency-independent phase pattern, φ(r, ωc), to create a spherical wavefront

at the output. This phase pattern can be implemented independently of the group-delay require-

ment, using, for example, the concept of geometric phase, as shown in Ref. [133]. We would like

to note that the 1D model in Fig. 3.1 is an approximation since a metasurface with finite thickness

is not strictly a one-dimensional device; however, we expect that light normally incident on meta-

surfaces of thicknesses of the order of one wavelength would acquire time delay predominantly

through longitudinal propagation, with little propagation along the lateral (radial) direction. For

this reason, in what follows, we only consider metasurfaces with thickness smaller than about

five free-space wavelengths. We further discuss this approximation and its implications in the

Discussion and Conclusion section.

Consider a lens with radius R and focal distance F . From (3.1) and (3.2), the required relative
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group delay imposed by the lens at a radial position r ≤ R is

∆T (r) =
∂φ

∂ω
(r)− ∂φ

∂ω
(R) (3.4)

=
1

c

(√
F 2 +R2 −

√
F 2 + r2

)
. (3.5)

(In most cases, the group delay is equal to the actual time delay experienced by the signal, except

in the presence of anomalous dispersion near resonances, which is, however, not a case of interest

in this context, due to the strong absorption that unavoidably accompanies anomalous dispersion

in passive systems [157].) The greatest delay is required at the center (r = 0) to compensate for the

additional time taken by a signal arriving from the edge (r = R), such that the lens design must

achieve

∆Tmax =
F

c

(√
1 + (R/F )2 − 1

)
. (3.6)

This defines our required time delay in the time-bandwidth product in (3.3).

Then, using the numerical aperture definition

NA = nb sin θ = nb sin

[
arctan

(
R

F

)]
, (3.7)

where nb is the background refractive index, and the identity 1 + tan2(arcsinx) = 1/(1 − x2), we

can use (3.3) and (3.6) to set a limit on the lens’ bandwidth based on its numerical aperture (NA)

and geometrical properties:

∆ω ≤ κc

F
(√

1 + (R/F )2 − 1
) =

κc
√

1− (NA/nb)2

F
(
1−

√
1− (NA/nb)2

) . (3.8)

We note that the form of this limit is consistent with the bandwidth bound derived in [155]

based on different considerations (Foster’s reactance theorem) for the case of metasurfaces com-

posed of impedance sheets. Our results, however, are more general, and apply to any type of

metalenses, as we discuss below.
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As mentioned above, different values of the upper bound κ have been derived for different

general classes of devices. Thus, depending on the type of metasurface (whether it is based on

resonant meta-atoms or waveguiding structures), we can apply the appropriate TBP bound and

derive the relevant bandwidth limit. We now identify three relevant cases, covering all types of

metasurfaces.

(i) If the metasurface has deeply subwavelength thickness, the only way to impart the neces-

sary phase/time delay to incoming light is by interaction with resonant scattering meta-atoms. In

this case, coupled-mode theory provides a geometry- and material-independent time-bandwidth

product for a single-mode resonator (e.g., see [158]):

κ = 2. (3.9)

In this case, (3.3) becomes an equality and it may also be written in terms of the Q factor of the

resonant meta-atoms, ∆T = 2Q/ωc, as recognized in Refs. [159, 160]. While the following goes

beyond the scope of the present work, we also note that this case could be generalized to account

for more than one resonator, as in the case of overlapped electric and magnetic dipole resonances

used in Huygens’ metasurfaces [155, 161–163]. However, the bandwidth bounds are not expected

to significantly improve. In addition, while electric-dipole resonators can be made infinitesimally

thin (e.g., printed dipole antennas), a magnetic-dipole resonator always requires a non-zero thick-

ness, since a non-zero volume is necessary to establish a circulation of (conduction or polarization)

current supporting a non-zero magnetic dipole moment [157].

(ii) For thick metasurfaces based on inclusions acting as waveguides, the previous limit clearly

does not apply, since wave-guiding structures cannot be treated as individual resonators. Tucker

et al. [153] provide a generally applicable time-bandwidth limit, valid for any one-dimensional,

lossless, dielectric device that may be treated as a waveguide (the limit is strictly valid only if the
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fractional bandwidth is not too large, i.e., smaller than unity). The value of the upper bound κ is

given by

κ = 2π
L

λc
(nmax − nmin), (3.10)

where nmax and nmin are the maximum and minimum effective refractive indices of the device. This

effective index n(ω) is defined by the dispersion relation for the mode of interest in the structure,

β(ω) = ωn(ω)/c, as if the structure was homogeneous. n(ω), nmax and nmin are generally different

from the material indices that make up the device. However, in the case of a one-dimensional

dielectric waveguide segment (or coupled segments, as in [133]), which is the case of interest for

most modern metasurfaces, we can take nmax and nmin as the refractive index of the dielectric

material composing the waveguide and of the surrounding medium, respectively, because the

guided-mode dispersion converges to the light line of the low-index material at low frequency,

and to the light line of the high-index material at high frequency. We thus replace the difference

term in (3.10) with ∆n = nmax − nb.

(iii) Finally, Miller [152] provides a similar, but much more general, time-bandwidth limit that

is valid for a very broad class of one-dimensional structures (not necessarily dielectric) acting as

delay lines:

κ =
π√
3

L

λc
ηmax, (3.11)

where ηmax = |(εmax − εb)/εb| is the device’s maximum contrast in relative permittivity, with

respect to the surrounding medium’s permittivity εb, at any frequency within the band of interest

and at any position within the structure. The limit is very general, as it is independent of the

device design, and is not based on the simplifying assumptions used in Tucker’s limit (lossless

dielectric materials and well-defined group velocity). The limit strictly applies if the device length

L ≫ λc, where λc is the band-center wavelength in the background medium, and if the fractional
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bandwidth is not too large. However, in practice, we have verified that, if L is just few times larger

than the longest wavelength in the device, Miller’s limit seems to apply, that is, it is consistent with

Tucker’s limit (which has no assumptions on length). If they both apply, Miller’s limit is close to

Tucker’s, and exceeds it to some degree if εmax ⪆ 6.

