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Moore’s law continues to push the boundaries of capabilities with today’s digital

electronics, albeit with a much slower rate than decades prior. The end of Dennard

scaling has similarly made digital electronics difficult to continue scaling with energy

efficiency. The breakdown of these two observations first made in the early days of

computing have led to important consequences in today’s computing needs: Large-

scale compute needed by artificial intelligence systems now require warehouses full

of computers, and embedded smart-sensors for edge computing are limited by the

energy efficiency of digital electronics. Analog computers have emerged as a plat-

form for performing sensing and machine learning tasks owing to their energy ef-

ficiency, the ability to interface directly with the analog world, and the robustness

of certain tasks like machine learning to hardware imperfections. In this thesis, we

present two experiments that demonstrate two novel applications of analog comput-

ing with physical systems. In the first experiment, we construct a highly-multimode

frequency domain fiber laser that is capable of simulating physics in two- and three-

dimensional large-scale lattices. We leverage the programmability and scale of

our simulator to study exotic condensed matter phenomena, such as time-reversal

symmetry-breaking, non-Hermitian physics, and dynamics in non-Euclidean geome-

tries. In this work, we simulate lattices with up to 100,000 sites – orders of magnitude

greater than previously achieved in photonic simulators. In the second experiment,

we describe and perform a proof-of-principle demonstration of a new form of appli-



cation for quantum devices. In between the fields of quantum sensing and quantum

computation, we perform microwave signal processing on ultra-low power signals,

and propose a route towards achieving a quantum computational-sensing advan-

tage: a quantum advantage in performing a computational task on analog signals

that are inaccessible to any classical receiver. Our results provide the first step to-

wards achieving such an advantage.
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CHAPTER 1

INTRODUCTION

1.1 Analog computing

For much of computing history, computing has taken its form in physical, dynamical

systems. In ancient through medieval times, physical systems were built to perform

computations, whether to perform abstract numeric calculations or directly predict

trajectories of physical systems, e.g. astrological bodies, by analogy. Examples of

these early analog computers can be found across civilizations such as the Sumerian

abacus, the south-pointing chariot from 5th-century BCE China [37], or the from 3rd-

century BCE Greece [36]. One of the most successful analog computers today, the

clock, is a dynamical system that serves as a highly-abstracted analog of our solar

system, calculating the trajectories of the Earth’s rotation and orbit around the sun.

Analog computers continued to develop in sophisticated mechanical, hydrody-

namic, and other platforms until the invention of the transistor after the second world

war, ushering in the era of digital computing. The incredible success of the transis-

tor, likely the most impactful piece of technology ever created, enabled exponential

improvement of computing power year over year, displacing analog computers and

monopolizing the way we compute. This exponential growth in computing power,

famously predicted in 1965 by Gordon Moore and subsequently known as Moore’s

Law, is owed to the doubling of transistors that can fit on a single chip every two

years. A related scaling, known as Dennard scaling, was the observation by Robert

Dennard that the power density was constant for a chip area even as you increase the

number of transistors. The combination of Moore’s law and Dennard scaling led to

decades of sustained exponential growth in computing performance, leading to new
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classes of computers, applications, and industries.

The technological growth propelled by Moore’s Law and Dennard scaling have

in recent years begun to slow or end. Dennard scaling ended around 2006 [15], and

has since left the industry to focus largely on multi-core processors to achieve en-

ergy efficiency. Moore’s law in turn has begun to slow down, effectively making the

number of transistors double every 20 years, as opposed to every 2 years as it did

at the end of the twentieth century [51]. Despite this technological slowing, the ap-

petite for compute has skyrocketed in recent decades due to the rise in popularity of

large AI models. The amount of computation required to train large models has been

doubling every 3.4 months since 2012 [101], far outpacing the growth of processor

performance even in its period of fastest growth at the end of the twentieth century.

In turn, those tasked with training these models have resorted to hosting these mod-

els in large warehouses containing 100,000 servers acting as one single gigantic com-

puter. In an entirely separate vein, the demand for small-scale but power-efficient

computing has also grown as new applications in edge computing have emerged. In

edge computing, small scale computations are performed on edge devices that can be

equipped with sensors, and can therefore processes data directly and make real-time

decisions before sending it to a larger cluster. Example trends in edge computing

include smart cameras [16], in-sensor computing [137], and machine-enabled smart

sensors [5]. Crucially, these technologies relies on highly energy-efficient compute.

Whether the application concerns large-scale machine learning or low-power edge

computing, the lack of a sustained Moore’s law and Dennard scaling have brought

significant challenges to present-day digital computing.

In recent years, analog computing has been undergoing an renaissance, in part

due to the challenges stated above faced by digital computing, but also due to a ma-
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turity in emergent technologies outside the semiconductor industry such as telecom-

munications optics and other platforms which are less suited for digital computa-

tion. Additionally, quantum computation, a special kind of analog computing that

promises enormous strides in both computing and sensing, has seen great progress in

the past decade. Here, we describe quantum computers as analog since, even in gate-

based paradigms, gates and states are parameterized by continouos-valued numbers.

While digital computation will likely remain the only way to perform fault-tolerant

(classical) computation in the foreseeable future, analog computers have gathered

interest in the last decade as special-purpose devices that are highly adept at solving

specific computational tasks – tasks that do not require perfect, error-free calculations.

AI models, for example, do not require fault-tolerant computation, with some recent

successful models such as diffusion-denoising probabilistic models [52] explicitly re-

lying on built-in noise. Other example tasks that are robust to noise and hardware

imperfections include simulations of differential equations and other applications of

scientific computing, combinatorial optimization [91], and cryptography [97]. The

computations in these tasks can have some noise while still being useful, making

them good candidates for analog computers. What makes analog computers poten-

tially better suited for the above tasks over their digital counterparts is due to three

primary features inherent to analog computing. First, analog computers can readily

make use of multiple degrees of freedom to perform massively parallel computations.

Second, given the real world is analog and not digital, analog computers can directly

interface with real-world data and process it in real-time, similar to today’s digital

edge devices, but without the need to perform the analog-to-digital conversion. Fi-

nally, to solve a particular problem, the analog computer can be constructed to model

the problem directly, such as the evolution of a given dynamical system, without the

use of extra resources. Finally, platform-specific benefits such as very high energy
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efficiency can make analog computers uniquely positioned to solve certain tasks.

The focus of this thesis is the construction of two analog computers built on two

very different technologies, and showcase them on solving two highly-specialized,

but very different problems. The first system is an multi-mode optical system that

leverages the high bandwidths inherent to optics to perform large-scale analog simu-

lations of lattice systems. The second system we construct is a small-scale but highly

sensitive quantum mechanical system that performs machine learning tasks on ultra-

low power microwave signals. While both of the systems studied in this thesis rely on

different technologies, the studies on each of these systems offer a proof-of-principle

demonstration of using an analog computer to solve a particular problem leveraging

benefits unique to that technology.

1.1.1 Analog computing with microwave and visible optics

The recent interest in building optical analog computers follows several decades of an

optical-communications boom, as well as thrusts in optical technology from advanc-

ing consumer electronics, such as cameras in smartphones and tablets. This commer-

cial technological growth has been complemented by both academic developments

in photonic integrated circuits [34] and exotic photonic materials [14]. These devel-

opments have enabled researchers to begin to address the limits faced by digital com-

puters in modeling power-hungry neural networks, but also analog simulators and

combinatorial optimizers.

Optical analog computers come with particular benefits that make it an attractive

platform over other platforms for specific tasks; here, we discuss some of these ben-

efits. In particular, extra large bandwidths, low loss, and the minimal cross-talk are
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primary features of optical systems that we will discuss and that the work in this the-

sis leverages. For a more complete discussion on the benefits of optics, especially as it

pertains to performing machine learning using analog optical systems, see Ref. [87].

In an extremely crude sense, visible optics 1 is similar to microwave optics, ex-

cept the waves have a much shorter wavelength. Of course, this deceivingly small

difference leads to enormous differences in not just practical technological aspects,

but fundamental ones too. Nonetheless, this is a physical truth with important prac-

tical consequences. For example, linear spatial structures capable of hosting light,

e.g. resonators, are typically orders of magnitude smaller than those for microwaves,

enabling compact and scalable structures in photonic integrated circuits. Another

important consequence of the much shorter wavelength, in particular for quantum

technologies, is that the energies require to excite photons at visible wavelengths is

much larger than the thermal energy at room temperatures. This important fact en-

ables quantum technologies at room temperatures, whereas microwave quantum de-

vices can only operate in environments at a few millikelvin, which would otherwise

be bombarded thermal photons.

Both microwave and photonic technologies operate in a bandwidth on the order

of the frequencies of their respective band. This gives optical platforms bandwidths

many orders of magnitude larger than what is achievable in digital microwave elec-

tronics, which are typically limited to a few GHz. Even with analog microwaves,

this bandwidth increases by only another factor of 5-10. One can leverage the large

bandwidth at visible frequencies to construct systems with a number of degrees of

freedom in the millions, something that is completely out of reach in the microwave

regime. With global operations acting across optical bandwidths, this enables parallel

1We will call visible optics as “optics” or “photonic” for simplicity. When microwave optics are
discussed, the word microwave will always precede the word optics.
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operations with extremely high throughput.

Due to the Coulombic interaction energies, nonlinear dynamics can be readily

constructed in electronics, both analog and digital. Nonlinear materials at optical

wavelengths on the other hand are very challenging to produce. On the other hand,

the difficulty in light at optical frequencies interacting with matter comes with other

benefits. Namely, light can travel in vacuum or other dielectric materials with re-

markably low loss. Additionally, there is very little potential for cross-talk between

different traveling waves. These benefits makes optics a very attractive platform for

analog computing. For quantum applications, the lack of strong non-linearities has

been a challenge for optical frequencies, despite the low loss available to optical ap-

proaches. As a result, quantum computing in the photonic domain has chiefly relied

on single-photon detectors as the source of non-Gaussianity for compiled quantum

circuits, and this has led to the development of measurement-based quantum compu-

tation (MBQC). Microwave quantum circuits on the other hand have benefit from the

strong nonlinearity imbued by Josephson junctions, and rely on superconductivity to

keep losses in the physical circuits to a minimum.

1.2 Outline of this thesis

Chapter 2 provides an introduction to the background tools needed in our study of

analog simulators in classical visible optics and quantum microwave optics. We first

derive the coupled mode equations for a ring resonator with an embedded amplifier

and phase modulator from Maxwell’s equations. We then introduce superconducting

qubits as a platform for microwave quantum optics and briefly discuss the physics of

transmons, the most popular implementation of a superconducting qubit.
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Chapter 3 discusses our work in the construction of a large-scale photonic sim-

ulator in the frequency domain. In this system, linear bosonic lattice systems are

simulated by encoding lattice sites in the longitudinal modes of a very long fiber ring

cavity. Using a nonlinear element, these modes are then coupled together to host a

variety of programmable lattices in one-, two-, and three-dimensions. We study and

measure the band structure in each of the lattices we instantiate and study the dy-

namics of on these lattices for various excitations. Leveraging the programmability

and especially the long-range connectivity, we instantiate systems with broken time-

reversal symmetry, non-Hermitian transport, and non-Euclidian geometry in lattices

with 10,000-100,000 lattices sites.

Chapter 4 discusses our work in a proof-of-concept demonstration of a new ap-

plication between the fields of quantum sensing and quantum computing. Using a

simple qubit-oscillator system, we use a reservoir computing framework to perform

non-trivial signal-processing on ultra-low power signals. We evaluate the possibil-

ity of a new form of quantum advantage, a computational-sensing advantage, where

we imagine a device capable of performing a computational task on signals that are

outside the detection ability of any classical receiver. Our experiments in this chapter

provide a proof-of-principle demonstration towards building such a device.
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CHAPTER 2

BACKGROUND

This chapter provides a basic introduction to the physics of optical ring resonators

and superconducting qubit circuits that much of the rest of the dissertation is based

upon. We will first introduce ring resonators, optical amplifiers, and electro-optical

modulation within the context of how each contribute to the large bandwidths we

leverage in constructing an ultra-large photonic simulator. Next, we will introduce

the physics of superconducting qubits, particularly, that of the transmon qubit. We

will discuss how transmons can form a qubit subspace, then discuss the physics of a

combined oscillator-qubit system.

2.1 Optical ring resonators

Light is a time-dependent electromagnetic field with wavelengths that span from

sub-nanometers to kilometers and larger. Here we introduce the physics of electo-

magnetic fields in optical resonators. Electromagnetic fields, composed of an electric

field E and a magnetic field B, are described by Maxwell’s equations:

∇ · E =
ρ

ϵ0

∇ · B = 0

∇× E = −∂B
∂t

∇× B = µ0J + µ0ϵ0
∂E
∂t
,

where ρ is a charge density, J is the current density, ϵ0 = 8.85× 10−12 F/m is the elec-

trical permittivity in vacuum and µ0 = 4π × 10−7 H/m is the magnetic permeability

in vacuum. In the bulk of a dielectric medium at optical frequencies, there are no free
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charges or currents, i.e. ρ = 0 and J = 0, and Maxwell’s equations can be reduced to

Maxwell’s wave equation:

∇2E =
1

ϵ0c2
∂2P
∂t2

+
1

c2
∂2E
∂t2

, (2.1)

where c = 1/
√
ϵ0µ0 is the speed of light, and P is the polarization field describing the

response of electrons in a material to an externally applied electric field:

P = ϵ0
(
χ(1)E + χ(2)E2 + . . .

)
. (2.2)

The χ’s are tensors that describe the susceptibility of the material. The first term

in the sum is the linear response of a material. The second and third term are the

most commonly studied responses, and underlies much of non-linear visible optics.

In microwave, where non-linearities can become extreme, higher order terms in the

above sum can become important.

In a ring resonator, the waves propagate in one dimension within a linear medium

with periodic boundary conditions such that E(x, t) = E(x + L, t) for a resonator

of length L. One can rewrite Maxwell’s equation for an electric field with a fixed

polarization along z traveling in a ring resonator with periodic boundary conditions:

2πc

nL

∂Ez

∂ϕ
= −∂Ez

∂t
− Ez

1

n

∂n

∂t
(2.3)

where ϕ is the coordinate along the resonator with ϕ = ϕ+2π, and n =
√
1 + χ(1) is the

refractive index of the material, which in general can depend on ϕ and t. Expanding

the electric field within the resonator in terms of the resonator modes, we obtain

Ez(ϕ, t) =
∑
m

Cmam(t)e
−imϕ + c.c. (2.4)

The prefactors Cm are fixed so that |am|2 represents the photon number flux for

mode m. Substituting this into Maxwell’s equations, for a homogenous and time-

independent material, i.e. n(ϕ, t) = n, and making use of the orthogonality of e−imϕ,
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we arrive at the dynamical equation for the mode amplitudes

ȧm(t) = iωmam(t). (2.5)

The eigenvalues ωm = m × 2πc/nL are the frequencies of the mth mode in the res-

onator, and form an equally-spaced comb of frequencies.

Equation 2.5 describes the time-evolution of modes in a ring cavity in the absence

of loss. Loss is typically mitigated with an optical amplifier, which typically intro-

duce nonlinear effects. The nonlinear gain and loss in a ring resonator are typically

modeled as

ȧm(t) =

(
g

1 + u/Es

− ℓ

)
am(t) (2.6)

where g is the linear gain, ℓ is the loss, and u =
∑

m |am|2 is the power in the cavity.

Equation 2.6 is related to Eq. 2.5 with the addition of the gain and loss terms, in

addition to the rotating frame transformation am → ame
iωmt. The non-trivial steady

state solution to Eq. 2.6 is given by
∑

m |am(t)|2 = Es(
g
ℓ
− 1). This solution describes a

stable manifold on a hypersphere in the space of amplitudes centered at {am(t)} = 0

with radius
√
Es(g/ℓ− 1). This regime describes a laser that is above threshold, with

intracavity power u proportional to the gain g. The trivial solution with {am(t)} = 0

describes a laser that is below threshold, with the transition occurring at g = ℓ.

To summarize the discussion so far: with an optical amplifier residing inside a

cavity, we can sustain a set of equally spaced modes. These modes are separated in

frequency by an amount inversely proportional to the resonator length, and will gen-

erally span a bandwidth supported by the amplifier. Optical amplifiers can generally

support bandwidths of 10-100s of THz. A fiber loop cavity that is a couple hundred

meters long will have mode spacing on the order of a few MHz. By adding an op-

tical amplifier within such a fiber loop enables the support of potentially millions of

frequency modes that could encode and process information. The discussion so far
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however, has only touched on the ability to encode or store information.

To manipulate information in a fiber loop cavity, there are a few avenues. Here, we

will only cover the use of an electro-optic modulator to manipulate the light stored

in the longitudinal modes in a fiber cavity. The electro-optic effect is the nonlinear

effect in which a material’s refractive index will change as a response to an applied

electric field. An electro-optic modulator (EOM) is constructed from a material with a

strong second-order nonlinearity, typically Lithium Niobate (LiNbO3). A plane wave

passing through an EOM that is being drived by an AC voltage with pick up an

additional phase, i.e. a(t) → a(t)eiϕ(t), where ϕ(t) is proportional to the applied RF

bias.

We can model an EOM residing in the cavity by treating the refractive index in a

resonator as time-independent and homogeneous, except for a section of lengthw, i.e.

n(ϕ, t) = n0 + n1(t)Θ(ϕ/ϕw), where Θ is the Heaviside function and ϕw = 2π × 2w/L.

Substituting this into Eq. 2.3 and neglecting the last term, since the RF modulation

speeds ∂n/∂twill be much slower than the dynamics at optical frequencies, we obtain

ȧm(t) = i
c

L

∑
l

[√
lm

∫ 2π

0

ei(l−m)ϕdϕ

n0 + n1(t)Θ(ϕ/ϕw)

]
al(t)

≈ i
c

L

∑
l

[√
lm

∫ 2π

0

ei(l−m)ϕ

n0

(
1− n1(t)

n0

Θ(ϕ/ϕw)

)
dϕ

]
al(t)

= iωmam(t)− i
2πw

n2
0L

2
n1(t)

∑
l

√
lm sinc

(
(l −m)w

2πL

)
al(t) (2.7)

The first term is the same term in Eq. 2.5 describing the oscillation of the mode field

in the cavity, and the second term describes the coupling between the modes, with

coupling strength determined by the magnitude of the AC refractive index n1(t). By

choosing a modulation with a specific frequency, one can selectively couple modes

that are spaced apart by the modulation frequency. To see this, one can substitute

n1(t) = cos(Ωt) with Ω = ωn−ωn+1. Then, by going in the rotating frame and dropping
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fast oscillating terms, the only terms that will remain are nearest-neighbor modes. A

cos(kΩt) modulation tone will couple modes that k apart. A secondary way to see this

is to observe that the action of adding a phase to a propagating wave can be described

in the basis of frequency modes as

U = FeiNF † (2.8)

where N is a diagonal matrix encoding the modulation of the refractive index n(t)

such that Nii ∝ n(t = i) and Fjk = (e−2πi/M)jk is the discrete Fourier transform over

M modes. The equation above sets constraints on the time evolution operator U ,

namely that it is a unitary Toeplitz operator, that is, a unitary matrix with constant

diagonals. Such an operator describes a translationally invariant coupling.

2.2 Superconducting microwave circuits for quantum computing

Here, we give an introduction to the simplest type of superconducting microwave

qubit, the transmon qubit [71]. The transmon is composed by a Josephson junc-

tion shunted by a capacitance. The corresponding Hamiltonian can be written in

the charge basis {|n⟩}, where n refers to the number of cooper pairs on the supercon-

ducting island and can take any integer value:

H = 4EC(n− ng)
2 − EJ

2

∑
n

|n⟩⟨n+ 1|+H.c.. (2.9)

The first term is the charging energy of the capacitor, where EC = e2/2C is the sin-

gle electron charging energy of the capacitor with capacitance C, and ng is an offset

charge set by a local voltage biasing line. The second term is the energy associated

with Cooper pairs tunneling through the Josephson junction, with a characteristic

Josephson energy EJ = ϕ2
0/2LJ , where ϕ0 is the reduced flux quantum and LJ is

12



the inductance of the junction. The second term in the Hamiltonian of Eq. 2.9 is like

a nearest-neighbor tight-binding model, where instead of lattice sites, the term de-

scribes the energy required to change the offset charge. For a transmon, EJ ≫ EC ,

and this term dominates. We can therefore diagonalize this term in the flux basis ϕ

by using the identity |n⟩ = 1
2π

∫ 2π

0
dϕe−inϕ|ϕ⟩:

H = 4EC(n− ng)
2 − EJ cos(ϕ). (2.10)

The success of the transmon is owed largely to its inherent exponential suppres-

sion to charge noise, or fluctuations in ng. To quantize the transmon, we first note that

typically in the transmon limit EJ/EC > 50, which puts the first few excitations deep

in the cosine well. We can therefore expand the the cosine potential to fourth-order

to obtain

H = 4EC(n− ng)
2 − EJ

(
1− ϕ2

2!
+
ϕ4

4!
− . . .

)
. (2.11)

We can quantize the above Hamiltonian by introducing the creation and annihilation

operators, defined as

n = i

(
EJ

8EC

)1/4
a− a†√

2

ϕ =

(
EC

8EJ

)1/4
a+ a†√

2

These operators obey the commutation relation [a, a†] = 1. Substituting in these op-

erators into Eq. 2.11 and normal ordering, we obtain

H/ℏ = ωaa
†a− αa†a†aa (2.12)

where ℏωa =
√
8EJEC − EC is the frequency of the transmon in its ground state, and

α is the anharmonicity, or self-Kerr, or the transmon. The first term is that of a har-

monic oscillator, and the second term is an anharmonic correction. This anharmonic-

ity is what enables one to isolate a qubit subspace within the full transmon manifold.
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This is due to the fact that transitions in an nonlinear oscillator have unique frequen-

cies and therefore can individually be addressed. For a transmon, the anharmonicity

typically resides between 150-300 MHz.

Next, we describe the physics of a transmon coupled to an oscillator. The resultant

interaction between the two is what will enable us to readout the state of the trans-

mon qubit. A linear coupling of the transmon to the oscillator will result in the two

modes hybridizing into a set of eigenmodes. Two important consequences of this hy-

bridization is that (1) the linear oscillator mode will inherent an anharmonicity from

the junction, and that (2) the combined system will have a nonlinear interaction.