These bounds on the time-bandwidth product, within their limits of applicability, may be com-

bined with (3.8) to obtain an upper bound on the bandwidth of achromatic metalenses. Essentially

all types of metalenses, for any thickness (smaller than a few wavelengths) and material compo-

sition, are covered by the three TBP bounds outlined above, leading to the following bandwidth

limits:

(i) for ultra-thin metasurfaces based on resonant meta-atoms (single resonance) [from (3.9)],

∆ω ≤ 2c

F
Θ

(
NA
nb

)
, (3.12)

(ii) for waveguide-based dielectric transparent metasurfaces [from (3.10)],

∆ω ≤ ωc
L∆n

F
Θ

(
NA
nb

)
, (3.13)

(iii) for generic metasurfaces (not necessarily dielectric and lossless) of thickness larger than

the wavelength [from (3.11)],

∆ω ≤ ωc

2
√
3

Lηmax

F
Θ

(
NA
nb

)
, (3.14)

where we replaced ωc = 2πc/λc and

Θ

(
NA
nb

)
=

√
1− (NA/nb)2

1−
√

1− (NA/nb)2
. (3.15)

We compared these bandwidth limits to various broadband metalens designs available in the

literature. Comparisons are shown in Fig. 3.2, using suitably normalized quantities, and are tab-
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ulated in Table 3.1. What immediately stands out is that the limits correctly predict the expected

performance trend: for larger numerical aperture the achievable bandwidth shrinks, because the

required maximum time delay, ∆Tmax in (3.6), rapidly increases (and diverges at NA/nb = 1).

Not surprisingly, as seen in Fig. 3.2(a), only few thin, subwavelength, metalenses obey the

bandwidth limit based on the single-resonator TBP given in (3.9). Instead, all the metalens de-

signs obey our limits based on Tucker’s or Miller’s TBP (see Fig. 3.2(b) and Table 1), including

recent ultrabroadband metalenses obtained using free-form all-area optimization and inverse de-

sign [139].

At this point, it is important to note that, although all the considered designs claim achromatic

performance, some have non-negligible focal length variations, or do not disclose the exact field

profile at the focal plane and the associated level of monochromatic aberrations. The focal field

profile is relevant because the bandwidth limit derivation above assumes a diffraction-limited lens

with no aberrations, i.e., Strehl ratio S = 1. The Strehl ratio is a measure of the wavefront aber-

ration, defined as the ratio of the peak focal spot intensity to the maximum attainable intensity of

an ideal lens. A metalens that does not achieve diffraction-limited focusing with S = 1 across the

nominal operational bandwidth is not implementing the phase and time-delay profiles assumed

above exactly; hence, it may surpass the bounds since the requirements are somewhat relaxed.

To quantify the effect of aberrations on our bandwidth bounds, we assume that the aberrations

are not too large, which is the scenario of interest for imaging applications. In this case, the Strehl

ratio is approximately independent of the nature of the aberration and, according to the “extended

Maréchal approximation,” it can be estimated from the variance of the wavefront deformation
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Figure 3.2: Comparisons of published achromatic metalens designs against the derived bandwidth
limits. (a) Limit based on the single-resonator TBP bound, given by (3.12). Not surprisingly, most
data points exceed this bound except for some thin devices. (b) Limit based on Tucker’s TBP
bound, given by (3.13). Each data point in the plots represent a single design, with each label
corresponding to a specific row of Table 3.1. The performance of each metalens is represented in
terms of numerical aperture and bandwidth. In order to compare vastly different designs against
the bandwidth bounds, the bandwidths are normalized by c, F and the corresponding κ (see (3.8)).
In both panels, the lowest blue curve represents the function Θ(NA/nb) = c/F∆T , where ∆T is
the required time delay for ideal operation, given by (3.6). Fig. 3.2(b) includes both the upper
bound for ideal metalenses with no aberrations, ∆Terr = 0 (Θ, lower solid blue curve), and the
bound for highly aberrated metalenses with an error ∆Terr = 0.8∆T (Θ/0.2, dashed blue curve)
and ∆Terr = 0.9∆T (Θ/0.1, upper solid blue curve), which correspond to low values of Strehl ratio
according to (3.17). All design parameters and bandwidth values are given in Table 3.1.
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with respect to an ideal spherical wavefront:

S ≈ e−(k0σ)
2

, (3.16)

where σ is the standard deviation of the spatial wavefront deformation and k0 is the free-space

wavenumber [132, 164, 165]. In addition, the maximum peak-to-peak deformation of the wave-

front can be related to the standard deviation as ∆Wmax ≈ ασ, where the factor α depends on

the type of aberration, and for a mixture of low-order aberrations (defocusing, etc.) α is in the

order of a few units (e.g., α ≈ 4.5 [164]). This spatial error corresponds to a maximum phase error

∆φmax = ∆Wmaxk0. Thus, if a less-than-unity Strehl ratio is tolerated within the operational band-

width of the metalens, an error in the implemented phase profile would be acceptable, which in

turn would relax the requirements on the time delay ∆T and the associated bandwidth bounds.

In particular, assuming no phase errors at the central frequency, if the implemented time delay is

incorrect by a maximum amount ∆Terr, (3.2) indicates that the phase profile would be incorrect by

an amount ∆φmax = (ω − ωc)∆Terr at a certain frequency ω, corresponding to a Strehl ratio:

S ≈ exp
(
−
(
α−1(ω − ωc)∆Terr

)2)
. (3.17)

Based on these considerations, it is then possible to approximately account for aberrations in our

bandwidth bounds by substituting ∆T with ∆T −∆Terr in (3.3) and expressing ∆Terr in terms of S

by inverting (3.17). This leads to a looser bandwidth bound if the Strehl ratio decreases, suggesting

that a relaxation of the imaging performance of the metalens allows for a broader bandwidth, as

expected. We also stress that an imaging system is considered practically diffraction limited if

S > 0.8 [132, 164–166], which implies that the bandwidth bound may be relaxed, to some degree,

with respect to the ideal case, with only minimal deterioration of the imaging performance.

Since we do not have access to the field profiles of all the metalenses considered in the liter-

ature, in Fig. 3.2(b) we include both the bound for ideal metalenses with no aberrations (lower
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solid blue curve), and a bound for highly aberrated metalenses with an error ∆Terr = 0.9∆T

(upper solid blue curve), corresponding to low values of Strehl ratio according to (3.17). Most

published metalens designs are below the bound for ideal metalenses, with only a handful of

designs exceeding this limit. However, the latter are all bound by the limit for aberrated metal-

enses with ∆Terr = 0.8∆T (dashed blue curve), corresponding to a typical Strehl ratio < 0.5 away

from the central wavelength, which is consistent with the published results (we note that since the

nominal ∆T depends on F and NA, according to (3.6), the resulting Strehl ratio also depends on

these quantities). Thus, in principle, even broader bandwidths could be achievable, but only at

the expenses of even higher aberrations and lower focal spot intensity.

Finally, in Fig. 3.3, we show an example of how a specific metalens design (from Ref. [135])

compares with the bandwidth limits described above, considering the case of no aberrations for

simplicity. This metasurface, which is based on dielectric waveguide segments, has a much wider

bandwidth than what would be achievable using a single-resonator-based design, as expected. In

addition, its bandwidth performance is not too far from the appropriate upper bound (either (3.10)

or (3.11)) based on the employed materials and thickness. In other words, the dielectric metalens

is using its thickness and refractive-index contrast almost optimally. Fig. 3.3 also shows a design-

independent version of both Tucker’s and Miller’s limit using the highest refractive-index and

permittivity contrast naturally available at optical frequencies, for lossless dielectrics and generic

materials, respectively. Further details are discussed in the Discussion and Conclusion section.

Bandwidth limits on reflection suppression — For the sake of completeness, we briefly discuss an-

other important trade-off, between the bandwidth of operation of a metalens and its transmission

efficiency. The ability to transmit energy efficiently requires, at a minimum, that the reflections are

minimized, namely, that the metalens is impedance matched with respect to the medium in which
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Figure 3.3: Different bandwidth limits compared to the performance of a specific metalens de-
sign, from Ref. [135] (central wavelength λc = 518 nm): Single-resonator limit ((3.9), dot-dashed
green curve); Tucker’s limit ((3.10), dashed black) and Miller’s limit ((3.11), solid red) using the
refractive-index/permittivity contrast considered in Ref. [135]; design-independent Tucker’s limit
(dashed purple) with the highest refractive index for lossless dielectrics naturally available at op-
tical frequency, n ≈ 4. The inset includes the same curves and an additional curve (solid orange)
for a design-independent version of Miller’s limit with the highest permittivity contrast (in mag-
nitude) available at optical frequency η ≈ 100 [152] (which may include the case of metallic mate-
rials, and materials with loss and gain).

the incident wave propagates (usually air or a transparent substrate). While it is always possible

to design a lossless anti-reflection coating to achieve identically zero reflection (ideal impedance

matching) at a single frequency, a fundamental trade-off exists between the reflection reduction

and the continuous bandwidth over which this reduction can be achieved. This fundamental limit

on broadband impedance matching is known as the Bode-Fano limit [167], which has been used

for decades in microwave engineering, but it applies equally well at optical frequencies [168]. This

bound depends uniquely on the linearity, passivity, time-invariance, and causality of the scattering

system, and, most importantly, is independent of the employed anti-reflection coating, regardless

of its complexity (the matching structure is only assumed to be lossless).

In order to apply the Bode-Fano limit to the problem under consideration, we approximate
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the metalens as a thin homogeneous slab with refractive index equal to the average refractive

index navg of the materials composing the structure. This is clearly a coarse approximation, but

it allows us to get some general insight on this relevant design trade-off. In addition, we assume

that we operate in the most favorable condition for impedance matching, that is, we assume that

the central frequency corresponds to a Fabry-Perot resonance of the slab, at which the reflection

coefficient automatically goes to zero. The slab thicknessL is assumed to be smaller or comparable

to the wavelength. Under these approximations, the limit is given by [168]

∆ω

ωc
≤ 1

L/λc(ε− εb)

[
log

1

|Γ|

]−1

, (3.18)

where ε = n2avg and Γ is the in-band reflection coefficient. If the equal sign is used, (3.18) represents

the optimal trade-off between bandwidth and reflection reduction.

Depending on the application under consideration, the maximum bandwidth over which

a metalens can operate depends on both the achromatic focusing limit derived above and the

impedance-matching limit. Interestingly, it is immediately clear that (3.18) is inversely propor-

tional to the thickness L and permittivity contrast η of the device, while (3.13) and (3.14) are

directly proportional to these quantities. This suggests the existence of a fundamental trade-off

between the ability to reduce reflections with an anti-reflection coating (maximizing transmission

efficiency) and the ability to minimize chromatic aberrations for a metasurface operating over a

broad continuous bandwidth. This trade-off is represented in Fig. 3.4: thicker devices or larger

refractive-index contrast lead to wider bandwidths for achromatic operation (blue curves), but

narrower bandwidths over which the reflection coefficient can be reduced to a certain level (or-

ange curves). In other words, achieving achromatic performance over a wider band requires a

larger ηL/λc, which, however, increases the minimum reflectance achievable over that band, as

expected. If both efficiency and achromatic performance are equally important, an optimal value
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Figure 3.4: Comparison of the bandwidth limit for achromatic performance (blue), based on
Miller’s TBP, (3.14), and the Bode-Fano bandwidth limit on reflection reduction, (3.18) (orange),
as a function of the product of permittivity contrast and normalized thickness: ηL/λc. The limits
are compared for various values of NA and in-band reflection coefficient |Γ|. As an example, we
considered a dielectric metalens with F = 100λc and εb = 1. In order to apply the Bode-Fano
limit to the considered problem, and compare it with Miller’s limit, we treat the metasurface as a
homogeneous slab with averaged refractive index, and a permittivity contrast η = ε − εb = ηmax

(further details in the text). For a given value of NA and |Γ| there is an optimal value of ηL/λc,
where the two limits intersect, that maximizes ∆ω.

of ηL/λc may be identified depending on the specific application under consideration.