Adding an additional resonator to the Hamiltonian in Eq. 2.11 with linear cou-

pling to the transmon, we obtain

H/ℏ = ωtt
†t+ ωrr

†r + g(t†r +H.c.)− EJ

4!
ϕ4 (2.13)

where we have renamed the transmon creation and annhilation operators from a to

t, r and r† is the creation and annhilation operators for the resonator mode with reso-

nance frequency ωr, and g is the strength of the linear coupling. In the above equation,

we have kept the nonlinearity in the flux basis. Diagonalizing out the third term to

remove the linear coupling introduces a new basis t̃ and r̃. The flux operator in this

basis is then ϕ =
∑

n ϕn(an + a†n), where {an} = {t̃, r̃}, and the ϕn’s are determined by

the requirement that the linear part of the Hamiltonian is diagonal in the operators.

Substituting in ϕ, we obtain

H/ℏ = ωtt̃
†t̃+ ωrr̃

†r̃ − EJ

4!

(∑
n

ϕn(an + a†n)

)4

(2.14)

By expanding the last term, normal ordering, and removing fast oscillating terms, we

obtain the so-called dispersive Hamiltonian

H/ℏ = ωtt̃
†t̃+ ωrr̃

†r̃ − χtt

2
t̃†t̃†t̃t̃− χrr

2
r̃†r̃†r̃r̃ − χtr t̃

†t̃r̃†r̃ (2.15)
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Here, the second and third term are the renormalized anharmonicity and the inher-

ited anharmonicity of the transmon and resonator respectively, and the final term is

the cross-Kerr interaction between them. This last term describes a state-dependent

frequency shift of the resonator depending on the state of the transmon, or a fre-

quency shift of the transmon depending on the state of the resonator. As mentioned

previously, the dispersive Hamiltonian is what enables readout of the transmon qubit

state. By measuring the frequency of a dedicated ”readout resonator”, one measures

and projects the state of the qubit.
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CHAPTER 3

PROGRAMMABLE LARGE-SCALE SIMULATION OF BOSONIC TRANSPORT

IN OPTICAL SYNTHETIC FREQUENCY LATTICES

This chapter is based on the following publication:

• Senanian, A., Wright, L.G., Wade, P.F., Doyle, H.K. and McMahon, P.L., 2023.

Programmable large-scale simulation of bosonic transport in optical synthetic

frequency lattices. Nature Physics, 19(9), pp.1333-1339.

3.1 Introduction

Simulations have long been used to understand emergent phenomena in complex

many-body systems. Special-purpose analog simulators trade off the generality of

digital implementations for either scalability or access to regimes challenging for dig-

ital computers. In this regard, photonic analog simulators [74, 79, 48, 92, 122, 121]

complement developments in platforms like superconducting circuits [58, 67] and

ultracold atoms [100] by enabling, in principle, extremely large-scale simulations.

Photonic simulation has a long history and has led to the discovery of a variety of

phenomena challenging to realize in conventional condensed-matter systems, such

as topological phase transitions [94, 82, 27, 81, 76] and non-Hermitian exceptional

points [31, 53, 126], which in turn has led to new photonic devices with applications

far beyond basic physical science [6, 54].

Although telecommunication technologies routinely utilize the high-bandwidth

inherent to optics, harnessing the frequency parallelism of light for large-scale ana-

log simulation has largely remained unexplored. One promising approach is to im-
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Figure 3.1: Simulations of large-scale bosonic transport with programmable pho-
tonic simulator. (a) Dynamic modulation of a fiber ring resonator couples frequency
components of the intra-cavity field in each round-trip, represented in the basis of the
frequency modes as U = F †eiV F . Here, V ∝ diag(v⃗) is the diagonal voltage opera-
tor defining the modulation signal v⃗ = (v(t1), v(t2), . . . , v(1/Ω)), and F is the discrete
Fourier transform. The components of the voltage modulation define the coupling
(bottom). By modulating at multiples of the mode spacing (Ω), we only couple long
lived modes of the cavity, allowing for injected signals to propagate in frequency for
many multiples of the round-trip time. (b) Engineered long-range coupling maps the
one-dimensional spectrum to L × L two-dimensional lattice with twisted boundary
conditions. As L grows large, the lattice approaches a smooth 2D plane. (c) A set of
voltage signals defining lattices in 2 and 3 dimensions (top; see main text and Fig-
ure 3.12 for details), and the response to a single frequency drive (single-site) for a
twisted 2D square lattice with over 20,000 lattice sites compared with tight-binding
simulations of a 2D square lattice (bottom).

plement synthetic frequency dimensions [113, 95, 28, 56, 121, 29], in which optical

frequency modes are mapped to lattice sites to perform bosonic analog simulations.

Simulators using synthetic frequency dimensions have been shown to be versatile,

implementing synthetic electric and magnetic fields [10, 75, 33], non-Hermitian cou-

pling [120, 121], and nonlinear interactions [33, 118]. So far, however, these demon-

strations have been confined to small lattice sizes, with limited programmability and

restricted initial conditions.
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Here, we demonstrate a frequency-mode-based platform that can simulate trans-

port of arbitrary excitations in planar and non-planar optical lattices with up to

100,000 sites – orders of magnitude greater than achieved previously in photonic

simulators with programmable geometry [132]. By pursuing a dense spectrum with

MHz mode spacing, we leverage developments in both optical frequency combs

and high-frequency optoelectronics to manipulate and probe a large number of op-

tical frequency modes in a ring cavity. Additionally, these technologies enable a

wide-bandwidth measurement scheme and arbitrary encoding of both amplitude and

phase of input states, allowing fine resolution and control of bosonic transport. We

leverage the scale and programmability of our simulator with three key demonstra-

tions. First, our simulator can read out momentum-space features with high resolu-

tion, enabling us to measure band structures of various multi-dimensional lattices.

Second, we observe both the real- and momentum-space signatures of time-reversal-

symmetry breaking due to an effective gauge field in a two-dimension triangular lat-

tice, an important step towards the realization of the photonic quantum valley Hall

effect [47, 83, 62]. Third, we observe hierarchical transport across several orders of

magnitude of length scales within a non-planar tree-like network, a toy model for

quantum gravity and p-adic AdS/CFT correspondence [46, 9].

The class of Hamiltonians that our system is able to simulate is

H =
∑
i<j

Ji−ja
†
iaj + H.c. (3.1)

Hamiltonians in this class describe non-interacting bosons on translationally invari-

ant lattices. a†l and al are, respectively, the bosonic creation and annihilation opera-

tors for the lth lattice site. The lattice geometries are defined by the complex tunnel-

ing rates Jk = |Jk|eiϕk , which encode the translationally invariant coupling of sites

a distance k apart with amplitude |Jk| and phase ϕk. The main goal of the photonic
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Figure 3.2: Optical band-structure measurements of 2D and 3D lattices. (a) (Top)
The band structure for a twisted 2D square lattice is measured from the time-domain
response of the cavity to scanning single-frequency injection as a function of the de-
tuning ∆ [28], here demonstrated using a pedagogical example with linear lattice size
L = 3. This time-trace output is sliced up into chunks of length L, allowing the re-
construction of a full 2D band structure measured in a single shot (see Figure 3.14).
(Bottom) Reconstructed band structure for a 2D square lattice with large L, compar-
ing theoretical (left) with experimental results (right) for L = 100. As L grows large,
the effect of the twisted boundary condition in the band structure becomes negligible,
and the measured band structure approximates that of a regular 2D square lattice. (b)
Data of the full band structure plotted along slices that connect special points of the
Brillouin zone, compared with theoretical results for a true 2D square lattice (black).
These points, highlighted in the bottom-left, denote locations in momentum space
with high symmetry. The density of states g(E) is directly measured by summing the
time-domain response (right). Band structures and density of states for (c) 2D trian-
gular lattice (L = 100), (d) 3D square lattice (L = 28), and (e) 3D hexagonal lattice
(L = 28).

simulator we present in this work is to be able study the transport of a variety of

single-particle excitations in any Hamiltonian in the class defined by Eq. (1), where

the complex parameters Jk can be programmed arbitrarily – this allows us to study a

diversity of different lattices, including ones that are multidimensional.
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3.2 Results

In the synthetic-frequency-dimensions approach [132] that we adopt, the lattice op-

erators al, a
†
l are associated with the lth frequency mode of an optical cavity, spaced

apart by Ω (the free spectral range of the cavity). The tunneling rates (Jk)k=1,2,3,... are

physically realized using a phase modulator within the optical cavity (Fig. 3.1a) –

intuitively, the modulator creates optical sidebands at the frequencies contained in

the modulation signal v(t) and, by setting these sidebands at harmonics of Ω, these

sidebands cause coupling between cavity modes. Additionally, by setting the am-

plitudes and phases of frequency components in v(t) appropriately, different lists of

tunneling amplitudes (|Jk|) and relative phases (ϕk) can be programmed (Fig. 3.1a),

which in turn realize different lattice geometries (Fig. 3.1c). Our simulator includes

a gain/loss balance term in the Hamiltonian, but this is kept close to zero. Addi-

tionally, phase modulation at Ω produces higher-order sidebands, but these can be

suppressed to negligible amplitudes by appropriately choosing the modulation volt-

age (see Methods).

Although the Hamiltonian in Eq. (1) nominally describes a 1D lattice, we can

implement effective higher-dimensional lattices by suitably programming the cou-

plings (Jk) to reflect the local geometry of a target higher-dimensional lattice. For

example, an effective L × L 2D square lattice can be realized in a non-local 1D lat-

tice by coupling nearest-neighbors and Lth nearest-neighbors, i.e., (Jk)k=1,2,3,... =

(J1, 0, . . . , 0, JL, 0, . . .) (Fig. 3.1b). This produces a 2D lattice with a twisted bound-

ary condition [113, 135], and only approximates a true 2D lattice once L is made to

be very large. Here, any local excitation with finite lifetime will become insensitive

to the boundary. Thus, by pursuing a large number of modes, we can realize effec-

tive lattices in higher dimensions that approximate the true physics. The vanishing
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Figure 3.3: Input state preparation. (a) Scheme for preparing arbitrary input states:
a single frequency tone is modulated with a signal encoding both amplitude and
phase of a given state, producing symmetric sidebands (orange spectrum). The ini-
tial tone and the unwanted sideband is then rejected with a bandpass filter (red en-
velope), leaving only the positive sidebands which are sent into the cavity. (b) Exper-
imental measurements of input states for increasing number of modes programmed
in the input signal for: a standing wavepacket, an angular wave enveloped with a
Gaussian centered at zero, higher angular state enveloped with an offset radial Gaus-
sian, and the Cornell University logo. The steady state outputs of these states for a 2D
L × L square lattice are shown to the right, along with comparision with theory. (c)
We excite momentum eigenstates of a 2D square lattice with momenta in various di-
rections enveloped with a Gaussian. Left shows the representation of the input state
in momentum space k⃗ = (kx, ky), right shows the experimental steady state in posi-
tion space x⃗ = (x, y). Here, local momentum eigenstates are continuously excited at
the center, and propagate with a well-defined momentum before decaying.

effects of the twisted boundary condition can be seen in the steady-state response to

a single-site excitation in the comparison shown in Fig. 3.1c between our experiment

and simulations of a true 2D tight-binding lattice with hard boundary conditions.
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3.2.1 Measurements of band structure

The frequency-multiplexed platform has a convenient encoding of reciprocal space

for lattice systems. In the mapping from lattice sites to frequency modes, time maps

to momentum [28]. Therefore, since the Fourier components of the modulation sig-

nal define the connectivity, the modulation signal in the time domain defines the

band structure. For a 1D lattice, this correspondence is exact: the modulation sig-

nal v(t) = −V0 cos(Ωt) couples nearest-neighbor modes, implementing a 1D tight-

binding chain with band structure E(k) = −J cos(ka). Here the lattice spacing a

is identified with the mode spacing Ω, and momentum k with time t. More gen-

erally, the action of phase modulation on the frequency modes can be expressed

as a unitary operator U = F †eiV F , where F is the discrete Fourier transform, and

V ∝ diag(v⃗) is a diagonal matrix whose values are proportional to the voltage signal

v⃗ = (v(t1), v(t2), . . . , v(1/Ω)). In our simulator, the operator U implements the time

evolution defined by the Hamiltonian in Eq. (1). Thus, the modulation signal v(t)

defines the time evolution in a diagonal basis, and therefore encodes energy eigen-

values of the lattice, i.e., the band structure. As a consequence, this permits us to

encode arbitrary lattices that have with a single-band band structure. Additionally, it

provides us direct access to momentum-space lattice measurements [28].

To extend the momentum-to-time analogy to 2D and 3D, we require large enough

number of modes to eliminate the finite-size effects from the twisted boundary con-

dition. For the above example of an effective 2D lattice, slices of the band structure

along the slow axis (i.e., the axis corresponding to transport along nearest-neighbors)

suffer from an asymmetry near the boundaries of the Brillouin zone (Fig. 3.2a), promi-

nent for small L. This is due to the twisted boundary conditions, which makes the

two directions no longer independent, since L hops along Ω will reach the same posi-
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tion as a single hop along LΩ. Concretely, the asymmetry can be seen by comparing

the two-tone signal we use to generate a 2D lattice, v(t) = −2V0 cos(Ωt)−2V0 cos(LΩt),

and a true 2D tight-binding lattice with nearest-neighbor hopping, which has a band

structure E(k⃗) = −2J cos(kxa) − 2J cos(kya). The latter has two independent recip-

rocal lattice vectors, kx and ky. For L ≫ 1 however, we can rely on a separation of

timescales and treat Ω′ = LΩ as an effective independent degree of freedom. This

approach can be extended to higher-dimensional lattices, e.g. for a 3D square lattice,

Ω, LΩ, and L2Ω are the independent degrees of freedom.

Fig. 3.2a outlines how we extend the methods introduced in Ref. [28] to measure

the band structure of 2D lattice in a single-shot, then slice up the measured band

structure in periods of Tfast = 1/LΩ to reconstruct the 2D full band structure. See

Figures 3.14 and 3.15 in Section 3.4.3 for full details on this reconstruction. As L→ ∞,

the band structure of our effective 2D square lattice approaches that of a regular 2D

square lattice, as seen when comparing Figs. 2a and b. Slices through high symmetry

points of the full band structure are shown in Fig. 3.2c-f for a 2D square, 2D triangular,

a 3D simple cubic, and a 3D hexagonal lattice, along with the respective density of

states for each. Theoretical curves for ordinary tight-binding lattices are shown in

black.

3.2.2 Preparing arbitrary input states

High-bandwidth telecommunications optoelectronics enable the study of transport

in our platform for arbitrary input states. Our scheme is enabled by 12-GHz electro-

optic modulation, summarized schematically in Fig. 3.3a. This technique allows us

to specify the amplitude and phases of input excitations for up to around 4000 lat-
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a b c

Figure 3.4: Time-reversal-symmetry breaking in a 2D triangular lattice due to an
effective gauge field. (a) Complex hopping terms induces a nonzero local magnetic
flux within a plaquette of a triangular lattice. Here, a relative phase is added to one of
three directions incident on a given lattice site. (b) The introduction of the magnetic
field breaks time reversal symmetry, as can be seen in the asymmetry of the K and K’
points in the band structure after performing Pierelis substitution (bottom). (c) Mea-
sured steady state spectral response due to a single-site injection under the influence
of the synthetic local magnetic field. The presence of the synthetic field leads to a
departure from 6-fold symmetry to 3-fold symmetry in the transport. Experimental
data (left) is compared with simulations (right).

tice sites, limited primarily by a bandpass filter (see Methods). Figure 3.3b shows

experimental measurements of various input states, including standing wavepacket

eigenstates, angular wavepackets and a Cornell ‘C’. The right column displays their

respective steady-state response. Here, we are continuously exciting local states and

observing their steady-state dynamics in the presence of loss. The full control over

both amplitude and phase enable us to excite states with net momentum. Fig. 3.3c

shows the steady state response of momentum eigenstates of a 2D square lattice en-

veloped with a Gaussian for a discrete set of nonzero input momenta. Here, we can

directly observe locally excited momentum states propagate in different directions.

The momentum of each input state is labeled by its respective momentum distribu-

tion within the Brillouin zone, shown in the left column of Fig. 3.3c.

By programming the phases and detunings of the coupling Hamiltonian
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(Eq. (3.1)), we implemented synthetic magnetic and electric fields respectively (see

Fig. 3.23 in Section 3.5 for measurements for synthetic electric fields) [75, 30, 78, 19, 10,

134, 106, 105, 88, 133, 102], as well as non-Hermitian models (see Figs. 3.24 and 3.25

in Section 3.5 for realizations of the Hatano-Nelson model in one and two dimen-

sions). Figure 3.4 shows the effect of a synthetic gauge field applied to a 2D trian-

gular lattice, giving rise to a global zero magnetic field, but nonzero local magnetic

field. Adding a relative phase along nearest neighbor hoppings results in an accu-

mulated phase of either eiϕ, or e−iϕ, indicating a local nonzero magnetic flux going

around each plaquette. The sign of the accumulated phase alternates between neigh-

boring plaquettes, making the total magnetic flux through the lattice vanish globally.

Shown in Fig. 3.4b, the addition of this field breaks time-reversal symmetry, which

for the triangular and honeycomb lattices, maps the K to K ′ points [47]. This results

in a reduction of a 6-fold symmetry to a 3-fold symmetry in the transport of injected

light, where propagation of light is prohibited in certain directions, as shown in the

heterodyne measurements of the steady-state density (Fig. 3.4). This time-reversal-

symmetry breaking with local non-zero fields is one key ingredient in observations

of the quantum-valley Hall effect seen in honeycomb lattices [47, 83, 62].

3.2.3 Simulating a lattice with more than 100k lattice sites

In addition to lattices found in traditional condensed-matter systems, our photonic

simulator is capable of simulating systems not realizable in crystalline materials. Sys-

tems with non-planar connectivity are particularly interesting given their realization

in solid state systems are impractical, yet contain rich physics. Periwal et al. [100]

recently experimentally demonstrated a simulation of a graph with exotic long-range

connectivity given by
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Figure 3.5: Simulations of bosonic transport in a tree-like geometry with a graph
comprising over 100,000 sites. (a) Non-equilibrium correlation measurements for a
1D chain with non-local connectivity (see Eq. (3.2)). As s is tuned from −1 (left)
to +1 (right), the correlations transition from locally decaying to tree-like [100]. The
lattice cartoons on the left and right schematically show the coupling form for a single
lattice site (position 0). (b) Optical spectrum measurement for response to a single site
injection with s = 0.5. (c-e) RF spectrum measurement showing the lattice occupation
with single-site resolution of the zoom-in in the full optical spectrum, comparing with
simulations for windows of 20 GHz (c), 500 MHz (d), and 100 MHz (e).
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Ji−j ∝


|i− j|s |i− j| = 2n, n ∈ {0, 1, 2, . . .}

0 otherwise.
(3.2)

This describes a system that can be continuously changed, using the parameter s,

from an Archimedean-geometry regime in which correlations between sites decay

with distance |i − j|, to a non-Archimedean-geometry regime in which the corre-

lations between sites have a tree-like structure. The hierarchical geometry of this

tree-like system is a toy model for p-adic AdS/CFT correspondence [9] studied pre-

viously using atomic ensembles in an optical lattice with 16 sites [100], shown here

for the first time in a photonic system. We experimentally show this transition in

Fig. 3.5a in the measurements of correlations of the lattice as s is tuned (see Methods

section for details on the correlation measurements and Fig. 3.22 in Section 3.5 for

another example). Near the transition, at s = 0.5, the lattice exhibits both strong local

and nonlocal connectivity, resulting in dense yet extremely large lattices, shown in

both optical spectrum measurements in Fig. 3.5b and RF spectrum measurements in

Fig. 3.5c.

While some graphs, such as the tree-like example depicted in Fig. 3.5, result in oc-

cupations that span 100,000 or more lattice sites, quantifying the absolute size of our

simulator requires some nuance. On one hand, based on the dispersion and band-

width of the elements inside the cavity, we believe the lattices we simulate span sev-

eral THz, corresponding to millions of lattice sites. On the other hand, as in real

material systems, local excitations in lattices that have only short- or medium-range

connectivity will typically not be able to propagate to very distant sites before their

amplitude decays below the noise floor of the detector. For example, in the exper-

iments we performed with 2D lattices, the steady-state response was detectable at

most ∼ 104 lattice sites in the vicinity of the injected wavepacket (see Fig. 3.1c and
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Fig. 3.21 in Section 3.5).

3.3 Discussion

The demonstrations performed in this paper cover only a small fraction of the bosonic

physics that can be simulated with frequency-domain coupling of photonic modes.

Simple modifications to the presented experimental setup, such as dispersion com-

pensation, reducing total intra-cavity loss, and reducing the input power far below

the gain-saturation power, should substantially increase the number of accessible lat-

tice sites. Additionally, stabilizing the cavity phase with respect to the phase of the

input state would remove decoherence effects limiting the propagation of our input

excitations. With these upgrades, observing dynamics on lattices spanning millions

of sites (or more) would become feasible. By adding multiple spatial modes [127]

or bi-directional propagation [27], simulations of topological phenomena found in

higher-dimensional gapped multi-band systems may be realized. With coupled cav-

ities, defects and hard lattice edges [29] may be implemented; in our simulator,

this would enable the study of propagating edge modes in high-dimensional lat-

tices. By varying the intra-cavity phase modulation over multiple cavity periods,

time-dependent lattices may be realized, which would allow the study of new non-

equilibrium phases [8], and the implementation of very wide convolutional optical

neural networks [35]. Similarly, the use of stroboscopic modulation, as opposed to

continuous wave modulation, would enable timed measurements of transient dy-

namics, such as observing band evolutions [131] and time-resolved spectral measure-

ments. In unmodulated cavities, Kerr nonlinearities give rise to locked combs defined

by dissipative cavity solitons [70]. In the frequency domain, the Kerr effect produces

highly non-local, four-mode interactions [118, 33]. Since Kerr interactions may be
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programmed by modifying intra-cavity dispersion and spectral loss, and by intro-

ducing additional mode families [127], it should be possible to realize both new types

of intricately tailored Kerr frequency combs, as well as simulations of the statistical

mechanics of graphs with higher-order interactionse [8], which should allow the ob-

servation of emergent multi-stable states and abrupt synchronization (mode-locking)

transitions.