Discussion and Conclusion

Considering the bandwidth limits on achromatic metalenses discussed above, one may wonder

what type of metalens design, for a fixed refractive-index/permittivity contrast and thickness, can

get closest to the limit and why.

Interestingly, for a certain refractive-index contrast, a metasurface design based on suitable di-

electric waveguide segments seems to directly provide a way to realize performance close to the

upper bound for the given thickness. Indeed, the guided-mode dispersion of a dielectric waveg-
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uide converges to the light line of the low-index material at low frequency, and to the light line of

the high-index material at high frequency. This provides an intermediate frequency window with

low group velocity and locally linear dispersion that is automatically close to the optimal linear

dispersion considered by Tucker et al. [153] for an ideal delay line for that level of contrast.

It is therefore not surprising that, even when considering free-form all-area optimization of

dielectric metalenses as in [139], the optimization tends to create a spatial distribution of material

with “channels” that resemble waveguide segments. It is also not surprising that many of the

designs we considered are relatively close to the limit, as shown in Fig. 3.2(b), since many make

use of the available length and refractive-index contrast almost optimally. Using the largest nat-

urally available refractive index for a transparent material at optical frequency, which is around

three to four in silicon and germanium, would certainly provide a wider bandwidth, but not an

order-of-magnitude improvement with respect to metasurfaces fabricated with lower values of

refractive index. Fig. 3.3 (purple dashed curve) shows the bandwidth limit for this maximum

value of lossless refractive index, n = 4, compared to the bandwidth of the metalens in Ref. [135].

Such a bandwidth limit provides a design-independent upper bound for transparent dielectric

metasurfaces, which only depends on the thickness and the desired focal length and NA. We also

note that certain recently studied materials, such as phase-change chalcogenides [169], have been

shown to exhibit very large refractive index over broad bandwidths, which could be promising

in the context of achromatic metasurfaces; however, their non-negligible absorption losses will

unavoidably deteriorate the performance of the device. Since it is unlikely that a much larger

natural refractive-index contrast could be achieved in lossless materials at optical frequencies, the

only way to improve the bandwidth performance using transparent materials is to consider longer

devices, or overcome the limit by breaking its main assumptions, for example, time-invariance, a

possibility that will be the subject of future works.
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Considering much longer metalenses may also break the assumption of one-dimensionality

on which the limits above are based (see Fig. 3.1 and related discussion). An example of this is the

broadband metalens in Ref. [148], designed through free-form all-area optimization, whose thick-

ness is more than five free-space wavelengths (and even longer considering the wavelength within

the metasurface structure). Thus, this metalens cannot be considered an array of one-dimensional

delay lines as in Fig. 3.1 since lateral propagation can no longer be neglected. Indeed, this thick

metasurface manages to surpass our bounds to some degree, with relatively small aberrations. In

general, we expect that thicker metasurfaces or stack of metasurfaces, with a thickness of several

wavelengths, may be designed to optimally take advantage of the two- or three-dimensionality of

the system, increasing the path a wavepacket travels laterally, not just longitudinally, which would

in turn lead to wider achievable bandwidths. In this context, we believe that all-area optimization

is critical to fully take advantage of the whole available volume.

In addition, one may also wonder whether it would be possible to artificially increase the

maximum available refractive index by realizing an engineered metamaterial with effective index

much larger than the one of the constituent materials. However, if the thickness of the metalens

is limited to approximately a wavelength or few wavelengths, the meta-atoms must be very small

to actually form an effective homogeneous metamaterial, and not act as a discrete arrangement of

elements. If we choose, for example, the size of the meta-atoms to be d ≈ λ/10, a dielectric meta-

atom would be largely off-resonance even considering the largest refractive index, n ≈ 4 (the

first resonance of a high-index dielectric sphere is of magnetic dipolar type, and it occurs when

d ≈ λ/n). As a result, the effective permittivity would not be too different from the average be-

tween the permittivity of the inclusions and of the background, following standard mixing formu-

las for non-resonant meta-atoms (e.g., see [170]). Using plasmonic materials would allow realizing

deeply subwavelength resonant meta-atoms and, therefore, a metamaterial with much larger ef-
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fective permittivity. This would, however, be accompanied by large Lorentzian dispersion around

an unavoidable absorption peak, which would greatly reduce the bandwidth and efficiency of the

device. Still, Miller’s limit in (3.14), which is based on the magnitude of the permittivity contrast,

does not preclude the possibility of achieving better bandwidth performance at optical frequencies

by using metallic materials, for which the contrast can be as high as ηmax ≈ 100 at near-infrared

frequencies. In theory, this would allow an order-of-magnitude improvement in bandwidth, as

seen in the inset of Fig. 3.3 (orange curve), where we show Miller’s limit for ηmax ≈ 100. This

provides a ultimate upper bound on the bandwidth of optical metalenses that may include any

available material. However, there is no guarantee that this limit is tight, namely, that it could be

achieved with a physical design [152].

Finally, we expect that the use of post-processing and, more generally, computational imaging

techniques could enable broadband imaging even if the metalens itself does not perform achro-

matic focusing. This is demonstrated, for example, in [171, 172], using extended depth of focus

metalenses and computational reconstruction. In this context, our bounds would be crucial to as-

sess whether a dispersion engineered metasurface is sufficient to achieve the desired bandwidth

for the considered application, or whether post-processing would be beneficial or necessary.