Photonic simulators have over the past decade been established as robust plat-

forms for exploring condensed-matter phenomena, including some that that have

been inaccessible in material systems. In this paper we have demonstrated a large-

scale, programmable photonic simulator using synthetic frequency dimensions. We

used our simulator to study several models with a variety of different geometries,

including a lattice with tree-like connectivity that has, to our knowledge, not previ-

ously been realized outside of cold-atom experiments and that would be impractical

to realize at scale in most simulator platforms without the use of synthetic dimen-

sions due to the model’s highly non-local interactions. Looking to the future, our

simulator could be extended to even larger sizes through dispersion and loss engi-

neering, modified to support the study of topological phenomena, and augmented

with a nonlinearity that induced higher-order interactions between lattice sites. With

extensions to fully utilize the many THz of bandwidth that is in principle available in

optics, programmable synthetic-frequency-dimension photonic simulators may soon

explore high-dimensional nonlinear physics, both near and far from equilibrium. At

all scales, advances in this platform will benefit the development of tailored light

sources and optical signal processors. However, it is in the THz-spanning ultra-large-

scale regime that photonic simulators seem most compelling to us as analog simula-

tors, with prospects to explore – and discover – entirely new and unexpected physical

phenomena.

29



PM

I Q
I Q

FBG

FBG

PM
2

PM1
Input state 
preparation

SOA

OUTPUT
EDFA

INPUT
EDFA

LO

AWG

LO Source

IQ Mixer

CW Laser

Phase
Modulator

Circulator

Laser 
scan

Input
control

Lattice
control

Polarization
Controller

Fiber Bragg
Grating

Bandpass
Filter

Isolator

Detector

Spectrum
Analyzer

Oscilloscope

4 GHz 

Bandstructure
readout

Lattice
readout

30 GHz

1 nm

RF Amplifier

Optical
Amplifier

1 
nm

BPF1

BP
F2

40 GHz

10 G
H

z

40 GHz 10 GHz

Figure 3.6: Schematic of the experimental setup.

3.4 Experimental setup

The experimental setup, schematically shown in Fig. 3.6, consists of a long fiber ring

with a free spectral range (FSR) Ω = 1.226045 MHz, modulated with a 40-GHz phase

modulator (LN27S-FC from Thorlabs) to produce the lattices in the main text and

below. The losses in the cavity are compensated by an semiconductor optical am-

plifier (SOA) from Thorlabs (SOA1117S). A 1 nm optical filter (OZ Optics BTF-11-

11-1525/1565-9) is placed in the cavity to reduce ASE generated by the SOA, and an

isolator (Thorlabs IO-H-1550APC) is placed to reduce parasitic resonances particu-

larly at low cavity power.

In addition to the cavity, we implement arbitrary input states by a filtering mod-
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Figure 3.7: Photograph of the experimental setup.

ulations of an injection. The injection laser (RIO3335-3-00-1-BZ7), centered at 1550.57

nm, is first amplified before being split with a 50:50 coupler. One arm serves as the lo-

cal oscillator (LO) for heterodyne detection, and the other arm is sent through a phase

modulator (EOSpace) to prepare the input state. The polarization is adjusted so that

it is aligned with the crystal axis of the phase modulator. After passing through the

modulator, the input state is encoded in sidebands centered 12 GHz away from the

injection. A fiber Bragg grating (FBG) mirror reflects a 4 GHz portion of the spectrum

centered 12 GHz away from the LO, while the rest, containing the other sideband and

the LO frequency, is dumped (see Fig. 3A). We place a circulator in between the phase

modulator and the FBG to collect the reflected light. While this prescription results

in 20 dB of insertion loss, we find 30 dB of isolation between the filtered sideband

and the LO resulting in a clean single-side band modulation. The modulation of both

the input state phase modulator and the cavity phase modulator are controlled by

a single AWG (Keysight M8195A). The polarization of the prepared input state pro-
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grammed by a dedicated AWG is set to align with the crystal axis of the intra-cavity

EOM.

Finally, the output of the cavity is combined with the LO before being detected by

a 30-GHz photodetector (Optilab PD-30-M-K-DC), resulting in a 12-GHz heterodyne

detection of the output. One component of resultant RF signal is amplified before

sent to an oscilloscope (Tektronix DSA72004) for band structure spectroscopy in the

time-domain. The other component of the RF signal is sent to the spectrum analyzer

(Tektronix RSA5126A) to perform direct readout of the lattice over 26 GHz. For band-

structure measurements, the heterodyne arm is turned off. The spectrum measured

in Fig. 5B was measured with an optical spectrum analyzer (Ando AQ6317).

3.4.1 Setup characterization

Here we outline characterizations of the cavity, particularly characterizations of the

cavity gain and losses, coherence time, and the free spectral range (FSR).

The intracavity SOA compensates for roundtrip losses in the cavity. However,

the SOA contributes significantly to noise by the unwanted production of amplified

spontaneous emission (ASE). In order to reduce ASE, we placed a filter in the cavity,

and minimized roundtrip losses to reduce the operating point of the SOA. The cavity

losses were reduced to 5 dB, 4 dB of which originate from the insertion loss of the

cavity EOM. In addition to limiting the noise, reducing the operating point of the SOA

has the added benefit of reducing the contribution of the ASE to the gain saturation.

The left panel of Fig. 3.8 shows the effect of the gain saturation on the dynamics of a

nearest-neighbor optical lattice. For a large ratio of input power to saturating power,

the transport of the optical power along the 1D chain is limited. From simulations, we
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find that a ratio of Pseed/Psat < 1/100 is enough to reach thousands of modes above the

noise floor of our setup. The right side of Fig. 3.8 shows the experimental measured

value of gain saturation at about 4 dBm, thus for all of the measurements in the main

text, we had an input power of below -20 dBm going into the cavity.
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Figure 3.8: Modeling and characterization of gain saturation. Left: simulations of
cavity dynamics for linear gain (green curve) and saturating gain (orange curve).
Right: Experimental characterization of semiconductor amplifier at various levels of
pump current.

Knowledge of the cavity FSR is needed to ∼ 10 Hz to in order sustain the coher-

ence over many roundtrips needed to instantiate large lattices. This was measured

via different methods, differing in course-grained vs fine-grained characterization. At

the first step, we measured the FSR by exciting the cavity far above the lasing thresh-

old and measuring the mode excitations. This procedure gives us the FSR to within

10 kHz. Next, we placed the cavity just below the lasing threshold and performed

spectral measurements due to a single-site injection, and maximized the transport

observed over the modes as we varied the modulation frequency. Shown in Fig. 3.9

are the responses in a 1D chain as a function of modulation frequency at cavity thresh-

old. To further increase the sensitivity of the measurement, the same procedure was

applied at larger integer multiple harmonics. These are plotted in Fig. 3.9B.
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Figure 3.9: Measurement of the cavity resonance by maximizing transport response
at lasing threshold. The cavity was modulated around a window of ωmod ≈ 12 × Ω
(Left), and ωmod ≈ 75× Ω (Right).

To measure the FSR of our cavity down to 10 Hz, we modulated the EOM with

multiple tones, which increased the sensitivity due to interferences between differ-

ent paths taken over multiple roundtrips of the cavity. For example, a modulation

consisting of two tones at Ω and 10 × Ω will maximize transport if 10 hoppings

along the nearest-neighbor modulation produces is coherent with a single hop along

10×Ω [135]. Figure 3.10 shows the transport response for a 144×144 2D lattice instan-

tiated by two tone modulations at frequencies ωmod and 144 × ωmod. When detuned

from the FSR (left and right panels of Fig. 3.10), we see the injected light reaching

out then oscillating back in. Closer to resonance (middle panel of Fig. 3.10), the light

propagates symmetrically outward. This effect is related to Bloch oscillations (see

Section 3.5), expected to occur in modulated cavity systems where the modulation is

detuned [134]. Suppressing these oscillations allowed us to find the FSR to 5 decimal

places, down to 10 Hz.
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a b c

Figure 3.12: Modulation schemes for the lattices presented in Figure 2 of the main
text (a) 2D triangular lattice, (b) 3D square lattice, (c) 3D triangular lattice. The mod-
ulation scheme for a 2D square lattice is shown in Fig. 1 of the main text.

3.4.2 Real-space-occupation measurements

Here we provide the methods used in measurements of the steady state tomography

in various lattices.The output of the cavity is sent to an RF detector, whose current

measures the optical power. This RF signal is then sent to an RF spectrum analyzer

which integrates the signal over 100s of round trips. The spectrum analyzer mea-

sures RF power, related to the optical power via PRF = η2P 2
opt × 50Ω, where η is the

responsitivity of the photodetector (measured to be about 0.77 A/W). All spectral

plots are plotted in terms of optical power leaving the cavity before the EDFA, with

the exception of Fig. 3.11, which plots the raw RF power spectrum.

To map the power spectrum to the occupation at a particular lattice site, the peak

of the power around a neighborhood of the expected frequency of the cavity mode

was picked. Figure 3.11A shows the raw heterodyne response data for a 1D lattice

due to a single-site injection. Figure 3.11B shows several cavity modes imposed on the

same axis for a neighborhood of 1 MHz just below threshold. Here, the linewidth of

the cavity is about 0.5 MHz. From these windows, the peaks were picked to construct

the final lattice response, displayed in the right pane of Fig. 3.11.

To generate lattice plots in two dimensions and higher, we employed the above

prescription to retrieve the peaks from a 1D chain, then reshaped the data appropri-
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Figure 3.13: Mapping the frequency spectrum to a 2D triangular lattice geometry.
First, the frequency modes are mapped to points in (a), similar to a 2D square lat-
tice, though with an extra hopping. Beginning with every other row, the indices are
shifted over by one in order to preserve the local geometry of the triangular lattice
(b). Finally, every other row is shifted by half a ”pixel” in all spatial representations
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ately depending on the type of lattice we were realizing. For example, if we measure

the response in a 2D square lattice, where we modulate the cavity at Ω and LΩ, we

pickN = L×L peaks of the spectrum, and wrap them in a L×Lmatrix. The response

of the electro-optic modulator to the voltage drive (characterized by Vπ – the voltage

needed to induce a phase shift of π) is generally frequency-dependent. Thus with

signals composed of far separated tones, the modulation amplitudes of these tones

had to be calibrated to realize uniform coupling. As an example, for a 144x144 2D

lattice, the modulation amplitude for the 144 × Ω tone was 1.1 times larger than that

for Ω. Given the small mode spacing, and the large bandwidth of our modulator (40

GHz), the dependence was quite weak.

For a triangular lattice, we modulate the intra-cavity EOM at three frequencies

{Ω, LΩ, (L+1)Ω} (Fig. 3.12A). Following the methods employed in the 2D square lat-

tice geometry, this produces a lattice depicted in Fig. 3.13A – a 2D square lattice with

an extra diagonal connections. While the connectivity of this graph is exact with the

connectivity of a triangular lattice, the six fold symmetry of this lattice is not captured

when presented in regular euclidean space. Intuitively, this can be seen in Fig. 3.13C,
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Figure 3.14: Bandstructure measurement of a 30 × 30 2D square lattice using meth-
ods introduced in [28]. (a) Modulation signal sent to the cavity EOM. (b) Experimen-
tal measurement of time-domain response of the cavity broken up in chunks of the
roundtrip time τ = 1/Ω. The vertical axis on the experimental plots is the detuning ∆
of the injection away from the cavity mode, normalized by the cavity spacing Ω.

where a traversal down along J2 followed by a traversal along J3 should result in an

occupation that is directly ”below” the original site geometrically. In Fig. 3.13 how-

ever, this procedure results in a shift along the horizontal direction. Thus, beginning

with every even row of our lattice, we shift the indices over by one as depicted in

Fig. 3.13B, resulting in the expectant traversals. Doing so preserves the local connec-

tivity of the triangular lattice without physically altering the connectivity. Finally,

when plotting these lattices on a 2D plane, we plot the values of the modes on a

planar lattices that has the geometry depicted in Fig. 3.13C. The difference in these

aesthetic changes are apparent in Fig. 3.13D.

Here, we discuss some of the limitations in the above procedure for realizing high-

dimensional lattices. While the procedure is valid for local excitations, the approxi-

mation breaks down for either non-local excitations that are on the order of the lattice

size L, or for large J/γ – the ratio of the coupling strength to the gain-loss balance.

The latter issue could be resolved by increasing the lattice size up to the modulation

bandwidth, or by decreasing J/γ. In either case, large lattices faithful to the approx-

imated Hamiltonian can be realized. On the other hand, the above procedure, while
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faithful to systems without boundary effects, prohibit the study of physics where

boundary effects become important, as is the case for systems with nontrivial topo-

logical phases. While the setup can implement topological Hamiltonians (such as the

Hatano-Nelson model, see Figs 3.24 and 3.25 in Section 3.5), observing edge states

is not possible in this platform which contains no edges. To remedy this, one could

couple a second cavity with a cavity mode spacing that is a integer multiple M of the

main cavity. As demonstrated in [29], this will produce hybridized modes M sites

apart that are off-resonant from the frequency comb, generating a defect that sup-

presses any coupling to that site modulated by the cavity spacing. To generalize this

to two dimensions, one would modulate at Ω and LΩ =MΩ: Coupling nearest neigh-

bors, and sites L apart, while blocking a site that is positioned next to a defect from

crossing over the twisted boundary condition. Generalizing this to three dimensions

would require a third cavity and so on. This modification would enable the study of

a variety of systems with boundary effects in high dimensions, as long as the second

cavity does not introduce much loss to the main cavity.

3.4.3 Band-structure measurements

To measure band structure, the output of the cavity is amplified and filtered with a

0.1-1 GHz-bandpass filter. The amplifier increases the signal to noise ratio needed for

the single shot readout for the band structure measurements. Single shot read-out is

needed due to the phase walk-off between the injection and the cavity. For details

of the band structure measurement, we refer to [28], but we briefly summarize the

procedure here, and outline our extensions for measurements of band structures in

2D and higher.
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Figure 3.15: Decomposition of band structure of a 2D square lattice along edges of
the Brillouin zone. (a) Analytic band structure for a 2D square lattice, with edges of
the Brillouin zone highlighted with purple and red planes. By slicing the measured
band structures into L chunks along the fast time axis each of length tfast = Ω/L,
we can reconstruct the full 2D band structure. Slices of the reconstructed 2D band
structure corresponding to kx = π/a (b), and ky = π/a (c).
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Figure 3.16: Band structure error as a function of lattice size. Slices of the band
structure of a quasi-2D square lattice with L = 3 (a), and L = 70 (b) at the edge of
the Brillouin zone. As the lattice size shrinks, the cosine dispersion becomes skewed
as it the two momentum directions are no longer independent. (c) Mean squared
error (MSE) of 2D band structure measurements of a square lattice as a function of
lattice size, along edges of the Brillouin zone (see Fig. 3.15 in Section 3.4.3). MSE was
calculated with respect to the analytic function convoluted with a Lorentzian with a
finite width that was a free parameter, but fixed for all lattice sizes.
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Figure 3.14 shows the modulation signal sent to the cavity to realize a 30 × 30 2D

square lattice, and the measured band structure spectroscopy. The plot on the right

is produced by taking a linear scan of the injection signal over a cavity mode, and

measuring the response. The raw measurement is a 1D time series, which is then

divided up into chunks set by the cavity roundtrip time τ = 1/Ω. The vertical axis

is set by the scanning speed, here normalized by the cavity mode spacing Ω. Here,

we scanned over one mode in 1 ms. These two time scales were observed to be well

separated enough to allow the laser to equilibrium with the continuously changing

scanning frequency. The widths of the band structures are proportional to ΩV/Vπ,

here V is the modulation amplitude, and Vπ is the pi-voltage of the phase modulator.

For all band structure measurements, we drove the EOM very close to the pi-voltage

in order to get wide band structures.

A real 2D square lattice has a band structure of E(k) = −2J cos(kxa)− 2J cos(kya).

Here, we have a single dimension. To construct the full 2D band structure from this

signal, we further separate the time-domain response signal into two further time

scales by decomposing the horizontal axis of Fig. 3.14B into L chunks, so that each

chunk is of length tfast = 1/LΩ, where L is the secondary long range coupling used

to instantiate a 2D square lattice. The left plot of Fig. 3.15 shows the first chunk of

the data plotted in Fig. 3.14. The secondary time scale is synthetically formed by

looking at points separated by 1/LΩ. In other words, if we reconstruct the full 2D

band structure by appending chunks of length tfast, tslow is the orthogonal direction

pointing along the different chunks. These two timescales tfast, tslow map to the two

independent momenta kx, and ky, when the time scales are well separated enough,

as is the case for L ≫ 1. Figures 3.15B & C show the band structures along tfast and

tslow, corresponding to borders of the Brillouin zone with kx = π/a and ky = π/a,

respectively.
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Figure 3.17: Full reconstruction of band structure measurements for modulations
instantiating lattices with > 10,000 lattice sites. (a) band structure for a 2D square
lattice comparing theory with experiment. (b) band structure for a 2D triangular lat-
tice comparing theory with experiment. The experimental data is in effect a function
of three variables. A opacity cutoff has been applied at low signal for clarity (shown
in the grey bar adjacent to the colorbar).

The above procedure to measure bandstructure of multi-dimensional lattices is

only justified if the time scales are separated, or equivalently, if L ≫ 1. This is intu-

itively understood in the frequency domain according to equation 8 in the methods:

the ratio of the coupling strength to the gain-loss in the system must be less than the

linear dimension L, otherwise each local injection would have enough ’momentum’
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to propagate around the twisted boundary condition. Figure 3.16 shows the mean-

squared error of the band structure of a two-dimensional square lattice as a function

of system size along slices at the edges of the Brillouin zone.

Finally, Fig. 3.17 shows the full reconstructed 2D band structure for a square and

triangular lattice, along with the analytic band structures. For clarify, an opacity fil-

ter was applied to the experimental data for the 3D plots in Fig. 3.17 such that only

points greater than a certain power level are plotted. The band structures shown in

the main text are slices of the full reconstructed band structure along high symmetry

points. The theory curves were computed from the analytically solvable band struc-

tures, namelyE2D square(k⃗) = −J cos(kx)−J cos(ky),E2D tri(k⃗) = −J cos(kx)−J cos(kx−

ky
√
3/2) − J cos(kx + ky

√
3/2), E3D square(k⃗) = −J cos(kx) − J cos(ky) − J cos(kz), and

E3D tri(k⃗) = −J cos(kx)− J cos(kx − ky
√
3/2)− J cos(kx + ky

√
3/2)− J cos(kz) for a 2D

square, 2D triangular, a 3D square, and a 3D triangular lattice respectively. The theo-

retical curves for the density of states were computed using the Kwant code [45]. The

presence of non-uniform response in the band structure is reflected partially in the

density of states measurements, and indicates the multiplicities of projections onto

the resonant modes [77].

In order to take paths through the high symmetry points of the Brillouin zone,

high resolution experimental data was needed. For the band structure measurements,

the cavity was modulated at a slightly detuned frequency (∼ 10 − 20 Hz) in order to

match with a multiple of the sampling rate of the oscilloscope. This also prevented a

walk-off in the reconstructions when the scope was sampling rate was detuned from

the cavity mode spacing, leading to a linear shift in the band structure along tslow

when digitized.
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Figure 3.18: Overview of input state preparation in a 2D square lattice. (a) Two
channels of an AWG form the in-phase and out of phase quadratures of a signal up-
converted with a 12 GHz LO. A third channel is sent to the intra-cavity EOM. These
channels are locked to the same clock, therefore the phase difference between the in-
put state preparation and the cavity phase modulation is given by the cable length.
(b) Time-domain signal sent to the cavity phase modulator (green) and the injection
phase modulator (blue). (c) Two dimensional representation of the input state in mo-
mentum/time space with level curves of the 2D band structure plotted in gray. (d)
Real and imaginary parts of the injected signal in coordinate/frequency space.

3.4.4 Input-state preparation

To prepare arbitrary input states, high modulation bandwidth and high preparation

fidelity with no spurious images or modes are required. To this end, we implemented

an image rejection IQ mixer in the optical domain by combining a 12 GHz-phase

modulator with a fiber Bragg grating as a filter (see Fig. 3.6). The Bragg grating is

a 4 GHz-bandpass filter, which enabled the programmability of around 4000 lattice

sites, while rejecting the spurious sidebands in addition to the carrier frequency. The

filter is centered 12 GHz away from the injection seed, so the modulator was driven

with a signal with a center frequency of 12 GHz. The baseband signal around the

12-GHz sideband was encoded in a voltage signal from an AWG as I and Q pairs.

These two were then sent into an (electronic) IQ mixer upconverted with a 12-GHz

44



a

b

Experiment

Image/Theory

Figure 3.19: Comparison of experimentally prepared input states with the digital
image. (a) Experimentally measured input states measured with heterodyne with a
detector before the cavity (see Figure 3 of the main text). Here, a portion of the input
spectrum has been folded into a 44 × 44 image. (b) Digital image of the input states
fed as input into the phase modulator.

local oscillator (Fig. 3.18). The resultant upconverted signal was then sent to drive

the external EOM, enabling both phase and amplitude programmability of the input

state at every lattice position.
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Figure 3.20: Mean-squared error (MSE) of various input states displayed in the
main text as compared to the input image as a function of 2D grid size. Here,
before calculating the error with respect to the linear power, both the theoretical and
experimental traces were normalized.
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To account for spectral inhomogeneities in the input chain, we calibrated the mod-

ulation by measuring the light before entering the cavity. If the modulation has

some inhomogeneity, such that a voltage signal V (t) =
∑

n Vn sin(nΩt) is modified

to V (t) =
∑

n(Vnηn) sin(nΩt), the spectrum analyzer output modes are scaled by η2n.

To compensate, we injected light that had been uniformly modulated at all integer

multiples of the FSR within the spectral region of interest, i.e. a top hat distribution

defined on latttice sites. This region of interest is roughly up to 2000 modes for the

input states presented in Fig. 3B in the main text. The square root of the response

of this measurement gives us approximately ηn, which we used to apply an enve-

lope function to the modulation signal. If successful, a top hat modulation multiplied

with this envelope function will produce a clean flat spectrum. Otherwise, this pro-

cess can be iterated for higher order. The measured input states shown in Fig. 3.19

were produced with just a single iteration of the above procedure. The input states

were prepared with high fidelity with using this procedure. The mean-squared error

between experimentally measured input states versus the original image are shown

in Fig. 3.20, calculated from the magnitudes of both, normalized to unity.

The phase modulator preparing input states and the phase modulator program-

ming the cavity interactions are synced to the same clock, however, the voltage signal

driving the input state modulator is upconverted before hitting the EOM (Fig. 3.18).

This imparts a phase difference between the input state and the cavity due to the dif-

ferent cable lengths. As shown in Fig. 3.18B, the phase difference between the injected

light and the cavity defines the average momentum of the excitation. To account for

this delay, we prepared a state with net-zero momentum (in the frame of the outgoing

signal) into a tight-binding lattice, and tuned the phase of the cavity signal until we

observed no transport.
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a b c

Figure 3.21: Response of single site injection in a 2D square lattice with nearest
neighbor connections. (a), 2D triangular(b), and 2D square with second and third-
nearest connections(c).

3.5 Supplementary results

Here we present additional measurements of transport in a variety of lattices, show-

casing the programmability of our photonic system. The top row of Fig. 3.21 shows

the steady state cavity response for a 2D square lattice with nearest neighbor connec-

tions, a 2D triangular lattice, and a 2D square lattice with nearest and next-nearest

neighbor connections. Beneath these are the simulations of the corresponding lattices

with a tight-binding Hamiltonian without the twisted boundary conditions.

Figure 3.22 shows the correlations of a simple 1D lattice with either nearest neigh-

bor hoppings, or next-nearest neighbor hoppings. We see that in Fig. 3.22, as the

strength of the nearest-neighbor coupling becomes small relative to the next-nearest

neighbor coupling, the correlation length broadens and becomes tessellated, indicat-

ing that nearest neighbors are no longer correlated. The inhomogeneity along the

diagonals is due components in the readout chain, e.g. detector, amplifier, and spec-

trum analyzer, as well as input chain, e.g. bandpass filters, amplifier, and injection.

These matrices are constructed from the measured spectral response of the lattice at

47



a

J2
J1

b

c

Figure 3.22: A 1D lattice with both nearest neighbor and next-nearest neighbor
connections. (a). With only nearest neighbor connections (b), the correlations decay
exponentially. As the next-nearest hopping is increased (c), the correlation length
doubles on average, and nearest neighbor sites become uncorrelated.

a given injection site. That is,

Gij = ⟨n(i)∗n(j)⟩ − ⟨n(i)∗⟩⟨n(j)⟩, (3.3)

where n(j) denotes the population at site j, and n(i)∗ denotes the population at site

i given the injection was made at site i, and the ⟨...⟩ brackets denote the average

over injection sites. We denote these quantities as the non-equilibrium correlation

matrices, and find these measurements capture correlations of systems also found in

other literature [100].

Additionally, we extend previous works in realizing synthetic electric fields via

the observation of Bloch oscillations [10, 102], shown here in a 1D nearest-neighbor

chain for arbitrary input states. As in Refs. [78, 19, 134, 106, 105], we realize a syn-

thetic voltage by modulating the cavity with a slightly detuned frequency, as depicted

in Fig. 3.23. A general time-dependent phase modulation for a nearest-neighbor cou-
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Figure 3.23: Synthetic electric fields and Bloch oscillations via detuned cavity mod-
ulations. (a) Coupling nearest neighbor sites with a detuned drive implements an
effective electric field (see text). (b) Green and orange curves are the voltage signals
driving cavity and input phase modulators respectively. The input state is chosen to
be a superposition of two Gaussian wavepackets with equal and opposite momenta
kx, forming a standing wavepacket. (c) Steady state output cavity spectra for different
values of detuning. With no detuning (green) the response is symmetric. As detuning
is increased, the light will traverse to a maximum amplitude given by the inverse of
the detuning. (d) Full experimentally measured phase diagram of Bloch oscillations
captured by measuring the center of mass of the output spectra (Eq. (3.6))

pled chain realizes the Hamiltonian

H =
∑
n

a†n+1ane
iθ(t) +H.c. (3.4)

By performing the gauge transformation |Ψ⟩ =
∑

nCna
†
n|0⟩ →

∑
nCne

iθ(t)a†n|0⟩, the

Hamiltonian becomes [133]

H =
∑
n

(a†n+1an +H.c.) +
∑
n

nθ̇(t)a†nan. (3.5)

By simply detuning the modulation by ∆, such that θ(t) = ∆t, we implement a lin-

early increasing voltage, or equivalently, a constant electric field in the 1D chain.

These give rise to Bloch oscillations [134], which have been seen in photonic simu-

lators, but are difficult to observe in real material systems, requiring very clean sam-

ples. The effects of Bloch oscillations on bandstructure have also been measured in

photonic systems [78].

As an example, we prepare a 1D lattice and inject superpositions of equal but

opposite momentum wavepackets, i.e. standing wavepackets (Fig. 3.23B). In the ab-
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Figure 3.24: Non-Hermitian transport in the 1D generalized Hatano Nelson model
with the addition of an amplitude modulator inside the cavity. (a, b) Coupling near-
est neighbors with both an amplitude and phase modulator enables the realization of
lattices with dissipative and asymmetric coupling, with the degree of non-Hermiticity
encoded by the phase delay between the signals sent to the modulators (shown here
as a physical delay, but implemented electronically in the experiment). (c) Experi-
mental measurements of the 1D generalized Hatano-Nelson model, for ∆ϕ = 0, π/2,
and π.

sence of an electric field, these states will diffuse, growing the Gaussian envelope of

the packet. In the presence of an electric field however, the mirror symmetry of the

lattice is broken, and the packet gains some overall momentum, shown in the mea-

surements in Fig. 3.23C. In Fig. 3.23D, we measure the center of mass

⟨x⟩ =
∫
lattice

x⟨x|ψout⟩dx (3.6)

over all values of standing wave momenta values, as well as detunings up to 20 kHz.

The above procedure could be generalized to higher dimensions as well as to time-

dependent electric fields. In the results presented so far for two-dimensional lattices,

the coupling in the second dimension was just an integer multiple of the first, how-

ever, these can be independently detuned from each other, instantiating an electric

field in either direction. Additionally, by varying the detuning as a function of time,

one can implement AC electric fields by frequency modulating the voltage signal

driving the phase modulator over a kHz time scale.

Finally, we utilize the system to explore non-Hermitian phenomena. We modify
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Figure 3.25: Hatano Nelson (∆ϕ = 0) model in 2D for asymmetry factor G/J = 0.01.
(a), 0.05 (b), and 0.2 (c).

the experiment shown schematically in Fig. 3.6 by adding an amplitude modulator.

The action of the amplitude modulator subject to a periodic drive is

at+τ = (1 +
∑
m

βm sin(ωmt+ θm))at, (3.7)

where the Gm’s are proportional to the tone amplitudes of the voltage drive, and

the θm’s are the phases of the drive up to some constant delay for each tone due to

cable delay. Both the βm’s and the θm’s can be finely tuned.

It can be shown, that by modulating the amplitude modulator at multiples of the

cavity frequency spacing Ω, the generalized Hatano-Nelson Hamiltonian

H =
∑
m,n

(Jm +Gme
i∆ϕm)a†n+mam + (Jm −Gme

−i∆ϕm)a†n−mam (3.8)

can be realized [122]. The case where ∆ϕm = 0 for all m, or ∆ϕm = π for all m corre-

sponds to the regular Hatano-Nelson model [49]. To implement this model, we added

an amplitude modulator to the cavity. We drive this modulator with the same signal

as is sent to the phase modulator, but with an adjustable phase shift and amplitude

scaling (Fig. 3.24a). This allows us to implement non-Hermitian lattices in 1D and

higher.

Figure 3.24 shows experimental measurements of the HN model in a 1D chain.

By tuning the phase delay ∆ϕ between the signals, we can explore different regimes

51



of the model, shown in Fig. 3.24c for ∆ϕ = 0, π/2 and π. The first and last curves

correspond to the regular HN model, realized highly asymmetric transport, breaking

time-reversal symmetry.

Using the procedure to implement 2D and higher Hermitian lattices, we imple-

ment a 2D Hatano Nelson model. Figure 3.25 shows the experimental measurements

of transport due to a single-site injection at the center of the non-Hermitian lattice.

Here, the phase delay was chosen to be 0 for both modulation tones to maximize

the asymmetric transport in both directions, while the strength of the asymmetry

was varied. To our knowledge, this is the first demonstration of a multi-dimensional

Hatano-Nelson model in an optical platform.
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CHAPTER 4

MICROWAVE SIGNAL PROCESSING USING AN ANALOG QUANTUM

RESERVOIR COMPUTER

This chapter is based on the following publication:

• Senanian, A., Prabhu, S., Kremenetski, V., Roy, S., Cao, Y., Kline, J., Onodera,

T., Wright, L.G., Wu, X., Fatemi, V. and McMahon, P.L., 2023. Microwave sig-

nal processing using an analog quantum reservoir computer. arXiv preprint

arXiv:2312.16166. (To appear in Nature Communications).

4.1 Introduction

Over the last decade, researchers in quantum information processing have broadly

divided their efforts into two distinct but complementary directions. In one, the fo-

cus has been on realizing the building blocks for large-scale, fault-tolerant quantum

processors [73, 65, 17], which would enable running algorithms such as Shor’s or

Grover’s at meaningful scale. In the other, there has been a push to realize quantum

systems comprising tens to hundreds of qubits or qumodes, but without error correc-

tion, and to explore what can be done with such noisy, pre-fault-tolerance systems—

often denoted as noisy, intermediate-scale, quantum (NISQ) devices [104]. Quantum

computational supremacy with such NISQ devices has been demonstrated [2, 136],

but there has been much less progress on achieving quantum advantage in practically

relevant applications [90]. There have been many NISQ studies on quantum machine

learning [11], and in this area too, quantum advantage for problems of broad practical

interest has remained elusive [111, 18]. A key challenge in quantum neural networks
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realized with parameterized quantum circuits has been training the parameters when

the optimization landscape suffers from barren plateaus [86, 123, 84, 1]. A major open

question is whether one can achieve any practically relevant advantage for machine

learning with NISQ systems.

Inspired by the framework of reservoir computing [80, 110, 68, 42] in classical

machine learning, quantum reservoir computing (QRC) [39, 38, 43, 44, 66, 115] has

emerged as an approach to quantum machine learning that entirely avoids barren

plateaus by performing all learning in a final, linear layer. They key idea of a QRC

is that a quantum system (called a quantum reservoir) can generate nonlinear, high-

dimensional features of inputs to it, and that these features can be used to perform

machine-learning tasks purely by training a classical linear transformation. However,

experimental demonstrations to date have been performed with digital quantum cir-

cuits [103, 20, 72, 89, 130, 117, 55] that have limited the complexity of tasks that can

be performed, in part due to an input bottleneck imposed by the use of discrete gates

to input temporal data using a series of separate, imperfect gates.

The aim of our work is to demonstrate a proof-of-principle for a new applica-

tion of and approach to quantum machine learning with NISQ devices that over-

comes or sidesteps the challenges in training and inputs noted above. We use the

driven, continuous-time analog quantum nonlinear dynamics of a superconducting

microwave circuit as a quantum reservoir to generate features for classifying weak,

analog microwave signals (Fig. 4.1a). We use repeated measurements of the reser-

voir both to extract features that contain information about temporal correlations in

the input data, as well as to induce non-unitary dynamics. Our use of a continuous-

variable system in our quantum reservoir grants us access to a substantially larger

Hilbert space than would be the case with a qubit-only system with equally many

54



hardware components. Our approach is similar to proposals for analog NISQ proces-

sors and simulators [98, 41, 22], which aim to avoid the overhead caused by imposing

a discrete-time abstraction. Analog operation grants us an even more important abil-

ity however, which fundamentally distinguishes our work from prior experimental

demonstrations of quantum machine learning on circuit-model quantum processors:

it allows our device to directly, natively receive weak analog microwave signals, and

to immediately leverage analog quantum information processing to extract relevant

features of the signals for classification. Our experiments do not address the ques-

tion of whether a QRC can achieve a quantum computational advantage, since our

experimental device is small enough to be easily classically simulable. However, our

demonstrations suggest a route to achieving a quantum advantage of a different kind:

an advantage in the quantum detection and processing of weak microwave signals,

allowing quantum hardware to extract complex information of interest from dim,

analog signals in ways that would be noisier with a conventional classical approach.

This type of quantum advantage, arising from a combination of quantum sensing

with extraction of complex features about the sensed signal, is discussed in general

terms as a route to quantum advantage with quantum machine learning in Ref. [18].

Our work shows that when classical signals comprising just a few photons have en-

tered an analog quantum reservoir, they can be classified using our QRC approach.

The signals we classify are synthesized at room temperature and pass through 60

dB of attenuation before reaching our device. However, if instead one combines this

analog quantum processing with a sensitive quantum detector of microwave radi-

ation, as has already been previously demonstrated using superconducting circuits

[125, 124, 4, 3, 26], then one can construct a system that achieves a quantum advantage

in the task of combined sensing and signal processing of high temperature signals.
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Figure 4.1: Analog signal classification with a continuous-variable quantum reser-
voir computer (QRC) using measurement trajectories. (a.) We perform machine
learning using a quantum system consisting of an oscillator coupled to a qubit. (b.)
The signals interface directly with the qubit-oscillator system, composed of a 3D alu-
minum cavity (blue) hosting a transmon qubit (red). (c.) Wigner tomography per-
formed on the oscillator state through various stages of the reservoir dynamics. The
dynamics include entanglement-generating unitary evolution, and projective mea-
surements of both the qubit and oscillator. The balance of measurements and uni-
taries lead to complex correlations in the measurement trajectories. (d.) The digital
linear layer performs classification based on a feature vector, which we construct us-
ing the expectation values of the central moments µp (p = 1, 2, 3, . . .).
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4.1.1 Experimental setup and protocols

Our quantum reservoir, composed of a cavity resonator coupled to a transmon

(Fig. 4.1b), can be modeled with the following qubit-oscillator Hamiltonian in the

rotating-frame,

H/ℏ = −χ|e⟩⟨e|a†a+ ϵ(t)a† + Ω(t)|e⟩⟨g|+H.c., (4.1)

where |g⟩ and |e⟩ define the qubit subspace of the transmon, a is the photon anni-

hilation operator of the oscillator mode, and χ is the nonlinear interaction strength

(see Section 4.5.1 for details). The third term of Eq. 4.1 describes the unitary control

of the qubit with a time-dependent drive Ω(t), and the second term describes both

the encoding of the input data ϵin(t), and unitary control of the oscillator mode, i.e.,

ϵ(t) = ϵin(t) + ϵcontrol(t). Equation 4.1 describes the unitary dynamics, which is com-

plemented by non-unitary dynamics generated by the back-action from qubit mea-

surements interspersed throughout the evolution.

The oscillator and qubit control drives used in this paper realize a reservoir that

consists of a series of entangling unitaries interleaved with qubit and oscillator mea-

surements (Fig. 4.1c). The analog input is sent resonantly to the cavity and results in

a time varying conditional displacement of the oscillator, which streams in concur-

rently with control drives. The cavity resonator hosting the oscillator mode has a res-

onance frequency of 6GHz and a 2-kHz linewidth. The combination of the input and

control drives implement a unitary that encodes the input into the state of the oscil-

lator and generates entanglement between the qubit and the oscillator. Following the

unitary evolution, we perform a qubit measurement, and then a parity measurement

of the oscillator state [119, 50] (see Section 4.6.3). The parity measurement projects the

oscillator state into super-positions of either even or odd Fock states, a highly non-

Gaussian measurement allowing one to sense changes in the photon-number distri-
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bution. Additionally, the entangling dynamics between the measurements effectively

implement a sequence of non-commuting measurements (see Section 4.5.2), generat-

ing correlated measurement distributions that can then be used as complex output

features. Finally, after four rounds of applying the unitary and the qubit-oscillator

measurements, we reset the system before repeating the scheme so that we may col-

lect many samples of the measurement trajectory. The reset, which occurs at a rate

much faster than the decoherence rate of the oscillator, additionally ensures that our

system remains coherent.

The measurement outcomes are used to construct output feature vectors to be fed

into the linear layer, but this can be done in a few different ways. When performing

repeated measurements on our system, we generate a sample bitstring of length M

describing the quantum trajectory over M measurements. After M measurements

are performed, we reset the system and repeat the procedure, each time generating a

bitstring x⃗n = [xn0, xn1, . . . , xnM−1], where n refers to the nth sample (Fig. 4.1c). The

outcomes can be counted to directly form a sample probability distribution p(x⃗|ϵin(t))

over measurement trajectories, which can then be used as a high-dimensional output

feature vector after obtaining a sufficient number of samples N . While this approach

has the benefit of capturing all information in the measurement distribution [55], it

can generally suffer from poor scaling in sampling noise, requiring N ∼ 2M shots in

the worst case [128].

Here, we construct an output feature vector from estimates of successive central

moments µ1, µ2, µ3, . . . of the underlying distribution p(x⃗|ϵin(t)) (Fig. 4.1d). For ex-

ample, the first-order central moment µ1 is a M -dimensional vector representing the

average over all measured bitstrings, i.e. µ1 = [⟨xn0⟩, ⟨xn1⟩, . . .], the second-order cen-

tral moment µ2 is the covariance matrix with elements (µ2)ij = ⟨xnixnj⟩ − ⟨xni⟩⟨xnj⟩,
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Figure 4.2: Reservoir protocol overview with an example time-independent clas-
sification task (a) The unitary dynamics in our reservoir are generated by control
pulses that serve to entangle the qubit with the oscillator before the analog input is
received by the oscillator. For tasks where the analog data is time-independent, the
dynamics are fully gate-based, and the oscillator is dis-entangled with the qubit be-
fore the qubit and oscillator measurements. For details of the motivation behind the
particular unitaries implemented for our reservoir, see Section 4.5. (b) (Inset) An il-
lustrative machine learning example is the classification of time-independent signals
from two arms of a Spiral distribution defined in the signal I − Q plane. For quan-
tum machine learning, unlike classical, the performance is unavoidably impacted by
sampling noise. Here, we plot the classification accuracy of the spiral task against an
increasing number of shots. Also plotted is the performance of a linear layer acting
directly on the two-dimensional I,Q data, indicating that non-linearity is required
to perform this task with sufficient accuracy. (c) Classification accuracy at 104 shots
as a function of qubit coherence time that we tune via resonator-induced dephasing
during the classification (see Section 4.6.4). While we see a large drop in classification
performance when the qubit coherence time is heavily suppressed and the system
is completely disentangled, the performance only begins to suffer once the qubit T2
approaches the duration between measurements.

and so on. Here, the expectation value is taken over the sample index n. This ap-

proach, inspired by Ref. [68], has the benefit of leveraging the hierarchy of noise in

the central moments, while capturing the essential correlations in the dynamics to

achieve high accuracy even in the few-sample regime. Furthermore, the output fea-

ture vector dimension only scales polynomially with the number of measurements,
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where the highest polynomial power is given by the order of the highest central mo-

ment, which we restrict to 3 for all tasks in this work. Finally, given finite memory

in our reservoir, we further restrict the output vector by choosing to only calculate

correlations between measurements at most 3 measurements apart. These truncated

moments are then flattened and concatenated to construct our output feature vec-

tors. In all, for the M = 8 measurements we use in this work, the resultant output

feature vector size with this prescription is 94. For a detailed discussion of the con-

struction of our reservoir output features with comparisons of different encodings,

see Section 4.7.1.

4.2 Results

4.2.1 Classification of time-independent signals

To illustrate the scheme proposed in this work, we begin with an example classifi-

cation using our quantum reservoir by performing binary classification task of time-

independent signals. Figure 4.2a describes the control drives in more detail. For time-

independent input data, the two-dimensional input data is encoded as the I and Q

quadratures of an analog signal resonant with the cavity resonance frequency. In the

rotating frame of the system (Eq. 4.1), this is effectively a time-independent signal,

i.e. ϵin(t) = ϵin = I + Q, which results in a displacement of the oscillator state. For

such time-independent tasks, the signal bandwidth is set by its duration which, in

general, can make the resultant displacement conditioned on the qubit state due to

the cross-Kerr interaction (see first term of Eq. 4.1).

The unitary encoding the input displacement is complemented by control drives
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that entangle the qubit and oscillator via conditional displacements [25] and qubit ro-

tations (Fig. 4.2a). The entangling conditional displacements are applied before and

after the unknown input is fed into the system, and the qubit is rotated by π or π/2

pulses before, during, and after the input. Due to the qubit-state-dependent shift

of the oscillator frequency by −χ, these qubit rotations serve to make the oscillator

sensitive to the input signal independent of the state of the qubit at the start of each

round of input. Additionally, when combined with conditional displacements on the

oscillator, the control and input scheme impart a geometric area enclosed by the oscil-

lator trajectory onto the qubit, such that the phase of an unknown time-independent

input signal can be extracted via a qubit measurement (see Section 4.5 for details of

this unitary). In Section 4.10, we show the ability of the set of unitaries implemented

here to be able to approximate any scalar function of the input signal when the signal

is time-independent. For all results presented, we implement our reservoir unitary

with these control drives across all tasks, with 4 applications of the unitary inter-

leaved with qubit and oscillator-parity measurements.

The binary classification task we perform here is: Two distributions of time-

independent signals, completely characterized by the signal’s in-phase (I) and

quadrature (Q) components, are distributed along two separate “arms of a spiral”

in the I − Q plane (Fig. 4.2b). Given a displacement described by the points I and Q

sampled from either signal distribution, one must figure out which distribution the

signal came from. The maximum amplitude of the input signal distribution max(|ϵin|)

(i.e. the points in the spiral arms furthest away from the origin in Fig. 4.2b) was cho-

sen such that the amount of displacement of the oscillator state initialized in vacuum

would result in a coherent state with n̄ = 0.3 photons per round of input (∼ 1µs).

This input amplitude was needed in order to perform the classification with suffi-

cient accuracy in a reasonable amount of shots. Our QRC solved the spiral classi-
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fication task with > 97% accuracy at 103 shots (Fig. 4.2b). This simple task has the

feature that, if one feeds in the inputs directly into a linear layer, the classification

accuracy would reach no more than 67%—just above the random guessing accuracy

of 50%. As a point of comparison with non-linear digital reservoirs, we found that

a 64-dimensional, two-layer digital reservoir was needed to achieve the same per-

formance as our quantum reservoir for this task (see Section 4.11.2 for details of this

comparison).

To probe the role of quantum coherence in our reservoir, we performed the same

classification task, but with reduced coherence time in the qubit during the reservoir

execution (Fig. 4.2c). This was achieved by populating the lossy readout resonator

with photons that send the qubit to the center of the Bloch-sphere when the readout

resonator is traced out (see Section 4.6.4). With T2 → 0, we effectively removed all

entanglement with the oscillator, and observed two things: a dramatic reduction in

classification performance, and importantly, T2 only began affecting the performance

once it was on the order of the reservoir duration, after which the qubit is projected

to a pure state.