To conclude, we believe that the fundamental bandwidth limits presented in this Article will

prove useful to the many research groups working on metasurfaces to assess and compare the per-

formance of different devices, and may offer fundamental insight into how to design broadband

achromatic metalenses for different applications.
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Design NA F / µm λmin / nm λmax / nm L / nm |εr|max ∆ω / 2π THz SR / 2π THz Miller / 2π THz Tucker / 2π THz

a1 [133] 0.20 63 470 670 600 6.5 1200 462 2500 (12 500) 2440 (12 200)
a2 [133] 0.02 11 000 470 670 600 6.5 1200 272 1480 (7380) 1440 (7200)
b [134] 0.20 67 460 700 600 6.5 1400 434 2340 (11 700) 2280 (11 400)
c [135] 0.20 485 490 550 890 6.5 419 60.0 514 (2570) 501 (2510)

d1 [136] 0.24 200 1300 1650 800 13.5 307 99.6 621 (3100) 460 (2300)
d2 [136] 0.13 800 1200 1650 1400 13.5 428 87.6 1000 (5690) 741 (4210)
d3 [136] 0.13 800 1200 1650 1400 13.5 428 87.6 1000 (5000) 741 (3710)
d4 [136] 0.86 30 1200 1400 1400 13.5 224 20.8 256 (1280) 190 (948)
e [137] 0.20 17.5 435 685 400 2.4 1580 1660 1590 (7930) 2160 (10 800)
f [138] 0.216 49 420 640 800 6.5 1860 506 4050 (20 300) 3960 (19 800)

g1 [139] 0.1 62 450 700 250 8 1490 1920 5560 (27 800) 5030 (25 200)
g2 [139] 0.9 3 450 700 250 8 1490 154 447 (2240) 405 (2020)
g3 [139] 0.99 0.9 450 700 500 8 1490 109 634 (3170) 574 (2870)
h1 [140] 0.05 1000 450 750 2400 2.9 1670 479 3520 (17 600) 4510 (22 600)
h2 [140] 0.18 1000 450 750 2600 2.9 1670 36.1 288 (1440) 369 (1840)
h3 [140] 0.9 3.5 450 750 1250 2.9 1670 132 507 (2530) 650 (3250)
i1 [141] 0.2 63 470 670 2000 2.9 1200 462 2880 (14 400) 3690 (18 400)
i2 [141] 0.36 155 3000 5000 10 000 2.7 251 53.8 221 (1110) 290 (1450)
i3 [141] 0.81 2 560 800 1600 2.9 1010 425 1780 (8890) 2280 (11 400)
j [142] 0.35 158 3000 4000 2000 15 157 56.2 416 (2080) 296 (1480)

k1 [143] 0.106 235 400 660 800 6.5 1860 450 3610 (18 000) 3520 (17 600)
k2 [143] 0.125 165 400 660 800 6.5 1860 460 3680 (18 400) 3590 (18 000)
k3 [143] 0.15 118 400 660 800 6.5 1860 444 3560 (17 800) 3470 (17 400)
l1 [144] 0.278 34.5 1000 1800 5900 2.4 837 424 2380 (11 900) 3260 (16 300)
l2 [144] 0.11 181 1000 1800 5900 2.4 837 543 3060 (15 300) 4180 (20 900)
l3 [144] 0.06 665 1000 1800 5900 2.4 837 499 2810 (14 100) 3840 (19 200)
m [145] 0.3 60 1000 1200 1000 13.5 314 207 2150 (10 800) 1590 (7970)
n [146] 0.385 12 000 0.375 mm 1 mm 550 µm 12 3.14 0.598 5.96 (29.8) 4.64 (23.2)

Table 3.1: Summary of design parameters and performance values of broadband achromatic met-
alenses in the literature. Listed are the numerical aperture (NA), the focal length (F ), the wave-
length range (λmin, λmax), the device thickness (L), the maximum relative permittivity used in
the device (|εr|max), the nominal bandwidth (∆ω), and the three limits derived from the single-
resonance, Miller’s, and Tucker’s time-bandwidth products, given by (3.12), (3.14) and (3.13), re-
spectively. In parentheses in the last two columns are the relaxed bandwidth limits accounting for
an error in the implemented time delay, ∆Terr = 0.8∆T , which corresponds to large aberrations
and lower focal spot intensity, as discussed in the text. All design parameters are quoted from the
respective sources with the exception of some values of permittivity, which are estimated based
on the material if not reported [173–176].
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Outlook

This section represents a loose assortment of ideas, thoughts and unanswered questions. They are

based on the work presented in the previous Chapters, and which we have either considered as

future research directions, or which could merit being revisited.

The use of frequency-domain engineering remains a promising avenue for quantum optics and

quantum information experiments. However, the level of control and fidelity demonstrated in our

initial experimental demonstrations (Chapter 1) are not yet comparable to the state of the art in

the more conventional temporal and spatial encodings of squeezed light. Arguably, the greatest

shortcoming of our experimental work was in the ability to perform and verify the transformations

between the light modes: nonlinear optical processes are more challenging to control than linear

ones. This implies a need for better pump and seed sources, pulse shaping, and material and

waveguiding platforms, e.g. for dispersion engineering. Concerning the latter, the development

of platforms for integrated nonlinear optics is an active field, which will accelerate progress in

quantum optics.