4.2.2 Classification of radio-frequency (RF) communication modu-

lation schemes

Next, to highlight the ability to perform classification of higher dimensional data, we

classified time-dependent radio-frequency (RF) signals. The microwave signals in

this dataset encode digital information using one of 10 different digital modulation

schemes, a standard benchmark task in RF machine learning [96, 61]. Digital modula-

tion schemes encode binary information in discrete ‘symbols’ encoding in sequential

62



Oscillator

Qubit

I Q

a.

b.

c.

d.

Linear classifier accuracy: 20%

Figure 4.3: Classification of radio-frequency (RF) communication modulation pro-
tocols. (a) Description of the dataset for digital modulation schemes used in this
experiment. In conventional digital modulation schemes, one encodes data in the
amplitude and phase of the signal. The modulation schemes can be represented by a
“constellation diagram” in (I,Q) space (left), where point represents one of the pos-
sible choice of (I,Q) values to encode a symbol, with example time traces (right). (b)
These signals are broken up and fed into our reservoir. (c) The performance of the
reservoir as a function of the shots taken in real time (see text). The top row con-
tains the corresponding duration of the radio frequency signal required. For context,
a classical linear classifier applied directly on the input data achieves only 20% accu-
racy, independent of the duration of the signal. (d) Confusion matrix for the QRC at
32, 512, and 104 shots, showing that the reservoir confuses only a few classes at the
highest shots.

time-bins. For example, Binary Phase-Shift Keying (BPSK) encodes binary data in

discrete phase jumps of a signal, such that a symbol 0 (1) maps to a phase flip of 0

(π). Other modulation schemes can encode more bits per symbol. BPSK and other

encodings can be represented in a constellation diagram (Fig. 4.3a), which denotes

the potential (I,Q) values a signal can take for each symbol. A given string of digital

data can then be encoded in a time-domain signal by sequentially choosing points in

the constellation diagram with a given symbol rate. For typical WiFi signals this is

around 250 kHz per subchannel [64].

For this task, we generated RF signals by encoding random digital strings into the

10 different modulation schemes with a fixed symbol rate of around 2 symbols per µs,
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or with a sampling rate of 2 MSps. The duration of these signals typically lasts much

longer than the reset period of our system. Importantly, we did not repeat the same

signal to artificially reduce the sampling noise associated with each input data, as this

would not typically be applicable in a real-world setting. Instead, the measurement

statistics were generated by sampling the signal in real time. Consequently, what we

refer to as ‘shots’ in a real-time task does not correspond to identical repetitions of the

experiment, but instead, is the number of resets we performed while acquiring the

signal, which changed from shot to shot. In effect, each different encoding scheme

produces a unique “fingerprint” distribution over measurement outcomes, and the

goal of the linear layer is to separate these distributions with as high accuracy as

possible.

Figure 4.3c shows the accuracy in classifying digitally modulated RF signals with

increasing number of shots, compared with the performance of a linear classifier. We

note that in less than a millisecond, or with less than 2000 symbols, the reservoir was

able to classify which of the 10 classes a given signal belongs to with > 90% accuracy

when using 8 qubit-oscillator measurements. A linear classifier can only achieve 20%

classification accuracy for this task, even with infinite symbols. The confusion matrix

between the different classes at 32, 512, and 104 shots is displayed in Fig 4.3d, the

latter two of which are nearly diagonal.

4.2.3 Classification of filtered noise

Finally, to demonstrate the performance of our QRC on continuous-time data1, and

with a task that requires both long-term and short-term memory in the quantum

1The previous time-dependent task, RF-modulation-scheme classification, concerns discrete-time
data.
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reservoir, we performed the following classification task: input data assumed to have

come from a source of white noise is filtered using a moving-average filter having one

of three filter shapes (Gaussian, Lorentzian and inverse-power-law), and one of two

window widths (50 ns and 600 ns), and the task is to identify both the filter shape and

window width (Fig. 4.4a). The resultant dataset consisting of six classes of noisy sig-

nals was designed to probe the ability of our QRC to process high dimensional data

with bandwidths larger than the cavity linewidth. Additionally, this task allowed

us to probe the memory of our QRC and its ability to be sensitive to fluctuations in

time, a key feature that enable temporal signal processing in QRCs [108, 85]. The filter

functions were normalized so that the photon-number distributions generated by the

time-dependent displacements are identical up to the filter width. This normaliza-

tion was applied to ensure that the task is not trivially solvable by just measuring the

mean photon number (see Section 4.8.2).

Because all the signals used in this dataset are noise with zero mean, a linear clas-

sifier would do no better than random guessing. By contrast, Figure 4.4b visually

shows (using Singular Value Decomposition (SVD) on the output feature space) that

the quantum reservoir was able to peel apart the different noise distributions. On

the task of classifying over six different sources of noise, we achieved 93% accuracy

(Fig. 4.4c) in only 2000 shots. As seen in the confusion matrix in Fig. 4.4d, the pri-

mary confusion at 2000 shots was distinguishing between the 50-ns inverse-power-

law noise class and the 600-ns Gaussian noise class, as expected from the overlap in

the SVD of the feature space.

Finally, we compared the ability of our reservoir to understand long vs short cor-

relations in input signals. For this, we deconstructed the 6-class classification task

into two classification subtasks, where in each subtask, the QRC learned to distin-
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Figure 4.4: Classification of filtered noise (a) Three different filters are used for a
moving average applied on white-noise signals: a Gaussian filter, a Lorentzian, and
an inverse power law. For each filter, we generate stochastic analog signals based
on both a 50 ns filter width, and a 600 ns filter width. (b) Visualization of the high-
dimensional output feature space using Singular Value Decomposition (SVD). Each
point corresponds to a different signal over 2000 shots taken in real time (see text).
(c) Classification accuracy as a function of the number of shots using third-order mo-
ments as the output feature. Our reservoir reaches 93% accuracy in about 2000 shots,
corresponding to about 10 ms of the signal received. (d) Confusion matrix of the task
taken at 2000 shots. (e) Participation of the mean and the off-diagonal elements of the
second- and third-order moments in the classification accuracy within the subtasks
of classifying different noise sources with fixed filter width.

guish noisy signals generated from among three different filter window types, but

with fixed window widths. The two subtasks differ by the filter window width (see

Fig. 4.4d and e). The class of signals with coherence length of 50 ns highlights the

convenience of our input encoding scheme, i.e. feeding signals directly into the os-
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cillator mode without the need to sample the signal discretely in time. Additionally,

the ability for our quantum reservoir to distinguish between signals with correlation

times on the order of 50 ns demonstrates the sensitivity to signals which vary on

time-scales much faster than the measurement rate. In contrast, classification of the

class of signals with coherence lengths of 600 ns requires correlations of the reservoir

dynamics beyond that of the measurement rate. To highlight the advantage of our

scheme, we simulated the performance of a reservoir with that of a recent gate-based

protocol where the input was sampled discretely in time [130]. Our simulation re-

sults, in Section 4.9.2, highlight the advantage of our protocol when the sampling

rate of the input is slow, which can arise in experiment such as finite pulse durations

and latency introduced by the FPGA classical comparison.

Figure 4.4e looks at the participation of the different moments µk of the measure-

ments in the classification accuracy of the 50-ns subtask (top), and the 600-ns sub-

task (bottom). Here, the output features were constructed by the mean µ1, or the

off-diagonal elements of the moments µ2 and µ3 as a function of the distance between

measurements dH , allowing us to probe the contribution of the moments as a function

of the locality of the correlations. For the 50-ns subtask, we see that the most impor-

tant contribution is the mean, with the second-order moment being the next-most

important contribution, and the third-order moment being relatively unimportant.

In stark contrast, the third-order moment is most important for the 600-ns subtask,

surprisingly yielding nearly 90% classification accuracy using non-local third-order

correlations alone. The ability to distinguish stochastic signals among the combined

six classes demonstrates the ability of our reservoir to capture both slow and fast

features of microwave signals.
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4.3 Discussion

In summary, we have experimentally realized an analog quantum reservoir computer

(QRC) and demonstrated its ability to directly process microwave analog input sig-

nals without discretization, achieving high classification accuracy on three different

tasks. Previous demonstrations of quantum reservoir computing have used multi-

qubit, gate-based quantum reservoirs [130, 103, 20, 117, 72, 89, 55]. In contrast, we

perform machine learning directly on analog signals fed into a single oscillator cou-

pled to a transmon qubit. The superconducting-circuits platform not only allows us to

leverage projective non-demolition (QND) non-Gaussian measurements to generate

correlated output features, but is also well-matched to process microwave signals that

can generally be continuous in time. In addition to demonstrating accurate classifica-

tion of microwave signals in our experiments, we also performed a direct comparison

with a state-of-the-art discrete-time, gate-based QRC approach in simulation, and

found that a continuous-time reservoir outperforms a discrete-time reservoir when

the input signals contain temporal variations fast relative to the discretization time

(see Section 4.9.2).

For any quantum neural network, including QRC approaches, a central concern is

to what extent one can achieve high accuracy on a particular task without needing an

impractical number of shots [128]. Ref. [55] recently reported that certain functions—

termed eigentasks—can be constructed with low error from quantum reservoirs even

when the number of shots is modest, giving evidence that for some tasks, sampling

noise need not be overwhelming. In our experiments, we found that it was possible

to achieve high accuracy for all the tasks we attempted while needing only 103–104

shots (depending on the task). There is important future work to be done in exploring

the trade-offs between reservoir size (e.g., number of oscillators or qubits), number
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of measurements M between reservoir resets, feature-vector dimension (dependent

both on M and the choice of order of correlators to include), and number of shots

required for both training and inference.

With improved quantum hardware, we anticipate that it will be possible to carry

out even more sophisticated tasks than what we have already demonstrated. In-

creasing the coherence time of the oscillator would enable us to perform many more

measurements (the qubit’s coherence time is, favorably, less important in our scheme

because our protocol involves repeatedly projectively measuring the qubit). While we

analytically showed in Section 4.10 the ability of our QRC to be able to approximate

any scalar function of the input signal when the signal is time-independent, provided

the number of measurements M performed is large enough, there remains the open

theoretical question of the expressiveness of the QRC when the input signal is time-

dependent. Generalizing our approach to spatial in addition to temporal inputs, as

was explored in Ref. [115], would likely support more sophisticated computations. In

Section 4.9.4, we explore such extensions in simulations and find a marked improve-

ment in classification accuracy.

It is an open question if QRC—using the type of reservoir we considered in this

paper, or any other—can, when implemented with NISQ hardware, achieve a quan-

tum computational advantage over the best classical machine learning approaches,

just as it is unclear if any quantum-machine-learning method can [18]. We did not in-

vestigate the potential for purely computational quantum advantage: our quantum

reservoir is small enough to be easily classically simulable. However, our work opens

up the possibility to experimentally achieve a different type of quantum advantage

than a purely computational one. If one performs quantum processing on data ob-

tained by a quantum sensor, there is the potential for an advantage that is a hybrid
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of being due to the advantage of quantum sensing and of quantum computing [18].

Our work suggests the feasibility of concretely realizing this kind of hybrid quantum

sensing-computational advantage, where the quantum sensor is a superconducting

circuit that can detect classical microwave radiation with high quantum efficiency

and low noise [125, 124, 4, 3]. While the signals classified in this work originate at

room temperature and are highly attenuated before reaching the device, our experi-

ments have shown that it is possible to accurately classify signals using a supercon-

ducting circuit even when there are only a few photons of signal in the superconduct-

ing circuit within any single run. Combining this with a sensitive quantum detector

could lead to quantum smart sensors—quantum versions of classical in-sensor pro-

cessors [138]—that can reliably extract information from weak microwave signals in

a way that exceeds the accuracy of any equivalent classical system.

4.4 Experimental setup

The device used in this paper consists of an oscillator, a 3D stub post cavity made

from high-purity 4N Aluminum treated with an acid etch, and a transmon qubit. The

transmon, made of Niobium, is fabricated on a resistive silicon chip, along with an

on-chip readout resonator also made of Niobium. The single chip hosting the trans-

mon and the readout resonator is mounted in the 3D cavity package using copper

clamps. The cavity and the copper clamp contain copper films for thermalization di-

rectly to gold-plated copper breadboard at the mixing chamber plate of the dilution

refrigerator (Fig. 4.6). The device is shielded with Copper coated with Berkeley Black,

and two types of magnetic shields: Aluminum, and Cryoperm (Fig. 4.5). The cavity

pin is set such that the oscillator mode is undercoupled to the transmission line by a

factor of 40. While this reduces the transmission of photons incident on our device
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Figure 4.5: Wiring diagram. Experimental setup for control hardware, cable routing,
and shielding for our device.

by a factor of 40, it keeps the oscillator state thermalized to the fridge rather than the

transmission line.

The control pulses for the qubit and the storage are synthesized using Zurich In-

struments (ZI) HDAWG, which have a baseband bandwidth of 1 GHz. These are
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Figure 4.6: Photo of device The device consists of a on-chip transmon and a co-planar
waveguide readout resonator mounted inside a high-purity Aluminum cavity. The
package is mounted to a gold-plated copper breadboard at the mixing-chamber plate
of a dilution refrigerator.

upconverted using Rohde & Schwarz SGS100A, which are signal generators with

built-in IQ mixers. These built-in mixers are used for all frequency conversions with

the exception of the readout. The readout pulses are synthesized and digitized using

ZI UHFQA, and are up-converted and down-converted using Marki mixers (MMIQ-

0416LSM-2), with a split LO from a single SGS100A. Readout signals are first ampli-

fied with a traveling-wave Josephson Amplifier (TWPA), which is a quantum-limited

amplifier. The TWPA typically requires large pump tones, so we gate it with a trigger

line from the readout AWG which combines with the CW pump tone in an IQ mixer

(as a makeshift fast switch). The readout signals are then further amplified with a

High-electron mobility transistor (HEMT) ampliflier at the 4K stage, and again am-

plified with a room temperature amplifier (ZVA-1W-103+ from Mini-Circuits) and

filtered. The digitizer on the ZI UHFQA converts to the analog response to a digital

signal and integrates it to produce a binary outcome depending on the qubit state.
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4.5 System Hamiltonian & Reservoir description

4.5.1 Hamiltonian description

Our transmon-cavity system is well approximated by the Hamiltonian [13]:

H/ℏ = ωqq
†q+ωaa

†a−χq†qa†a−χ′q†qa†2a2−Kqq
†2q2−Ka†2a2+Ξ(t)(q+q†)+ξ(t)(a+a†),

(4.2)

where a is the annihilation operator for the oscillator mode, and q is the annihilation

operator for the qubit mode, ωa and ωq are the frequencies of the oscillator and qubit

mode respectively, χ and χ′ are the dispersive shift and the oscillator state-dependent

dispersive shift respectively,K andKq are the self-Kerr of the oscillator and the trans-

mon anharmonicity respectively. The values for these parameters, as well as values

for decay rates, are listed in Table 4.1. The last two terms describe the qubit and os-

cillator drives in the lab frame. The lab-frame drives are related to the rotating-frame

drives in Eq. 4.1 via Ξ(t) = Ω(t)eiωqt + H.c. and ξ(t) = ϵ(t)eiωat + H.c.. For the de-

sign of our drives, we ignore the self-Kerr of the oscillator as well as the higher-order

cross-Kerr. We note that these are indeed present, but for the purposes of a quantum

reservoir, only add to the complexity of the dynamics. Finally, moving to the rotating

frame of the transmon and oscillator mode and truncating to the first two levels of

the transmon, we arrive at the Hamiltonian in Eq. 4.1.

4.5.2 Reservoir description for time-independent signals

The advantage of the reservoir computing paradigm is the flexibility in the choice

of dynamics. However, simple design principles, motivated by the physics of the
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Parameter Mode(s) Symbol Value
Frequency Transmon g-e ωq 2π× 7.136 GHz

Oscillator ωa 2π× 6.024 GHz
Readout ωr 2π× 8.888 GHz

Self-Kerr Transmon g-e Kq 2π× 315 MHz
Oscillator K 2π× 6 kHz

Cross-Kerr Transmon-Oscillator χ 2π× 2.415 MHz
Transmon-Readout χqr 2π× 1 MHz

Second-order Cross-Kerr Transmon-Oscillator χ′ 2π× 19 kHz
Relaxation time Transmon g-e T1 30 µs

Oscillator T a
1 100 µs

Dephasing time Transmon g-e T2 25 µs
Thermal population Transmon g-e n̄q

eq 3%
Oscillator n̄a

eq < 0.2%

Table 4.1: System parameters and dissipation rates. System parameters were mea-
sured using various spectroscopic and time-domain techniques following methods in
Ref. [21].

system, can go a long way in engineering a reservoir with high expressive capacity on

many tasks. In this section, we provide full details and motivations for the unitaries

and measurements in this work, followed by sections outlining characterizations of

the device in order to realize the intended dynamics.

The reservoir drives consists of two categories of dynamics: the unitaries and the

measurements. In what follows, we will first provide analysis of the dynamics for

time-independent input (e.g. the signals in Fig. 4.2). As we will see, the unitary com-

ponent of the dynamics implemented in this work strives to implement a cos2 nonlin-

earity on the raw input, whereas the measurements generate non-classical features in

the state and quantum correlations in the measurement trajectories via measurement

backaction.

While measuring the quadratures of some unknown signal is easy with a typical

homodyne setup, performing the same measurement of a displacement on an oscil-

lator using only qubit measurements can be non-trivial. Of course, when designing a

74



A

a.

b.

1 2 3 4 5 6

Oscillator

Qubit

Figure 4.7: Geometric phase unitary to sense phase of unknown displacement (a.)
Decomposition of the unitary used throughout the reservoir for time-independent
tasks. (b.) Schematic representation of the dynamics of the oscillator state under the
reservoir drives with time-independent input, highlighting a unitary which imple-
ments a geometric phase unitary. (1) At the start of the protocol, the qubit is in the
ground state, with the oscillator at vacuum. (2) An initial Xπ/2 pulse brings the qubit
to the equator. The CNOD(α) unitary conditions the state of the oscillator based on
the qubit. For the first reservoir, this is a coherent state. (3) and (4) For time indepen-
dent inputs, the effective action can be described by a single displacement on the os-
cillator mode. In this experiment, we operate the displacement at a frequency which,
to first order, causes a displacement only on the state conditioned on the ground state
of the qubit. A qubit π pulses switches the state in between the two displacements.
(5) The final conditional displacement brings the two conditioned states back onto
each other. This effectively disentangles the qubit from the oscillator mode. (6) The
effective geometrical area enclosed A, which is a function of the input, is imparted
onto the qubit.

reservoir, one does not strive to implement the identity, but it is a good starting point

– the unitary is thus implemented to approximate the identity. It consists of the in-

put signal data, which is sandwiched on either side by fast conditional displacement

gates implemented with CNOD [25] and qubit rotation gates. The broad-overview of

the decomposed unitary is given in terms of gates in Fig. 4.7, along with a schematic

portrayal of the phase-space trajectory of the oscillator mode initialized in vacuum

subject to a time-independent drive.

We begin with an idealized gate-based version decomposition of our reservoir for
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time-independent input on resonance with the oscillator conditioned on the qubit

being in the ground state. The sequence of gates the reservoir unitary approximates:

U1 = Xπ/2 (4.3)

U2 = D(α)|g⟩⟨e|+D(−α)|e⟩⟨g| CNOD (4.4)

U3 = D(β)|g⟩⟨g|+ |e⟩⟨e| Input (4.5)

U4 = Xπ (4.6)

U5 = U3 = D(β)|g⟩⟨g|+ |e⟩⟨e| Input (4.7)

U6 = D(−α)|g⟩⟨e|+D(α)|e⟩⟨g| CNOD (4.8)

U7 = Yπ/2 (4.9)

Ignoring the very first unitary, after applying the sequence of unitaries U2 through U7,

we arrive at unitary

U7U6U5U4U3U2 =
i√
2
e(αβ

∗−α∗β)D(β)(|g⟩⟨g|−|e⟩⟨g|)− i√
2
e(−αβ∗+α∗β)D(β)(|g⟩⟨e|+|e⟩⟨e|)

(4.10)

Let

|ψ⟩ = [e−iϕ/2 cos(θ/2)|g⟩+ eiϕ/2 sin(θ/2)|e⟩]⊗ |cavity⟩ (4.11)

be some arbitrary initialized state. Then for θ = π/2, we have

U7U6U5U4U3U2|ψ⟩ =
1√
2
D(β)[i sin(A− ϕ/2)|g⟩+ cos(A− ϕ/2)|e⟩]⊗ |cavity⟩, (4.12)

where A = 2|α||β| sin(δ) = i(αβ∗ − α∗β) is the geometric phase enclosed by the os-

cillator trajectory which is dependent on the phase difference δ between the known

displacement D(α), and the unknown displacement D(β) (Fig 4.7b). Thus, for the

proper qubit state before the application of U2 . . . U7, we are able to extract informa-

tion about the phase of the displacement. We also note that the qubit and the oscillator

are disentangled after the unitary, and that the effect of the unitary on the oscillator

mode is a simple displacement.
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Finally, pre-pending U1 (Eq. 4.3) to the string of unitaries guarantees that we ini-

tialize our qubit state with θ = π/2 when following a qubit measurement, indepen-

dent of that measurement outcome. It also guarantees ϕ = π/2 or 3π/2 depending

on the measurement outcome. The probability of measuring the qubit in the excited

state conditioned on preparing it e vs g after the entire sequence is then:

Pe|g = cos(A− π/4)2 Pe|e = sin(A− π/4)2 (4.13)

Thus, with this sequence of unitaries, we are able to extract the phase of some un-

known displacement (relative to some known displacement α) by simply measuring

the qubit. While for the first run of the reservoir, the qubit will start in the ground

state (up to thermal noise), after performing a parity measurement, the qubit state

will depend on the previous measurement outcome. See Fig. 4.11 for an experimen-

tal implementation of the above results.

In principle, Eq. 4.13 enables us to perform the identity operation on the input x, y

points followed by a cos2 kernel. Without loss of generality, we take arg(α) = 0, then

i(αβ∗ − α∗β) = Im(β) = βx. Alternating between arg(α) = 0 and arg(α) = π/2 allows

us to extract cos2(β⃗) with two runs of the reservoir.

Whereas all gates besides the input (Eqs. 4.5 and 4.7) are fast and therefore insen-

sitive to the cross-Kerr interaction, the primary deviation from the gate description

occurs for the input, which can be very long. This input displacement is conditioned

on the qubit being in the ground state. Therefore, in the rotating from of the qubit-

oscillator system, the branch of the oscillator state conditioned on the qubit being in

the excited state will rotate at a frequency χ, which in general will break the geomet-

ric phase construction that works for time-independent tasks. Therefore, we limit the

exposure time of the reservoir to the input signal to be an integer multiple of 4π/χ, so

that the oscillator state conditioned on the qubit being in the excited state will return
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to the same point.

The unitary described in Eqs. 4.3-4.9 is followed by a qubit measurement, then a

parity measurement Π [50, 123] with projectors P±, where

Π = (−1)a
†a P± =

1

2
(1± Π) (4.14)

As mentioned above, the effect of the unitary on the oscillator state for time-

independent signals is simply a displacement of the input data D(β), independent

of the qubit measurement outcome. For the following discussion, we will ignore the

qubit dynamics, since the qubit and the oscillator are disentangled at the end of the

unitary. In effect, the state of the oscillator can be described by a series of alternating

displacements and parity measurements:

|cavity⟩ = . . . Pp4D(β)Pp3D(β)Pp2D(β)Pp1D(β)|0⟩, (4.15)

where Ppn is the projector of the nth parity measurement with outcomes pn = {+,−}.

For k runs of the reservoir, we can reorder terms and add pairs of canceling displace-

ments D(−β)D(β) to rewrite the above as

|cavity⟩ =

(
k∏
n

P nβ
pn

)
D(kβ)|0⟩. (4.16)

Equation 4.16 describes a series of projective measurements after preparing a dis-

placed vacuum state. The projectors and their associated measurements are

Pα
± = D(α)P±D(−α) Πα = D(α)ΠD(−α) (4.17)

The measurements Πα describe parity measurements in displaced frame at α. Inci-

dentally, the expectation value of this operator are proportional to the Wigner func-

tion at α [107]. However, importantly, Eq. 4.16 does not describe performing Wigner

tomography of the state D(kβ)|0⟩ = |kβ⟩ at points given by β, 2β, 3β, . . ., as the ef-

fective measurements Πα do not commute for different values of α. Instead, in gen-

eral [Πα,Πγ] ̸= 0. Therefore, in this light, our reservoir construction can be seen to
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leverage non-commuting measurements and quantum contexuality to generate con-

ditional and correlated probabilities over measurement trajectories.

4.5.3 Reservoir description for slow varying time-dependent sig-

nals

1 2 3 4 5

6

7

Figure 4.8: Schematic description of the dynamics of the oscillator, starting in vac-
uum, for a slow time-varying input. In such a scenario (as is the case for the task
of classifying radio modulation schemes), the signal causes a displacement largely
conditioned on the ground state. Generally, the value of the displacement is differ-
ent before and after the π pulse in between (3) and (4). Unlike the regime for time-
independent signals, there is no effective area enclosed in phase space, which leaves
the qubit entangled with the oscillator. (6) and (7) describe the state of the oscillator
after the qubit measurement. The resulting state of the oscillator is a cat state, where
the parity of the cat dependent on whether the outcome of the qubit measurement is
ground or excited.

For generic, time-dependent signals, like those classified in Figs. 4.3 and 4.4 in

the main text, the geometric unitary described by Eqs. 4.3-4.9 does not in general

hold, as the symmetry between panels 3 and 4 in Fig. 4.7 is broken. Additionally, the

approximation that the input is displacement conditioned on the qubit in the ground

state (Eq. 4.5 and 4.7) will not hold for high bandwidth signals, like those in Fig. 4.4 in

the main text. For high-bandwidth signals, the input will also have some contribution
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in displacing oscillator conditioned on the qubit being in the excited state, which can

lead to complex dynamics in the oscillator. While for generic signals, this can be

hard to describe, here we prove a treatment of our reservoir construction for slowly-

varying, time-dependent signals, like those in Fig. 4.3 of the main text.

We can follow most of the derivation from the scenario of time independent sig-

nals in Section 4.5.2, to describe the dynamics of the QRC for the task of classifying

radio frequency modulation schemes. Along with the assumptions in the previous

section, we make the slow-varying input approximation, such that the displacement

on the oscillator of the reservoir is still effectively conditioned on the ground state

of the qubit. The displacement on the oscillator depends on the value of the symbol

encoded for the given modulation scheme. Since, in general, the symbol is different

before and after the qubit π pulse: the direction of the displacement in the oscillator

will be different. Given the timescales of the input signal involved, this essentially

corresponds to a displacement on the oscillator conditioned on the ground state of

the qubit. When the two displacements are different in magnitude and direction, the

qubit remains entangled with the oscillator at the end of the reservoir unitary. The

state of the system just before the measurements is (step (5) of Fig 4.8:

|ψ⟩ = 1√
2
(e−iAiD(βi)|g, cavity⟩+ eiAjD(βj)|e, cavity⟩), (4.18)

where βi is the displacement before the qubit flip, and βj is the displacement after.

Ai = 2Im [αβ∗
i ] is the phase acquired after two non-orthogonal displacements. When

βi = βj , we recover the dynamics for time independent signals. It is straightforward

to show that the qubit will be disentangled from the oscillator and that the area Ai,

corresponding to the geometrical phase form the area enclosed in phase space will be

present as a relative phase difference between the ground and excited state. After a
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Yπ/2 gate, we have the following state in our system:

|ψ⟩ = 1

2
[eiAiD(βi)+e

−iAjD(βj)]|g, cavity⟩+
1

2
[eiAiD(βi)−e−iAjD(βj)]|e, cavity⟩, (4.19)

One can think of this as a cat state in the cavity, with a parity determined by the

qubit state. This is schematically shown in (6) and (7) in Fig 4.8. In the limit of very

different displacements, the probability of the qubit measurement is the same for

both ground and excited states. The goal of this task can be thought of as discrimi-

nating probability distribution functions over the (I,Q) plane. Fig 4.3 (a) represents

the so-called “constellation ” diagram of the modulation schemes considered in this

work. Each scheme can take discrete values in (I,Q) space, with even equal probabil-

ity (we construct the dataset of radio signals encoding random binary strings). Our

lack of knowledge of the exact displacement on the oscillator can be mathematically

expressed as a density matrix. This is the most apparent in the state of the oscillator

after the initial qubit measurement,

ρ′cavity =
∑
βi∈P

piD(βi)ρ
†
cavityD(βi), (4.20)

where ρ′cavity is the density matrix representation of the cavity right after the qubit

measurement and ρcavity describes the initial density matrix before the application of

the protocol. The set P describes the distribution of possible displacements which

can be received from the input. pi is probability for receiving the symbol correspond-

ing to a displacement βi For the task considered in this work, these distributions are

uniform, with no contributions from conditional probabilities. However, this descrip-

tion of the reservoir motivates the potential for the QRC to distinguish signals with

complex correlations in the symbols of the message encoded.
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4.6 Quantum reservoir characterization

4.6.1 CNOD
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Figure 4.9: Characterization of conditional displacements using an Anti-
symmetric pulse from Ref. [25]. (a.) Pulse control schematic of characterization
of conditional displacement. Here, we make use of number-splitting spectroscopy
to characterize the state of the cavity after perform a conditional displacement on
the state |+⟩|vacuum⟩ conditioned on the qubit state. By post-selecting on the qubit
state, we can evaluate the effectiveness of the conditional displacement. (b.) Num-
ber splitting spectroscopy conditioned on measuring the qubit in the excited state.
A single parameter fit is used to capture the behavior of the state of the cavity as a
function of amplitude. From the good agreement, we conclude that conditioned on
measuring the qubit in the excited state, the cavity is displaced. (c.) Number splitting
spectroscopy conditioned on measuring the qubit in the ground state. We see very
limited change in the cavity state when measuring the qubit in the ground state.

Here, we provide the calibration of the CNOD unitary [25], one of the components

of our reservoir unitary (Fig. 4.7). The CNOD protocol implements the following
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unitary

CNOD(α) = D(α)|g⟩⟨e|+D(−α)|e⟩⟨g|. (4.21)

The protocol is implemented with two ‘Anti-symmetric pulses’ sandwiching a qubit

pi-pulse. In the frequency domain, the pulse is composed of two gaussian envelopes

offset such that there is a zero-crossing at the qubit ground state frequency, and that

the spectrum is anti-symmetric around this point (see Ref. [25]). The Anti-symmetric

pulse is a conditional displacement, conditioned on the qubit being in the excited

state. The motivation for using CNOD instead of a single tone displacement on res-

onance with the stark-shifted qubit frequency is that it enables the ability to perform

conditional displacements at time scales much smaller than 2π/χ.

Figure 4.9a displays the protocol for characterizing the anti-symmetric pulse.

First, the qubit is unconditionally brought to the equator of the bloch sphere, with

a wide-band Xπ/2 pulse. After this, the anti-symmetric pulse acts on the cavity, fol-

lowed by an qubit measurement, collapsing the cavity state to either D(α)|0⟩ or |0⟩.

After collapsing the state, we perform a number-splitting spectroscopy on the cav-

ity. This is performed with a conditional Yπ, conditioned on the kth cavity Fock

state [40, 112] followed by a second qubit measurement. By post-selecting on the first

qubit measurement outcome, we can characterize the cavity state for each branch.

Figure 4.9b and c show the number-splitting spectroscopy for the cavity state condi-

tioned on the qubit being in the ground state vs excited, as a function of pulse ampli-

tude. These curves are fitted with a single parameter scaling parameter that defines

the relationship between pulse amplitude voltage and the amount of displacement α.
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Figure 4.10: Characterization of input signal duration (a.) Diagram of control
sequence to calibrate length of input signal duration toward implementing the ge-
ometric phase unitary in Eqs. 4.3-4.9. Here, a double conditional displacement is
performed after sending the qubit to the equator of the Bloch sphere. After this, a
variable delay is added before undoing that displacement. Finally, the qubit and the
Fock distribution of the cavity is sampled using methods from Refs. [119, 24]. (b.)
Overlapping histograms showing Fock distribution of cavity state conditioned on
qubit state as a function of delay. (c.) Cavity state overlap with the vacuum state as a
function of delay. At a particular value of the delay, the two displacements interfere
and cancel each other out.

4.6.2 Reservoir unitary characterization

With our rotation gates and CNOD’s calibrated, we describe in this section the cali-

bration of signal drives toward the implementation of Eqs. 4.3-4.9. We begin with a

calibrating the duration of time our reservoir is exposed to the input signal. As dis-

cussed in Section 4.5, calibrating this delay is crucial for a faithful implementation of

the geometric phase detection unitary introduced in this work. While it may seem

that this restriction in the input signal duration is contrived in a real-world setting
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where the signal is unknown, this restriction would be implemented via a fast switch

that exposes our device to the unknown signal periodicially.

Figure 4.10a schematically describes the experimental protocol for calculating the

delay between the two CNOD pulses. Here, we effectively try to undo a double

conditional displacement via second double conditional displacement. Due to the

dispersive shift, after the first conditional displacement, the state of the cavity con-

ditioned on the excited state of the qubit will start rotating with respect to the state

of the cavity conditioned on the ground state. After a period of 2π/χ, the this will

return to the same position as the start. Undoing the displacement at this point in

time will send the cavity state to vacuum. Figure 4.10b shows the Fock distribution

of the cavity as a function of the waiting time, and Fig. 4.10c shows the cavity state

overlap with the vacuum state as a function of the waiting time.

Next, we implement the full unitary given by Eqs. 4.3-4.9, where the section cor-

responding to the input data displacement (Eqs. 4.5 and 4.7) is given by the duration

found in the results above. For this calibration, we implement the full unitary given

by the diagram in Fig. 4.7a by varying the angle of the input displacement and look-

ing at the dependence.

Figure 4.11a shows the schematic overview of the calibration procedure. The

geometric phase unitary is parameterized by a long displacement, whose angle we

sweep. After the unitary we perform a qubit measurement, followed by a parity mea-

surement. This calibration experiment is essentially identical to the time-independent

reservoir computing experiments in terms of the control protocol. Here, instead of

sending data from different distributions for the system to classify, we only vary the

phase and amplitude of some input displacement to get the phase dependence we

want.
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Figure 4.11: Full geometric phase unitary calibration. (a.) Pulse control protocol
for the unitary defined by Eqs 4.3-4.9. This protocol is identical to that of Fig. 4.7a.
(b.) Overlapping histograms showing the probability over outcomes of measuring
the qubit and oscillator-parity as a function of the phase of the input signal with |β| =
0.25. As the phase is varied, the probability of the qubit being excited increases. (c.)
The probability of measuring the qubit excited as the phase of the input displacement
β is varied, plotted for different values of |β|

Figure 4.11b shows the distribution of measurement outcomes from measuring

the qubit and the oscillator parity after the unitary is applied with α = 1 and β = 0.25.

As the angle of the input is swept, the qubit probability of the qubit being in found

in the ground state shifts to being found in the excited state. This is more evident in

Fig.4.11c where we plot the probability of measuring the qubit in the excited state Pe

as a function of the phase of β for different amplitudes of β. In comparison we find

great qualitative agreement with the expected result Pe = cos(2|α||β| cos(δ) + π/4)2,

where δ = arg(α) − arg(β) (see Eq.4.13), though we find an extra reduction in the

dynamic range in Pe for increasing β due to qubit overheating.

For our quantum reservoir tasks, we choose α to be quite small, near 0.2. The

effect of this is a severe reduction in the dynamic range of Pe, but one that is easily

distinguishable at 1000 shots. For all of our tasks, this was the mininum number of
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shots needed to get 100%. Keeping |α| small allows for a greater sensitivity in |β|

without worrying about qubit overheating.

4.6.3 Qubit & parity measurements

Oscillator

Qubit

Figure 4.12: Qubit and oscillator-parity measurements in the quantum reservoir
computer. For our reservoir construction, the state of the qubit is not generally
known before a parity measurement. We apply feedback to change the parity mea-
surement based on the preceding qubit measurement to faithfully capture the oscilla-
tor parity.

The qubit and parity measurements performed in this work are the standard pulse

schemes used in many previous works, with one change. The typical procedure of

measuring the parity of a cavity state is similar to a Ramsey experiment (and per-

haps more closer still to a ‘qubit-revival’ experiment [21]), and importantly requires

knowledge of the state of the qubit before the measurement is performed. In a quan-

tum reservoir setting where measurement trajectories can be unknown, measuring

the parity of the cavity is not straight-forward without post-selection or feedback.

Here, since we perform a qubit measurement just before the parity measurement, we

apply simple feedback that conditions the parity unitary on the measurement out-

come of the preceding qubit measurement. The condition is such that the parity mea-

surement outcome is now independent of the preceding measurement outcome. This

reduces the order of correlations required to gain the same information: attaining the

parity of the cavity only requires information about the parity measurement, whereas

previously, second-order correlations between the qubit and parity measurement was
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required. A further refinement to reduce trivial correlations in the measurement his-

tory would reset the qubit after the oscillator parity, however, due to limitations in

the FPGA software, this was not implemented.

4.6.4 Tuning T2 via resonator-induced dephasing

Qubit

Readout

a.

b. c.

Sub-system

Figure 4.13: Resonator-induced dephasing via pumping on the readout resonator
(a.) Protocol for characterizing the effect of a readout pump on qubit decoherence:
we perform a typically Ramsey experiment while populating the readout resonator
to measure the T2. (b.) Ramsey curves as a function of readout pump amplitude.
These curves are fit using Eq. 4.22 to produce estimates of the qubit coherence. (c.)
Extracted T2 values for each of the curves in part (b)

Here we describe the experiment to reduce the qubit coherence time by pumping

the readout resonator with photons during our reservoir experiments (see Fig. 4.2d).

The calibration of this experiment involves performing a standard Ramsey T2 exper-

iment, modified with a pump on the readout resonator (Fig. 4.13a). Once populated,

the resonator photons induce a dispersive shift, which sends the qubit to the center
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of the Bloch sphere once the readout resonator is traced out. In principle, this interac-

tion is coherent, and the qubit should see a revival. However, due to the leaky nature

of the readout resonator by design, a coherent revival is not observed. As remarked

at the end of Section 4.4, this experiment required an auxiliary AWG line. Figure 4.5

denotes this as the ‘Readout Auxiliary’ line.

Figure 4.13b shows the results of the Ramsey calibration with the readout pump

on, for varying pump powers. We see a steady decrease in the qubit coherence time

as the pump amplitude is increased as expected. The curves are fit to the equation

Pe = cos(2πδt)e−t/T2 , (4.22)

where δ is an intentional detuning. Here, a Gaussian pulse was used as the readout

pump. We expect that due to the construction of the reservoir, a flattop pulse may

be more detrimental to the classification performance, since the Gaussian pulse has

little amplitude during the CNOD unitaries shown in Fig. 4.7a. Finally, we note that

the maximum T2 shown in Fig. 4.13 differs from the value quoted in Table 4.1. After

preliminary calibration data corresponding to those in Fig. 4.13, the experiments in

Fig. 4.2c were performed, after which the qubit T2 was suddenly lowered. However,

all experiments presented in this manuscript, with the exception of Fig. 4.13, were

performed where the qubit T2 matched that of Table 4.1. Given the conclusion that

the qubit T2 does not impact classification accuracies until it approaches the time

between measurements, we decided to include the higher quality data presented in

Fig. 4.13, rather than the preliminary data used to calibrate the results in Fig. 4.2c.
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4.7 Machine learning with the quantum reservoir

4.7.1 Output feature encoding

Figure 4.14: Comparison of feature vectors in spiral classification performance
Here, classification accuracy on the spiral task is considered for different output en-
codings. Particularly, we compare included higher and higher correlations. µ⃗≤p de-
scribes a feature vector containing all central moments up to and including the p-th
central moment (see text).

In this work, we use measurement correlations as the output feature vectors from

which the trained linear layer of our reservoir performs the classification. In this sec-

tion, we provide details in how these were constructed from measurement results,

as well as motivations and comparisons with other output encodings. As described

in the main text, measurements of our reservoir involve two measurements follow-

ing every data input: a qubit measurement and a parity measurement. The qubit

measurement, which follows just after the input unitary, either extracts information

about the input displacement (if the signal is time-independent), or performs some

nontrivial back-action on the oscillator state (see Fig. 4.8). The parity measurement,
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which follows the qubit measurement, will simply measure the parity of the cavity

state post-qubit measurement, and collapse the oscillator state to either even or odd

Fock states. It is worth pointing out that measurements of the parity are done with an

entangling unitary starting with a known qubit state and then performing a regular

qubit measurement (see Section 4.6.3 for details).

In this manuscript, qubit measurements are performed using standard dispersive

readout, which we review here, since the process involves a number of nonlinear

steps (for a thorough review, see Ref. [13]). Each measurement outcome is the result

of integrating a response signal from the readout resonator, and is defined by a sin-

gle point on the I − Q plane. For sufficiently strong coupling between the readout

resonator and the qubit compared with the resonator linewidth, the set of all possible

integrated IQ points will form two (or more) localized and well-seperated blobs, in-

dicating projective measurement with single-shot fidelity. These two (or more) blobs

correspond to different states of the transmon, and single-shot fidelity refers to the

ability to discern the state of the qubit using only one readout pulse. With knowl-

edge of the location of these blobs, and which state they correspond to, we perform a

threshold the measurement result to either ‘0’ or ‘1’, indicating the qubit ground state

or excited state respectively.

From a string of binary measurement outcomes, or bitstring, we form our feature

vectors by first calculating the p-th central moment µp, defined as

(µp)ijkl... =
1

Nshots

Nshots∑
n

(xni − ⟨xi⟩)(xnj − ⟨xj⟩)(xnk − ⟨xk⟩)(xnl − ⟨xl⟩) . . . , (4.23)

where the number of indices of µp is equal to p. Here xni is the nth repeated mea-

surement result of observable xi. In our setting, i labels the i-th measurement in

a sequence of correlated measurements before the system is reset. The expectation

value ⟨xi⟩ is taken over the shots Nshots – counting the number of system resets and
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repetitions. Faithful estimates of these moments typically require on the order of 1000

shots for the results presented in this manuscript.

Figure 4.15: Second-order central moment (covariance) of quantum reservoir out-
put over spiral dataset. These correlation matrices were generated from calculating
the covariance over measurement outcomes in a reservoir run, then averaged over
the entire dataset.

The central moments of Eq. 4.23 are used in the construction of the output feature

vector for the linear layer to perform the classification task. Specifically, the feature

vector is generated by appending successively more and more central moments. We

denote these appended feature vectors as µ⃗≤p for feature vectors containing up to p

central moments, e.g.

µ⃗≤2 = [µ⃗1, µ2]

= [⟨x0⟩, ⟨x1⟩, ⟨x2⟩, . . . , ⟨x0x1⟩ − ⟨x0⟩⟨x1⟩, ⟨x0x2⟩ − ⟨x0⟩⟨x2⟩, . . . , ⟨x1x2⟩ − ⟨x1⟩⟨x2⟩, . . .]

is a feature vector constructed from appending the flattened covariance to the mean.

The first-order moment here is a vector to denote we take the mean over repetitions of

different measurements, whereas the covariance is a matrix and thus is not denoted

as a vector. Additionally, we only take the independent degrees of freedom of the

symmetric covariance matrix equivalent to discarding one of the following redundant
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elements ⟨xixj⟩ and ⟨xjxi⟩ for some integers i, j. In general, for arbitrary moments,

the number of independent components for M measurements is
(
M+p−1

p

)
, where p

is the order of the moment. For up to third-order central moments of M = 8, this

gives a total output feature dimension of dim(µ⃗≤3) = 8 + 36 + 120 = 164. This output

dimension for the results presented in the main text is further reduced as discussed

in the following paragraphs below.

Figure 4.16: Third-order central moment of quantum reservoir output over spiral
dataset. These third-order central moments are plotted as an array of 2D matrices,
such that the i-th column corresponds to the 2D matrix µijk. The two rows corre-
sponds to the two different classes of signals. In the third order, one can begin to see
differences between the two classes by eye.

Figure 4.14 contains classification results on the spiral dataset (Fig. 4.2) as a func-

tion of the number of shots for the feature vectors µ⃗1, µ⃗≤2 and µ⃗≤3. We see that

our quantum reservoir has non-trivial third-order correlations and that the reservoir

leverages these correlations to boost classification accuracy. The covariance matrix

averaged over the entire spiral dataset is plotted in Fig. 4.15, and the third-order cor-

relations are plotted in Fig. 4.16 – plotted as a set of 2D matrices. In the third-order

correlations in particular, we can begin to pick out by eye the differences in the two

classes.