Integrated nonlinear and quantum optics

The most notable integrated material platform for nonlinear optics is currently thin-film lithium

niobate (TFLN). The high confinement afforded by TFLN devices, and hence their high effective

nonlinearities, make them attractive for complex nonlinear optical processes. Developing such

integrated nonlinear and quantum photonic devices has been an aspiration, and ostensibly the

field is also somewhat moving in this direction. Making use of these integrated devices is a nat-

ural extension for the kind of schemes presented in this thesis, since squeezing and frequency
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~100 um ~2 mm ~5 mm

Input:
775 nm
1030 nm

Down-conversion:
775 nm→1550 nm

Sum frequency conversion:
1030 + 1550→620 nmPump mode

filter

Output:
620 nm
775 nm
1030 nm

Figure 2: OPA and AFC integrated into a single waveguide. We can design a nonlinear waveg-
uide incorporating both the OPA and AFC processes in a single pass of one device. The design
shown uses the same architecture and wavelengths as shown in Chapter 1. However, the OPA
and AFC regions can be made into two contiguous poling regions, and driven by the 775 nm and
1030 nm pumps simultaneously. This would usually be preferred to using adiabatic waveguide
couplers, as these devices are typically not sufficiently broadband. Although integrated photonic
devices (namely in TFLN) are currently practically limited to roughly <10 mm length, this length
reduction can be compensated for by the increased effective nonlinearity due to high confinement,
and the ability to engineer the dispersion. These are necessary since shorter lengths will broaden
the OPA gain bandwidth and reduce the AFC efficiency. The former is approximately inversely
proportional to the square root of the group velocity dispersion and the length [70], and the latter
follows the Landau–Zener formula [67]. Due to the diversity in wavelengths involved in both the
OPA and the AFC, a mode filter might be a necessary precaution to retain only the fundamental
spatial modes of the pumps. Shorter wavelengths, including those of the pumps, might be guided
in several spatial modes, but as long as the waveguide is single mode at 1550 nm and the pumps
propagate in their fundamental mode, we do not expect spatio-temporal coupling at 620 nm.

conversion can, in principle, be performed compactly in a single waveguide. They are especially

beneficial since broadband frequency conversion requires greater nonlinearities than conventional

narrowband techniques. Indeed pump power (as well as the bandwidth) was a limitation in the

experiment presented in Chapter 1. In addition, the higher nonlinearities can enable simultaneous

wave-mixing processes, as required by the hybrid squeezing techniques discussed in Chapter 2.

Lastly, these waveguides can be fabricated at a scale where the geometric dispersion becomes

significant. Dispersion is crucial to how waves at different frequencies interact. Dispersion engi-

neering would allow us to optimize various aspects of the squeezing and frequency conversion
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processes, most notably the parametric gain bandwidth. Fig. 2 shows how a device incorporating

both OPA and AFC could be realized.

Characterizing frequency domain transformations

Applying a desired frequency-domain transformation and verifying it also proved to be a chal-

lenge for other, platform-agnostic reasons, and new experimental methods should be considered

to address these shortcomings. Linear transformations in the frequency domain are difficult to

determine, as they require a complex-valued Green’s function – input-output – measurement.

The naif approach would be to weakly seed the combined parametric amplification and con-

version process over the set of wavelengths of interest, and measure the output spectral ampli-

tudes for each input. However, obtaining the complete phase information of the transformation

implies that the phase of the signal at the output wavelengths needs to be measured with respect

to the phase of the input seed. This is especially impractical when the input and output are at

different wavelengths. An alternative would be to use a pair of broadband, tunable, and mutu-

ally coherent sources for seeding, whose relative phase can be varied, in which case an intensity

measurement of the output is sufficient. However, this solution is also nontrivial given the re-

quirements on the seed sources.

In addition to verifying the transformation, understanding how to shape the frequency conver-

sion pump – to yield a desired transformation in the first place – is nontrivial. The same thing can

be said about squeezing: we still lack a way to program what modes are prepared by a broadband

parametric amplifier and how squeezed they are.

One way forward, appears to reduce the complexity by using a “neater” discrete frequency bin
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basis for squeezing and conversion (a more conventional approach). These ideas were implicitly

explored in Chapter 2. One of the motivations for this research was to find ways to produce well-

behaved squeezed modes and how to control them in ways that can be understood analytically.

This is something that should be explored further. Nonetheless, the approach has greater exper-

imental requirements that must be overcome, especially with respect to the necessary properties

of the pumps and nonlinear devices.

Finally, one avenue that was explored but is not presented here is to use photon statistics –

correlations and probabilities – to determine the underlying Gaussian state and hence the trans-

formations. However, this proved to be impractical for many states.

Understanding frequency domain transformations

EOM 1 EOM 2

Cavity ModesEOM Driving FieldsCavity

Figure 3: Sketch of using a fiber loop to implement linear transformations in analogy to adi-
abatic frequency conversion. AFC can be simulated by a birefringent fiber cavity controlled by
two electro-optic modulators (EOMs). The first EOM controls the coupling between the bipartite
set of polarization and frequency modes. The second adiabatically changes the path length for
one polarization mode, which changes the frequency of its cavity modes. This shifting enables
avoided crossings between frequency modes in opposite polarizations, if they are coupled by the
first EOM. Due to the different free spectral range (FSR) of the modes in the two polarizations of
the cavity, each transition between pairs of modes should be in principle individually addressable.

As mentioned in Chapter 1 Appendix D, the most general case of linear transformations with

AFC – determined by a multimode system of avoided crossings – is not completely understood.
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An adiabatically-varied system of discrete modes behaves as expected in the case where the

avoided crossings are well-isolated, and hence the geometric phase is close to the area under-

neath the ∆kz cell, as seen in Fig. A.10 (by “expected” we intend that the avoided crossings do

not affect each other, hence, may be considered individually towards their contribution to the to-

tal linear transformation). In the continuous frequency mode case, although the physics remains

the same, the validity of this interferometer network intuition becomes tenuous. This is another

reason why discrete modes would be useful for quantum information applications where we need

precise control of the quantum state. However, for applications where the precise control of the

state is less critical, such as quantum-enhanced sensing tasks with multimode squeezed light, a

black box prediction model – to invert the pump shape to the applied transformation – might be

sufficient.