This construction generally allows us to construct feature vectors that are smaller

than the probability distribution over all possible measurement trajectories, which is
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2M dimensional. However, as can be seen in Fig. 4.15, there is yet redundant infor-

mation even after taking only the symmetric part - specifically, that the information

tends to be very local and that measurements far apart tend not to be correlated. This

has the physical interpretation that while measurements are indeed correlated, even

possessing higher-order correlations, this correlation tends to be local due to the finite

memory of the system. This motivates us to further restrict our feature vector to only

capture the essential local correlations.

Figure 4.17 compares the classification performance of feature vectors generated

with up to third-order moments, where we truncate the locality of the correlations.

That is, the elements of the third order central moment (µ3)ijk are set to zero if

|i−j| > dH or |i−k| > dH , for some integer dH . We note that including third-order cor-

relations between measurements that are up to three ‘sites’ away nearly reproduces

the classification accuracy of when you include all third-order central moments. Ad-

ditionally, we compared the construction of feature vectors using truncated moments

up to third-order with that of using the full sampled distribution as the feature vector

and found that the former performed much better (Fig. 4.14). These last two state-

ments were found to be true for all tasks presented in this paper. For M = 8 measure-

ments, the truncation of long range correlations further reduces the output feature

size from 164 down to 94.

4.7.2 Training the linear layer

The only component of the reservoir that was trained to fit the dataset processed by

the reservoir was the linear layer applied to the feature that the physical reservoir

produced. The linear layer was an R×C matrix Wtrain and C-dimensional vector vtrain
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Figure 4.17: Spiral classification accuracy as a function of locality of up-to third-
order correlations Classification accuracy for the spiral task using up to third-order
central moments truncating correlations to only include correlations up to dH . We
find that we can achieve high accuracy using local third-order correlations, saturating
the accuracy when only keeping correlators up to dH ≤ 3. The performance of using
the sample distribution is also compared which performs worse than using the central
moments as output features, despite containing more information (see text).

applied to the R-dimensional reservoir feature x to get

y = xTWtrain + vtrain (4.24)

where the largest of the C elements of y corresponded to the predicted class of the

data point (C is the number of classes). To train the linear layer, we chose between

two different approaches: the pseudo-inverse method and back-propagation through

a softmax function on the output. The two approaches optimize the linear layer over

different loss landscapes. This is because our classification method is fundamentally

discrete - i.e. we identify the class simply based on whichever output vector entry

is the largest - so there is not a perfect correspondence between our loss and the

classification inaccuracy.

First, we will describe the pseudo-inverse method. Let X be a N × (R+ 1) matrix
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consisting of R-dimensional reservoir features generated for N training points, with

a column of 1’s appended (this is to compute both Wtrain and vtrain at once). Let Y be

an N ×C matrix consisting of C−dimensional row vectors that serve as labels for the

training points such that Yi,j = 1 if j corresponds to the class of the ith training point

and zero otherwise. For an ϵ > 0, we construct W ′
train (Wtrain appended with vtrain) as :

W
′

train =
(
XTX + ϵI

)−1
XTY (4.25)

In our case, the value of ϵ was swept to maximize the accuracy of the classifica-

tion. In the limit of ϵ → 0, the pseudo-inverse matrix of Eq. 4.25 is provably optimal

for minimizing ||XWtrain − Y ||22 [12] up to numerical stability, and so has been a pop-

ular choice for training the linear layer at the output of reservoirs [93, 116, 42, 109].

However, our goal was to classify the input signals based on the largest element of the

final output vector. Consequently, the linear layer that resulted in the lowest mean

squared error with our labels was not always the linear layer that gave us the best

accuracy.

For this reason, we also used a second training method for our linear layer. This

approach used softmax, a popular choice for classifiers in neural networks [7] and

back-propagation using the automatic differentiation package from PyTorch [99].

Training through back-propagation with an optimizer is now necessary since an exact

analytic solution to minimize the loss no longer exists, unlike the case of the pseudo-

inverse. In this approach, the prediction vector y from Eq. 4.24 is passed through the

“Softmax” activation function:

(yprediction)i =
exp(yi)∑C
j=1 exp(yj)

(4.26)

We then computed the mean squared error between the resulting yprediction and the

label for the training point that produced the underlying reservoir feature x. Finally,
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we used back-propagation to compute the gradient for our linear layer. The linear

layer was then updated using the ADAM optimizer [69] with the default settings of

β1 = 0.9, β2 = 0.999 and a learning rate of 0.01. For our reservoirs, we tried both

methods of training the linear layer and used whichever yielded the best accuracies.

Empirically, we found that while pseudo-inverse training was better in some cases,

training the linear layer with back-propagation often yielded quite large accuracy

advantages over pseudo-inverse.

4.8 Supplementary information machine learning tasks

4.8.1 Classification of Radio-Frequency signals

In this section, we discuss about the algorithm for generating the dataset for the clas-

sification of digital modulation schemes on radio signals. The digital modulation

scheme involves encoding sequences of binary values into the amplitude and phase

of a radio signal for a fixed duration. The number of binary values encoded de-

pends on the modulation scheme. For example, for BPSK (binary phase shift key),

each symbol (change in property of the signal) encodes one bit of information. For

32QAM (quadrature amplitude key), there are 32 possible values, which allows each

symbol to contain 5 bits of information. For this task, we keep the symbol rate fixed

across all the tasks. Moreover, the pulses generated by the arbitrary waveform gen-

erator (AWG) all occur at the baseband frequency. This signal is then upconverted to

the frequency of the cavity before sent to the device. To generate the set of possible

sequences, we randomly select each symbol with equal probability. This corresponds

to the case of each possible binary string of digits encoded to be equally likely. Due
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to memory constraints on the AWG, we cannot output a continuous encoded signal

for long durations, corresponding to the regime of large samples of the reservoir. We

circumvent this constraint by realizing that, for this task, there are no correlations in

the encoded binary digit sequence (since each symbol is equally likely). Therefore,

the probability of a long binary digit sequence can be correctly emulated by sampling

multiple short binary digit sequences and concatenating them together. For this task,

we can simply achieve this by generating a signal with eight symbols, which is the

number of symbols enter our QRC before its state is completely reset.

4.8.2 Classification of noisy signals

Figure 4.18: Histogram of integrated value of the input signal for the noise classi-
fication task. In this work, we enforced a normalization condition on the amplitude
of the filter functions. We set the normalization such that the long time integral of the
signal corresponds to a value with zero mean and the same standard deviation. This
is visually seen from the probability density function from the dataset of the classes
of noisy signals. We do this to ensure that any reservoir which simply integrated the
signal, before applying a non linear kernel, cannot classify the different signals. The
fact that our reservoir is able to solve this task can therefore be associated with the
continuous-time processing by the cross-Kerr interaction between the qubit and the
cavity. Enforcing this normalization is mathematically equivalent to setting the DC
component of the filter functions to be the same value in frequency space.

To generate the dataset describing the task of classifying noisy signals using the
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QRC (see Fig. 4.4), we start with emulating white noise. At each time step of the

sampling rate of the AWG, we choose a value for in-phase and quadrature signals

uniformly between the unit interval (up to an overall normalization). While this is

limited to the sampling rate of the AWG (around 2 × 109 samples per second), this

is much larger than any relevant time scale of the experiment. Therefore the approx-

imation of broadband white noise is appropriate to describe the effect of the signal

on the system. We then apply “kernels” as a convolution in the time domain to each

need seed of the white noise generated signal. This can also be thought of a bandpass

filtering function in frequency domain. The classification task is then to identify the

kernel. Each kernel is defined by a time domain function. The only hyper-parameter

to describe each kernel is the overall scaling value. In this work, we set the DC com-

ponent of this kernel in frequency domain to be the same for all classes (set to unit

value without loss of generality). In the time domain, this corresponds to scaling the

amplitude such that the area enclosed by the filter function in time is the same for

all functions.. We do this to make sure that a direct integration of the signal over a

time domain much longer than the correlation length introduced by the kernel, can-

not distinguish the signals from each other (see Fig. 4.18). The above normalization

ensures the random variable associated with this integrated value is the same for all

distributions. Therefore, this ensures that any ability of the reservoir to classify the

signals arises intrinsically from its computational capacity to distinguish short-time

correlations (in this work we choose a correlation time scale of 50ns and 600ns, with

kernel functions of Gaussian, Lorentzian, and the Inverse function: generating a total

of 6 classes.).
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4.9 Simulation of the quantum reservoir

4.9.1 Introduction

Spiral Digital Modulation Filtered Noise

Figure 4.19: Classification accuracies obtained from numerical simulations of the
QRC. Numerical simulations of the quantum reservoir can help guide the expected
performance of the system in experiment. Here, we simulate the three main tasks
considered in the paper: Spiral (a time-independent input with the goal of classifying
the arms of the spiral), Digital Modulation (a slow-varying, time-dependent signal
with the goal of identifying the digital modulation scheme used in the signal), Cor-
related Noise (a fast-varying, time-dependent signal with the goal of classifying the
“kernel” of the correlation function).

Classical simulations of the QRC can provide insight into the expected computa-

tional capacity in experiment. For our work, classical simulations of the dynamics of

the reservoir were primarily performed with the aid of QuTiP [63]. The algorithm to

estimate the classification accuracy for a given task then follows the same technique

used in experiment, with training and testing datasets on the measurement outcomes

of the simulation. We implement the Hamiltonian in Eq 4.1, by approximating the

transmon as a qubit, and introducing a finite dimensional Fock truncation to the cav-

ity subspace. It is important to ensure that the Fock truncation does not introduce any

spurious effects, for it can be a source of non-physical non-linearities in the system.

For example, a linear cavity, treated as a harmonic oscillator, only performs a linear

transformation on an incoming analog radio frequency signal. However, if in simula-

tion, the support of the state of the cavity exceeds the Fock truncation of the simula-
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tion, numerical errors introduce non-Gaussian states in the cavity mode. Such effects

will depend non-linearly on the input, and hence can effectively act as a “good” (but

of course unphysical) reservoir! To ensure this doesn’t happen in simulation, at every

step of the unitary evolution, we monitor the probability of the wavefunction on the

largest Fock state in the simulation. If this value goes above 1% during the simulation,

a warning is raised, and the results of the simulations are discarded.

To make the simulations efficient, we make certain assumptions on the quantum

system. Firstly, we treat the reservoir controls of qubit rotations and conditional dis-

placements with a “gate”-based unitary. However, to take into account the analog,

continuous dynamical evolution implemented by the cross-Kerr interaction term in

the Hamiltonian, the interval of the input into the system is implemented with the full

time-dependent Hamiltonian evolution (using QuTiP’s “mesolve” functions). Finally,

another approximation we make (in favor of simulation speed) is ignoring decoher-

ence effects. To ensure this approximation is valid, we performed simulation with

the stochastic wavefunction approach with photon loss and qubit dephasing rates

measured in experiments [23]. We obtain differences in expected classification accu-

racies within error bars (which are obtained from different datasets from repeated

simulations). This also gives us confidence that the role of decoherence in the sys-

tem plays a minimal role in the computational capacity of the reservoir. The results

of the simulations with the third central moment are plotted in Fig. 4.19. Interest-

ingly, the performance as a function of the number of samples agrees to experiment

within the same order of magnitude. This gives a good estimate for the experimental

time required to produce a classification accuracy versus shots curves in experiments.

For all three tasks, the reservoir approaches 100% accuracy with sufficient samples or

integration time of the input.
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4.9.2 The advantage of continuous-time continuous-variable QRCs

over discrete-time qubit-based QRCs

Oscillator

Qubit

a.

b. c.

Ancilla Qubit #1

Ancilla Qubit #2

Data Qubit #1

Data Qubit #2

t [μs]

 [μs]

 [μs]

ε
(t

)
in

I

Q

Discrete-time (gate-based) quantum reservoirContinuous-time quantum reservoir
Continuous-time quantum reservoir

(Our QRC)

IBM

Discrete-time quantum reservoir

Figure 4.20: Simulations comparing the performance of a continuous-time quan-
tum reservoir (our work), and a discrete-time qubit-based quantum reservoir,
based on a recently implemented protocol [130]. (a.) Schematic reservoir proto-
col for our experiment (on the left), versus that introduced in [130], involving two
qubits as the data qubits, and two as the ancillas. The reservoir consists of single
qubit rotations interleaved with CNOT gates between the data qubits and data and
ancilla qubits. In this simulation, we simulate the performance of the two reservoirs
as a function of the delay τ between two durations of the input. Such a delay can be
introduced by the finite pulse durations and latencies introduced by the FPGA. (b.)
Classification accuracy curves for the two reservoirs as a function of shots, for differ-
ent values of delays. The continuous time analog reservoir is much more robust to
delays between inputs compared to the discrete time reservoir implementation. (c.)
Plot of accuracies at 5000 shots for the two reservoir implementations as a function
of delay time. Experimentally relevant times include 4µs for our experiment, and
around 8µs [57] for the experimental realization of [130] on an IBM quantum com-
puter.

In this section, we benchmark the performance of our continuous-time-

continuous variable QRC in comparison with other hardware implementations of

reservoirs. To highlight the benefit of our QRC in processing time varying input sig-

nals, we compare the simulation of our reservoir with that of a recent QRC scheme

involving repeated measurements on a multi-qubit based superconducting circuit
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quantum system [130]. For this comparison, we simulate the expected performance

of both systems on the task of classifying different noise signals with the classes de-

scribed in Fig. 4.4. While our reservoir can naturally interface with analog signal,

this is not the case with the protocol introduced in [130]. For this simulation, the sig-

nal is sampled at discrete times and input to the system as a scalar parameter (one

for the in-phase value and one for quadrature value). To highlight the advantage of

our QRC, we slightly modify the task introduced in the Fig. 4.4. Here, we normalize

the six filter functions such that the integral of the filter function in frequency do-

main is kept constant. We do this such that the standard deviation associated with

the distribution of the sampled signal is the same across all signals. The only in-

formation distinguishing the signals is in the correlation between two close samples

in time. To elucidate this reasoning, we simulate the performance of the two reser-

voirs as a function of the time duration in between two samples of the signal (in the

case of the discrete qubit based reservoir) and integration windows (for our analog

reservoir). Such a finite duration can arise from finite-pulse durations of reservoir

protocols, qubit-measurement times, and the finite latency introduced by the classi-

cal FPGA processor. For example, for our experiment, this time is around 4µs, mostly

arising from the measurement of the qubit and the parity of the cavity. In experiment

(Fig. 4.4), we had generated and timed the input wave forms such that the delay be-

tween inputs is essentially 0µs. For a typical IBM quantum device with mid-circuit

measurement, the protocol used in Ref. [130], the finite latency can be estimated to be

around 8µs [57]. The protocol for the discrete-time quantum reservoir is designed to

only act on real-valued input signals. However, for a continuous signal in the rotat-

ing frame, we have both the in-phase and quadrature values. For the experimental

quadrature, these values correspond to displacements on the oscillator in orthogonal

directions. To extend the scheme presented in [130], we do the following minimal
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change: we interleave the between sample points of in-phase and quadrature values.

We could have chosen these points with the delay of τ in between each. However, this

might have had the effect of introducing twice the delay compared to the continuous

time reservoir. Therefore, we chose the relaxed constraint of the input such that both

the in-phase and quadrature values are chosen at the same point, with just a delay in

between two different in-phase and quadrature points.

4.9.3 Comparison to other reservoirs

Input

Cavity Qubit

Spiral

Total Time [   s]

Input

Cavity

Cavity-and-qubit 
(our experiment)

Cavity-only

Input

Qubit

Cavity-and-qubit 

Cavity-only 

Qubit-only 

Random Guessing

Digital Modulation

Total Time [   s]

Filtered Noise

Total Time [   s]

a. b. c. d.

Qubit-only

Figure 4.21: Simulations of the performance of the cavity-and-qubit reservoir sys-
tem with its components: just a cavity reservoir and just a qubit reservoir. (a.) The
circuit diagrams of the three quantum reservoir simulated here. 1) The circuit dia-
gram of the experimental QRC in this work: a cavity coupled to a qubit. The input
is interfaced to the cavity, and the state of the qubit is measured using the standard
dispersive readout technique with a readout resonator. 2) The circuit diagram of a
cavity as a reservoir. In this case, the natural output of the cavity is the transmitted
signal. 3) The circuit diagram of a qubit reservoir. In this case the input is coupled in-
stead to the qubit. (b.) Simulation of the classification accuracy of the three different
reservoirs for the three tasks considered in the paper. As a fair comparison, the out-
put feature vector dimension is kept constant for all three reservoir. The experimental
setup drastically outperforms either of its components, just a cavity (in (c.) and just
a qubit (in (d.)), which highlights the important role of entanglement in classification
accuracy.

A cavity coupled to a qubit is a hardware efficient quantum system to perform

reservoir computing on analog signals. In this section, we motivate this by simulating

the performance of other natural choices of quantum reservoirs: a single qubit, and a
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single cavity. The protocols for these systems are inspired by what one can naturally

perform in experiment. To make a reservoir with a cavity, we couple the input into the

cavity (as is the case for the experimental design). To readout the cavity, we perform

a transmission style Homodyne measurement, which infers the mean field value of

the cavity. This is a continuous form of measurement, where the output feature is a

time dependent radio frequency signal at the frequency of the cavity mode. Since the

cavity is always in a coherent state, the output time trace is linearly dependent on the

incoming signal. For a fair comparison, we only use a handful of values from the time

trace (as many as the number of measurements in the experiment). While this might

seem restrictive, we process this via the same method as the case of the experimental

reservoir, by computing the functional definition of the central moments. This does

not necessarily make sense for this protocol, since the outputs do not correspond

to samples from a discrete probability distribution, but can nevertheless introduce

non-linearities in the representation of the feature vector. These non-linearities can

improve the performance of the reservoir beyond a linear layer. This is observed for

the case of time-independent Spiral classification, where the cavity reservoir performs

better than random. This performance is solely due to the “post-processing” of the

output of the reservoir we adopt for our experiment. However, for time dependent

tasks, the performance is hardly better than random.

Another natural candidate is a single qubit reservoir. For this case, we directly

interface the signal to the qubit. A qubit is able to naturally represent non-linear

functions of the input, which can be intuitively seen by visualizing the action of a

qubit rotation on a Bloch sphere. As a fair comparison, we choose the same qubit

reservoir controls in experiment, which involve qubit pulses before, during and after

the continuous input. The output is a string of binary outcomes of qubit measure-

ments, which can be done experimentally with the use of a readout resonator. Each
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reservoir of the qubit lasts twice as long as the experimental QRC to obtain the same

feature vector size. This is then processed the same way as the cavity-qubit coupled

reservoir, before applying a trained linear layer. Interestingly, the qubit fails to per-

form better than random for the Spiral task. On the other hand, it is able to reach near

100% accuracy for the time dependent signal classification tasks. The ability for even

a single qubit to successfully perform a many-class classification task is illuminating

at the remarkable processing capabilities of reservoir. However the total input signal

required can be more than order of magnitude longer compared to that for the exper-

imental QRC to achieve the same accuracy. The ability of a cavity coupled to a qubit

system to perform significantly better than either of its components provides a clear

picture of the important role entanglement can play.

4.9.4 Multi-qubit reservoirs

Quantum reservoir computing is a promising paradigm in the NISQ era. It is there-

fore interesting to consider the potential benefits in performance with larger devices,

which are within reach of today’s experimental capabilities. As a natural extension

of our quantum reservoir, we consider a scenario of one continuous variable cavity

mode dispersively coupled to multiple qubits. For simplicity, we assume the disper-

sive strength of each qubit to the cavity is the same. To motivate the capacity of such

a reservoir, we simulate the system for up to four qubits to estimate the classification

accuracy for the task of identifying correlated noise signals. The unitary protocol is

illustrated in Fig 4.22 (a.). The protocol begins with a π/2 pulse on each qubit, which

brings the state of the qubit onto the equator of the Bloch sphere. To entangle the

qubits with cavity, we simulate the action of a generalized, multi-qubit-conditioned

cavity displacement. This involves a displacement on the cavity, whose value is dif-
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Figure 4.22: Exploring the computational capacity of more complex reservoirs, in-
volving a single cavity mode coupled to multiple qubits. (a.) The reservoir protocol,
before measurement. The protocol is inspired by naturally extending the protocol of
the experiment. The state of each qubit, along with the parity of the cavity, is sampled
afterwards. (b.) Schematic illustration of the state of the cavity after the generalized
qubits conditioned cavity displacement implemented in this reservoir, for the case of
two qubits. Here the cavity is displaced by a unique value of each 2N combinations of
qubit possibilities, for a reservoir with N qubits. (c.) To illustrate the computational
capacity of such reservoir, we simulate the quantum system to obtain the classifica-
tion accuracy as a function of the duration of signal received for the task of classify-
ing correlated noise signals. Increasing the number of qubits generally increases the
performance of the reservoir. For different values of shots of the reservoir, which cor-
responds a total time of input, we plot the classification error as a function of qubits.
The case of zero qubits in the reservoir corresponds to just a cavity reservoir.

ferent for each of 2N N-qubit possibilities. An example of the action of this operator

is depicted in Fig 4.22 (b.) for the case of two qubits. Here, there are four possible

qubit states, and each is associated with a displacement value of the four corners of

the square. The displacement values were chosen somewhat arbitrarily, but serve to

illustrate an efficient multi-component entanglement. For the case of two qubits, the
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real and imaginary components of the displacement where either ±0.5. For the case

of three qubits, there are eight total possible states. The set of displacements chosen

form a three-by-three grid state, ranging between ±1, excluding the center of this grid

(which is centered at the origin). For the case of four qubits, a four-by-four grid uni-

formly distributed between ±1.5 covers all sixteen possibilities. The correspondence

between qubit states and displacements was somewhat arbitrary - the motivation is

that even without much design choice, a reservoir can successfully implement ma-

chine learning! For these simulations, each position of the grid is associated with

a decimal value, increasing sequentially from left to right, starting from the top left

and progressing towards the bottom right (starting with zero). This decimal value is

the decimal representation of the qubit-state bit string that the displacement is condi-

tioned on.

After the multi-qubit entangling conditional displacement gate, the cavity is sub-

ject to the input. The dynamics of the system are influenced by the cavity-qubit cou-

pled dispersive interactions, where the interaction strength is the same between the

cavity and all qubits and set to that of the experiment. Like the experimental QRC,

each qubit is flipped with a π pulse in the middle of the input. The protocol ends with

the same conditional displacement, before a π/2 pulse. The output of the reservoir

is the measurement of each qubit, along with the parity measurement of the cavity.