We can try to quantify how much control we have over the transformation in the Chapter 1

experiment by counting the degrees of freedom in the pulse shaper. Judging by the distribution

of the spectrum of the pump on the SLM, shown in Fig. A.14, and the fact that the wavelength

resolution was about 10 SLM pixel columns (out of 1920), implies that there were at most ap-

proximately 75 degrees of freedom. In addition, there were constraints: we wanted a phase that

yields a reasonable pulse, and with sufficient chirp to overlap with the time duration of the signal.

The number of degrees of freedom could be improved by increasing the pulse shaper resolution

(improved choice of diffraction grating, cylindrical lens and SLM). However, it is not necessarily

guaranteed that if we had more resolution it would make a proportional difference in the space of

linear transformations that we could achieve.

In addition, there is the problem of individually addressing the conversion between pairs of

modes. This is due to the frequency translation symmetry when the group velocity dispersion
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is negligible: the frequency modes are spaced equally in momentum space, and equally coupled

(via the pump frequencies) to the same modes, up to a shift. Therefore, the linear transformations

in AFC are approximately convolutions. To apply more complex transformations would require

applying a series of convolutions. Alternatively, sufficiently large discontinuities in the AFC pro-

cess – to skip certain avoided crossings – might be a possibility, but this would only work in the

discrete case. Finally, with ultrafast optics, the pump can be modulated before the process, but

cannot be changed throughout, which also limits the degree of control.

One idea to study and demonstrate the full potential and physics of adiabatic frequency con-

version classically is to perform the analogous process in a fiber-loop cavity with electro-optic

modulators (EOMs), similar to Ref. [100]. This would allow repeated back-and-forth conversion,

and the ability to change the driving fields (coupling) throughout. It seems likely that such a

system could in principle perform universal linear transformations. This is illustrated in Fig. 3.

To make the system bipartite, as in AFC, one could use two the polarization modes of a cavity

made of birefringent (polarization-maintaining) fiber. In addition to isolating different polariza-

tion modes, the cavity modes in such a fiber would have a different free spectral range (FSR) in

each polarization. As a result, addressing individual mode transitions should be much simpler.

As cavity modes are typically spaced far below optical frequencies – megahertz or gigahertz –

the dispersion between them is negligible, hence there is no distinction between frequency and

wavenumber as there is in ultrafast AFC: they are essentially the same variable.

The adiabatic variation can be performed by one EOM, to change the cavity length(s). This

would be realized by a linearly varying voltage. One can assume that the free spectral ranges

would remain approximately the same. However, changing the cavity length would mean that

spectral modes in opposite polarizations would come in and out of coherence (at each round trip)
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as their wavenumbers cross, enabling avoided crossings. A second polarization EOM could realize

the coupling, transferring small amounts of energy from one polarization to the other during each

round trip. It would by driven with a number of frequency tones at a given amplitude. These

tones couple modes from opposite polarizations, separated by the given frequency. Any energy

not transferred to a cavity mode will dissipate. Since we expect the frequency differences between

the two polarizations modes to be unique (since the FSRs are real numbers with no common

multiple), and the coupling can be changed throughout the evolution, we can expect to be able to

address individual transitions.

Other experimental considerations

There were other minor experimental considerations that should be addressed in an ideal version

of the experiment presented in Chapter 1.

As shown in Fig. 1.6, the DOPA pump is generated from the main 1030 nm laser, through

an OPA process. Because it is amplified from a seed laser, this process risks being excessively

noisy, meaning the DOPA pump could have slight variations in every shot. This was not the

case in our experiment, as verified experimentally by measuring the pulses coupling out of the

waveguide using a photodiode. However, this is an important consideration and a risk in any

new and similar experiment.

Related to this was the experiment’s stability. The beam path of the whole experiment, mainly

due to the pulse shaper, was about 5 m to the DOPA from the 1030 nm laser, and approximately

another 2 m to the camera. This made the experiment very susceptible to misalignment and vibra-

tions, and not practical for long experiment run times. This was despite the face that a vibration

143



isolation table was used, as well as an enclosure to minimize thermal fluctuations and stray light.

Finally, we considered increasing the AFC pump bandwidth using self-phase modulation, to

improve the quantum frequency-mode coupling, as in discussed in Chapter 1 Appendix K. How-

ever, given the power limitations, we could not afford losing any significant amount of pump

power, for example by coupling into fiber (e.g. photonic crystal or highly nonlinear fibers). Simi-

larly, in free space, self-focusing effects create significant undesired spatial-spectral coupling, un-

less some nontrivial and novel techniques are used to mitigate this. Therefore, the most practical

solution is to reduce the power requirements by moving away from free space optics for the AFC,

and moving to integrated photonics, as discussed previously.

Frequency domain in the future of quantum optics

+ =

Trapped
squeezed states

Broadband frequency
transformations

High fidelity,
programmable

Gaussian states?

Figure 4: Frequency domain quantum optics using spectro-temporal traps and beamsplitters.
SFG traps could be used to prepare squeezing in multiple frequency modes and without unwanted
higher-order supermodes. Frequency conversion can then be used to programmably entangle the
squeezed states, by appropriately tuning the classical pumps. This scheme has the potential to
allow us to prepare multimode squeezed states with high fidelity and at arbitrary wavelengths,
which would simplify the requirements for single-photon detection, for the choice of squeezing
wavelengths, and for waveguide dispersion engineering.

Generally, there are other quantum-optical states of interest for computing and sensing, be-

sides multimiode squeezed states. For example: cat, GKP (Gottesman–Kitaev–Preskill), and NOON
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states. So far, these states have been largely out of reach of photonics other than in a few proof-

of-concept demonstrations. Currently (i.e. excluding the use of few-photon nonlinearities), the

most promising theoretical way to produce the first two is by partial measurement of entan-

gled squeezed states, to (non-deterministically) project the remaining modes into the desired state

[177, 178].

Pulsed Laser

Tunable CW
Laser

Pulse Shaper

OPA AFC

PBS

Waveguide

H
W

P

PBS

Figure 5: Experiment demonstrating a quantum-coherent spectro-temporal beamsplitter. This is
an experimental sketch of a frequency-domain beamsplitter converting two-mode squeezed states
into two single-mode squeezed states, as discussed in the first part of Chapter 2, thereby demon-
strating the idea. We can design a waveguide to perform two-mode squeezing, followed by AFC,
within two contiguous poling regions. The poling frequency is denoted as kQPM, and effective
nonlinearity (reduced frequency component in the poling grating) is denoted as deff. The most
straightforward design uses Type-II two-mode squeezing: degenerate signal wavelengths, but in
different polarizations. The waveguide must be dispersion engineered such that the two signal
polarization modes have equal and opposite group velocity in the OPA pump frame, and mini-
mal group velocity dispersion, as discussed in Chapter 2 Appendix E. The two-mode squeezing
requires a pulsed laser, shaped to the correct bandwidth and chirp, also reviewed in Appendix E.
The conversion can be performed using a single (quasi-)continuous-wave laser and using both
Type-II and Type-0 sum frequency generation to convert both signal polarizations into one. These
two processes require: both polarizations to be pumped; that the conversions must yield 100%
and 50% respectively; and that the pumps have a phase difference of ϕ. This can be realized by
adjusting the power ratio between the two polarizations (with a half-wave plate (HWP) and polar-
izing beam splitter (PBS)), applying a tunable phase to one pump, and recombining them. Finally,
tuning the AFC pump wavelength can compensate for small fabrication imperfections resulting in
time delay errors. Shifting the pump wavelength shifts the position of the two conversion points
such that the two signals can be made to overlap at the second point.
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However, we do not currently have a way to robustly generate single-mode squeezed states.

As vacuum squeezing is increased and the photon numbers increase, the process transitions from

spontaneous to stimulated emission. This changes the state evolution in ways that are difficult

to predict a priori, and single-mode squeezed vacuum usually evolves to become multimode,

introducing undesired degrees of freedom and distinguishability. This is a widely recognized

problem [7]. Outside of achieving high (few-photon-induced) nonlinearites to potentially avoid

using highly squeezed states as the precursor altogether, this implies the need to discover ways to

produce squeezing with theoretical guarantees of single-modedness, as well as reprogrammable

photonics to allow feedback throughout the squeezing process. This was one another motiva-

tion for the work presented in Chapter 2, in which we theoretically explored some promising

approaches for achieving single-mode quantum optics. Furthering our understanding of how to

obtain single-mode squeezing, and eventual experimental demonstrations of these techniques, is

likely to be impactful. Ideally, it should be possible to trap multiple frequency modes simulta-

neously, interfere them using spectrotemporal beamsplitters using AFC, and perform frequency-

based measurements. This is illustrated in Fig. 4.

The two concepts could initially be demonstrated separately. Demonstrating the beamsplitter

would essentially involve a demonstration of the concepts presented in Chapter 2 Section 2; a

tentative experimental sketch is shown in Fig. 5. Demonstrating traps, without including the

OPA, might be somewhat more straightforward experimentally. It would involve measuring the

spectral response of an SFG crystal pumped with the shaped pulse, and observing an immutable

spectrum with respect to the input seed – that of the trapped mode. The constant shape of this

spectrum would be evidence of the trapping process.
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stein, W.S. Kolthammer, I.A. Walmsley, Pure single photons from scalable frequency multi-

plexing. Phys. Rev. Appl. 14(1), 014052 (2020)

149

http://doi.org/10.1126/science.abe8770
http://doi.org/10.1103/PhysRevLett.127.180502
http://doi.org/10.1103/PhysRevLett.127.180502
http://doi.org/10.1103/PhysRevLett.131.150601
http://doi.org/10.1103/PhysRevLett.131.150601
http://doi.org/10.1038/s41586-022-04725-x
http://doi.org/10.1038/s41586-022-04725-x
http://doi.org/10.1364/OPTICA.4.000008
http://doi.org/10.1364/OPTICA.4.000008
http://doi.org/10.1038/s41467-018-03254-4
http://doi.org/10.1038/s41467-018-03254-4
http://doi.org/10.1364/CLEO_QELS.2017.FTu1F.1
http://doi.org/10.1103/PhysRevApplied.14.014052
http://doi.org/10.1103/PhysRevApplied.14.014052


[26] C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B.E. Little, S.T. Chu, T. Johnston,

Y. Bromberg, L. Caspani, et al., Generation of multiphoton entangled quantum states by

means of integrated frequency combs. Science 351(6278), 1176–1180 (2016)

[27] M. Cabrejo-Ponce, A.L.M. Muniz, M. Huber, F. Steinlechner, High-dimensional entangle-

ment for quantum communication in the frequency domain. Laser & Photonics Reviews,

2201010 (2023)

[28] J.R. Basani, M. Heuck, D.R. Englund, S. Krastanov, All-photonic artificial-neural-network

processor via nonlinear optics. Phys. Rev. Appl. 22(1), 014009 (2024)

[29] N. Liu, Y. Liu, J. Li, L. Yang, X. Li, Generation of multi-mode squeezed vacuum using pulse

pumped fiber optical parametric amplifiers. Optics Express 24(3), 2125–2133 (2016)

[30] A. Omi, A. Hosaka, M. Tomita, Y. Yamagishi, K. Wakui, S. Niimura, K. Takahashi,

M. Takeoka, F. Kannari, Independently programmable frequency-multiplexed phase-

sensitive optical parametric amplification in the optical telecommunication band. Opt. Ex-

press 29(14), 21683–21697 (2021)

[31] Y. Yamagishi, A. Hosaka, K. Tanji, S. Kurimura, F. Kannari, Arbitrary mixing of frequency-

range multimode quantum states using nonlinear waveguide crystals based on dispersion

engineering. In: OSA Nonlinear Optics 2021. NM2B.4. Optica Publishing Group, Washington,

DC, United States (2021)
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