This protocol is repeated four times, to match the experimental protocol as much as

possible.

Fig 4.22 (c.) is the classification accuracy as a function of the total time of input

signal received for the reservoirs with different number of qubits, for the task of noise

classification. While they all achieve essentially 100% accuracy, the total time required

to achieve this accuracy drops significantly with increasing number of qubits. Other
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than the single qubit reservoir (the experimental protocol), the performance of the

reservoir is similar both at the low and high signal duration regime, differing only

in the intermediate regime. The reason for the difference in behavior of the perfor-

mance for the case of cavity coupled to a single qubit is the slight change in reservoir

protocol. To accurately account for the experimental protocol, the state of the qubit

is determined by the outcome of the parity measurement of the cavity. This was not

implemented in the simulations for multiple qubits. This ends up improving the per-

formance of this reservoir for this task in the low signal duration regime. However,

in the higher signal duration regime, increasing the number of qubits increases the

accuracy.

The classification error as a function of number of qubits in the reservoir is plotted

in Fig 4.22 (d.), including the case for just a cavity (zero number of qubits in the

reservoir), for a select number of total shots of the entire reservoir. Very crudely, the

error in classification seems to reduce exponentially with every additional qubit in

the reservoir.

4.10 Theoretical analysis of the expressivity of our QRC for time-

independent signals

The ability of the QRC to perform better than an optimal linear layer on the input

lies in the reservoir’s ability to express many non-linear functions of the input—its

expressivity. Here, we quantitatively characterize the class of functions which can be

represented by the oscillator component of the QRC for a time-independent input.

In this regime, the input can be represented by two variables: the values of the in-

phase and quadrature components. The output feature vector from the QRC is then
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a function of these two variables.

We denote α = |α|eiϕα , β = |β|eiϕβ , and set |α| = 1/2. Choosing different values

of ϕα gives rise to different output features of the QRC. In this experiment, we pick

ϕα ∈ {0, π/2}, but in principle, one can add to the feature vector with more choices

of ϕα. For example, one can choose ϕα ∈ {0, ω, 2ω, . . . , (r − 1)ω} where ω = 2π
r

. The

final output after the linear layer is an arbitrary linear combination of all the pα(β)

functions.

Intuitively, the larger r, the more expressive the function space spanned by these

features. Furthermore, the higher-order central moments allow the output feature

vector to represent powers of this probability: pα(β)n, for moments up-to the nth-

order. We have shown that the qubit measurements extract the phase information

of the input complex number β. Below we will focus on the oscillator parity mea-

surement which is sensitive to the magnitude of β. Recall that the post-measurement

(unnormalized) state of the cavity can be described by a sequence of alternating dis-

placements and parity measurements (Eq. 4.15):

|Ψx⃗(β)⟩ = PxM
D(β) · · ·Px2D(β)Px1D(β)|0⟩, (4.27)

where Pxi
is the projector of the i-th parity measurement with outcome xi ∈ {0, 1},

with ‘0’ standing for ‘even’ and ‘1’ for ‘odd’. That is, Pxi
= I+(−1)xiΠ

2
, where

Π = (−1)a
†a. The corresponding probability of obtaining x⃗ = (x1, x2, . . . , xM) as the

sequence of measurement results given the input β is

Pr [x⃗|β] = ⟨Ψx⃗(β)|Ψx⃗(β)⟩. (4.28)

To obtain a simplified expression for Pr [x⃗|β], we will make use of the following
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formula:

PxD(β)Py =
D(β) + (−1)x⊕yD(−β)

2
Py, ∀x ∈ {0, 1}, ∀y ∈ {0, 1}, (4.29)

which is an easy application of the commutation relation ΠD(β) = D(−β)Π, with the

latter being derived from Πa = −aΠ. Using Eq. 4.29, we can remove all the explicit

parity projectors in Eq. 4.27:

|Ψx⃗(β)⟩ =

(
M∏
i=1

D(β) + (−1)xi⊕xi−1D(−β)
2

)
|0⟩, (4.30)

where for notational simplicity we have prepended the bit-string x⃗ by x0 ≡ 0. Note

that the order of the product does not matter since the terms commute with each

other. It follows that:

Pr [x⃗|β] = ⟨0|

(
M∏
i=1

D(−β) + (−1)xi⊕xi−1D(β)

2

)(
M∏
i=1

D(β) + (−1)xi⊕xi−1D(−β)
2

)
|0⟩

= ⟨0|

(
M∏
i=1

[
1

2
+ (−1)xi⊕xi−1

D(2β) +D(−2β)

4

])
|0⟩.

(4.31)

There are multiple methods to encode the measurements of the QRC. Represent-

ing every binary string of measurement outcomes as the feature, the output of the

QRC are all the probabilities {Pr [x⃗|β]}x⃗∈{0,1}M . From Eq. 4.31, it is not hard to see

that when regarded as functions of β, these 2M features linearly span a (M + 1)-

dimensional function space that has the following basis functions:

fk(β) := ⟨0|D(2kβ)|0⟩ = e−2k2|β|2 , k = 0, 1, 2, . . . ,M. (4.32)

Therefore, the set of all functions realizable by the QRC combined with the linear

layer is

{c0f0(β) + c1f1(β) + · · ·+ cMfM(β) : c0, c1, . . . , cM ∈ R} . (4.33)
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Given the large redundancy of the output feature encoding manifested

above, a compact representation can be the centralized moments µi1,i2,...,ik(β) :=

E [(xi1 − E[xi1 ]) (xi2 − E[xi2 ]) · · · (xik − E[xik ])]. These feature functions contain terms

like E[x1]E[x2], E[x1]2, E[x1]E[x2]E[x3], and so on. In particular, for any k, E[x1]k =(
1
2
− e−2|β|2

2

)k
can be written as a linear combination of centralized moments of order

less than or equal to k. It follows that the QRC using at most k-th order centralized

moments combined with the linear layer can realize (but not limited to) the following

vector space of functions:

Hparity :=

{
c0 + c1e

−2|β|2 + c2

(
e−2|β|2

)2
+ · · ·+ ck

(
e−2|β|2

)k
: c0, c1, . . . , ck ∈ R

}
.

(4.34)

Note that Hparity is exactly the set of all degree-k polynomials in the variable

w ≡ e−2|β|2 . Suppose that in some classification task, the magnitude of the input

has an upper bound, say, |β| ≤ 1, then w takes value in the closed interval [e−2, 1]. By

the Stone–Weierstrass theorem, in the limit k → ∞, Hk approximates all continuous

functions of w on [e−2, 1], and hence all continuous functions of |β| on [0, 1].

4.11 Leaky Echo State Networks (LESN)

4.11.1 Background

Leaky echo state networks [60] are a generalization of echo state networks (ESN) [59]

that were found to outperform their parent design in prediction and classification of

slow dynamic systems, noisy time series and time-warped dynamic patterns [116].
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Given a sequence of inputs {un}Nn=1, un ∈ RD, the state of the LESN reservoir after the

nth input un, xn, is given by the following equation:

xn = (1− aγ)xn−1 + γf (Winun +Wresxn−1) . (4.35)

Here, a, γ are fixed hyper-parameters in [0, 1], and f is a nonlinear activation func-

tion. Win is the R × D “encoding” matrix whose elements are selected uniformly at

random from the interval [−win, win], where D is the dimension of the input, R is

the dimension of the reservoir, and win is a fixed hyper-parameter. Wres is the R × R

“reservoir” matrix. This matrix is constructed by first generating a matrix WR, which

is a random matrix whose elements are chosen to be zero with probability 1−ps and a

number sampled uniformly from the interval [−1, 1] with probability ps. The largest-

magnitude singular value of this matrix, λmax(WR) is computed, and the reservoir

matrix Wres is defined as:

Wres =
ρ

|λmax(WR)|
WR (4.36)

where ρ is a fixed scaling hyper-parameter. Finally, the nth output of the reservoir, yn,

is given by

yn = Wtrainxn, (4.37)

where Wtrain is a C ×R trainable linear layer, where C is the dimension of the desired

output vector.

4.11.2 Digital reservoir comparison

As a way of benchmarking the computational capacity of our physical reservoir, we

compared it to the performance of a digital reservoir - an LESN - at varying widths

and depths. We focused on the accuracy of classifying the spiral, since this is the

most direct point of comparison, as the goal was to classify individual points of a
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Figure 4.23: Mean spiral classification accuracies and their standard deviations over
100 randomly generated LESN’s.

signal rather, than multiple separate signals per-shot as with the time-dependent case.

Here, for a depth of N , we sent in N identical two-dimensional data points (x, y) (so

D = 2) corresponding to the I and Q components of the signal that our experimental

reservoir is meant to process, i.e. the spiral point coordinates. We used the rectified

linear unit (ReLU) as our nonlinear activation function. Traditionally, sigmoid or tanh

activation functions are used for LESN’s [60, 116, 109], but ReLU was found to work

better for our application.

To investigate how “trivial” it was to generate a classifier with the same capacity

as our experiment, we generated 100 such LESN’s at random, and found their average

performance, and standard deviation. Hyper-parameters a, γ, win, ρ, and sparsity (ps)

were tuned in sweeps to improve performance as much as possible for each width

and depth, in order to give the digital reservoir a competitive chance. The reser-

voir’s computational capacity varies by the number of shots. Comparing Fig 4.2(b) to

Fig 4.23, we found that, at around 103 shots, our physical reservoir achieved a perfor-

mance comparable to that of about that of a 32-dimensional LESN reservoir, as seen

by the fact that both oscillate around 99% classification accuracy, within about one
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percent. In Fig 4.23, a 64-dimensional reservoir was found to be enough to classify

the spiral data points with perfect accuracy and a fairly wide choice of parameters.

Our reservoir, then, achieved at least the capacity of a 64-dimensional LESN reservoir,

past around 5 ∗ 103 shots.

In the conventional view of reservoirs, the data must be sent into into a higher

dimensional space where linear separability becomes possible [116]. The dimension-

ality of our Hilbert space, given by the two dimensions of the qubit and the approx-

imately 16 occupied levels of our storage resonator, limits the complex degrees of

freedom we have available in encoding our data as the final, measured state. Conse-

quently, we use this total Hilbert space dimension (times two due to complex ampli-

tudes) as a proxy for the quantum resources used in terms of reservoir dimensionality.

Given the roughly 2 × 16 dimensions of Hilbert space used by our reservoir, achiev-

ing at least the computational capacity of a 64-dimensional LESN reservoir is on the

order of what would be expected for a large shot number. Indeed, the point of this

comparison is to demonstrate that the computations performed by our reservoir can-

not be trivially replicated by a digital reservoir with fewer resources with the same

performance.
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CHAPTER 5

OUTLOOK

5.1 Toward the construction of a large-scale frequency domain neu-

ral network accelerator

In section 3, we described the construction of a frequency domain photonic simula-

tor capable of simulating Gaussian bosonic physics on two- and three-dimensional

lattices, with a number of lattice sites over 100,000. The lattices were programmed

using microwave tones sent to a nonlinear χ(2) crystal, that allowed on-the-fly pro-

grammability of these lattices, and enabled us to demonstrate exotic phenomena such

as non-Hermitian dynamics and time-reversal symmetry breaking. Additionally, we

demonstrated the ability to generate fully arbitrary input excitations into the lattices,

albeit with support limited to a few thousand sites within the full lattice. The large

scale, programmability, and the ability to encode arbitrary information in the inputs

motivates one to think about the possibility of construction a physical neural network

(PNN) [129] out of the system. Here, we outline the prospects of this system as a laser

neural network (LNN).

The laser neural network (LNN) performs machine learning tasks in a frequency-

domain data encoding, with the amplitude of longitudinal modes in a fiber laser rep-

resenting neural activation. Optical gain media, such as Erbium, allow 10 THz of

simultaneously-lasing modes. Taken together with a long fiber cavity allows for an

enormously complex, controllable nonlinear dynamical system. In the LNN, these

dynamics can be controlled for computational purposes with high bandwidth, low

power consumption, and cost using mature optical telecommunications hardware.
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The processing elements in the LNN are an electro-optic modulator (EOM), non-

linear four-wave mixing through the optical Kerr effect, and the saturating laser gain

(see section 2). In a typical neural network architecture, processing is done by al-

ternating sequences of linear and nonlinear transformations. In the LNN, the EOM

provides adjustable linear coupling among modes. As outlined in section 2, the ac-

tion of the electro-optic modulator is a linear operation that can be expressed as a

Toeplitz matrix. The Toeplitz matrix can be understood as convolution, which couple

modes in a translationally invariant way, up to the bandwidth of the EOM (typically

on the order of 10s of GHz). To obtain longer range coupling, one could import into

the cavity two offset spectral filters. Together with the Kerr nonlinearity in the fiber,

these filters implement artificial saturable absorber (SA), which promotes all-to-all

nonlinear coupling between the modes [33]. The addition of this Kerr nonlinearity

has the added benefit of adding the nonlinearity, an ingredient in neural networks

required for almost all non-trivial tasks.

Increasing the fiber cavity length discussed in section 3 from 100 meters to a 1

km long cavity, the mode spacing shrinks down to ∼ 100 kHz. With an optical band-

width of 10 THz, the number of modes making up the computational space isNω = 10

THz/100 kHz = 107 modes. By driving a 10 GHz bandwidth EOM in the laser cavity,

we can tune the coupling between modes more than 10 GHz away. For a 100 kHz

cavity, this provides tunable coupling among groups of NL ∼ 105 modes. By switch-

ing the microwave tones inducing the coupling as the light propagates around the

cavity, one can perform time-dependent linear operations, akin to different layers in

a neural network. These microwave tones are programmed with high-fidelity DACs

and will serve as the programmable knobs that one would tune to train the physical

system, using training methods such as physics-aware-training (PAT) [129].
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Unlike a conventional neural network, which is traditionally composed of linear

layers with on-site nonlinearities, here, the nonlinearity is manifested in long-range

coupling. The full equations of motions for this system is

ȧn(t) =

(
gn

1 +
∑

m |am|2/U0

− ℓ

)
an(t) +

∑
m

Jn−m(t)am(t)

+ (Γ− i∆)
∑

m1−m2+m3=n

am1(t)a
∗
m2

(t)am3)(t), (5.1)

where ℓ is the loss, Γ and ∆ are the nonlinear modulation coefficient associated with

the Kerr effect introduced by the saturable absorber. Expressing the above equations

of motion in terms of the number of digital operations per second Rops, The potential

computationally capability can be characterized as:

Rops = ∆f log2(∆fΩ) + ∆f +∆fNz log2(∆fΩ) (5.2)

where Ω is the mode spacing and its inverse is equal to the cavity round-trip time,

and sets the timescale for operations. ∆f is the optical bandwidth, andNz ≈ 10L/Lnl,

where L is the length of the cavity, and Lnl is the length scale over which nonlinear

optical effects become important (approximately mm-cmm for typical systems). The

first term describes the action of the EOM, which, in the time domain, is a matrix mul-

tiplication of a diagonal matrix. The logarithmic factor is thus the cost in performing

the fast Fourier transform. The computation needed to simulate the effects of the

nonlinear four-wave mixing, which is also simplified by moving to the time-domain.

Equation 5.2 describes the best-case scenario for the computational power of the

LNN. While each term has somewhat poor scaling, most being logarithmic in the

number of degrees of freedom, the experimental constraints in this system allows for

the constant factors to grow to very large numbers with minimal effort. This was

demonstrated in the experiment in section 3, where a table-top experiment was able

realize simulations of a hundred thousand modes. With suitable engineering, this

number can grow into the millions.
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5.2 Toward an advantage in sensing room-temperature signals us-

ing microwave quantum oscillators

In section 4, we outlined a new application of quantum information processing sand-

wiched between traditional quantum computing and quantum sensing. We demon-

strated how a small quantum system, that is simple enough to easily simulate on

a classical computer, can be reliably trained to solve signal processing tasks. We

showed how such a device could perform nontrivial processing of analog signals that

the system directly interfaces with, and that these analog signals were low enough

power to only displace the system by a few photons. Finally, we argued that, based

on the results demonstrated, one could construct a quantum device that could per-

form signal processing on signals with very low SNR that originate at room tempera-

ture, and that it could in-principle could have an advantage over any classical device.

Here, we outline the road toward this computational-sensing advantage in more de-

tail.

Superconducting qubit devices are typically designed to be sensitive to signals

that lie within 4-10 GHz. While this is conveniently in the same frequency range

that is used in commercial communication applications, the energy scales associated

with this frequency range are activated by thermal excitations at temperatures above

100 millikelvin. This presents a fundamental challenge in attempting to interface a

quantum device with room temperature signals, as the thermal background noise of

a given signal is easily capable of exciting the quantum system. This is the primary

reason for superconducting qubits to operate at temperatures of 10s of millikelvin,

far below the typical superconducting transition temperatures of the materials in the

devices. Operating the device in a dilution refrigerator at millikelvin temperatures
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will cool a device down to its ground state, but one must also be able to control the

device using signals generated at room temperature. These controls are typically

performed using resonant microwave signals that can carry a large number of noise

photons, which must also be thermalized to millikelvin temperatures.

In order to thermalize control signals to millikelvin temperatures, one must at-

tenuate them so that the number of noise photons at a particular frequency that can

resonantly transition the system is well below one. This might present a challenge

to using superconducting qubits to perform computation on ultra-low power signals

toward gaining an advantage of classical devices: While attenuators attenuate the sig-

nal and the noise equally, attenuators also add additional noise, leading to an overall

degradation in the signal-to-noise ratio (SNR). However, it turns out that, by prop-

erly distributing the attenuation, one can significantly limit the degradation to the

SNR, which would otherwise be detrimental to get a sensing advantage. An atten-

uator with attenuation η = 100 effectively is a beam-splitter which admits 1% of the

incident signal, and dumps 99% of the incident power as heat. Additionally, since a

beam-splitter is a four-port device, the attenuator will also contribute vacuum noise

given by the effective temperature of the attenuator Tatt at which the attenuator is

thermalized. The relationship between a coherent mode incident on an attenuator ain

and a output mode aout is [114]

aout =
1
√
η
ain +

√
η − 1

η
h, (5.3)

where h accounts for the additional noise added by the attenuator, and is required in

order for both ain and aout to satisfy the bosonic commutation relations. The average

output power can then be shown to be

⟨|aout|2⟩ =
1

2
⟨{aout, a†out}⟩ =

1

η
⟨|ain|2⟩+

η − 1

η

(
⟨h†h⟩+ 1

2

)
. (5.4)

Identifying ⟨h†h⟩ as the thermal population at the vacuum port, we can express the
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number of outgoing noise photons ni at attenuator i with attenuation ηi as

ni(ω) =
ni−1(ω)

ηi
+
ηi − 1

ηi

(
nBE(ω, Ti,att) +

1

2

)
(5.5)

where nBE is the Bose-Einstein distribution dictating the equilibrium photon number

distribution nBE(ω, T ) = 1/[exp(ℏω/kBT )− 1]. The first term describes the number of

noise photons attenuated incident on the attenuator, and the second term describes

the additional noise photons added by the attenuator which leads to a degradation

in the signal-to-noise ratio (SNR).

In a typical superconducting qubit experiment, η = 60 dB = 106 worth of attenu-

ation is added to signal lines to reduce the number of noise photons produced from

room temperature signal generators down to less than 10−3 photons, well below the

added thermal and quantum noise from the attenuation. In principle, all attenuation

would be placed at the lowest temperature possible in order to maximally reduce the

number of noise photons incident on the device. In such a configuration, the extra

noise added would be ≈ 1/2 + 0.022 photons—near the quantum limit. In practice

however, as was done in the experiment described in section 4, the attenuation needs

to be distributed across various temperature stages to reduce the heat load down to a

level below the cooling power available at a given temperature stage in the dilution

refrigerator. In the experiment described in section 4, 20 dB attenuators were placed

at the 4 K stage, the 100 mK stage, and the mixing chamber stage (10 mK) for a to-

tal of 60 dB of attenuation across the three stages (see Fig. 4.4). With a distributed

attenuation scheme, the number of noise photons is roughly ≈ 1/2 + 0.03.

The above discussion makes it clear that the added thermal noise from the atten-

uators can be mitigated by sufficiently attenuating input signals at the mixing cham-

ber, the lowest temperature stage in a dilution refrigerator. On the other hand, the

presence of the added half-photon of noise can dominate the reduction of SNR with
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sufficiently strong attenuation, especially in regimes used for traditional supercon-

ducting qubit experiments. In such experiments, one typically generates signals with

SNR ranging in the thousands to millions, and thus any small reduction in SNR has

minimal effect. Here, the ultimate goal is generally to achieve high-fidelity gates and

protect the qubit. In contrast, in a sensing experiment, one relies on the sensitivity of

quantum systems to perform useful tasks.

In order to get an impactful demonstration of computational-sensing advantage

at processing room-temperature microwave signals with poor SNR, we envision that

one would also need to remove the extra half-photon quantum noise as well. The

most obvious way to do this is to get rid of all the attenuators and to couple the cav-

ity at critical coupling. Something missing from the above discussion is the coupling

of signals in the transmission line into the oscillator mode, which can also be thought

of as a beam-splitter. As mentioned in section 4.4, the cavity used in this thesis was

undercoupled by a factor of 40. In line with the above analysis of treating attenua-

tors as beam-splitters, this acts as an additional attenuator with attention of about 16

dB, except that here, the idler is reflected rather than dissipated as heat. At critical

coupling, all of the incident energy is converted fully into the oscillator. Thus, with

critical coupling and no attenuation, a signal would enter our qubit-cavity system

with minimal loss in SNR.

While removing all attenuation preserves the SNR of a given signal, such a con-

figuration is in stark contrast to nearly every superconducting qubit experiment. A

transmission line thermalized at 300 K would have thermal excitations of 5 GHz

modes in the number of thousands of photons. While some superconducting qubit

experiments with setups nearly identical to ours have demonstrated the ability to pre-

serve entanglement between an oscillator with thousands of coherent photons and a
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qubit [32], one could instead sacrifice a minimal reduction in SNR in order to signifi-

cantly reduce the number of noise photons by adding 20 dB attenuation at the lowest

temperature stage. This would reduce a 300 K noisy signal down to 3 K, reducing the

number of thermal excitations by a factor of a hundred, with the trade-off of intro-

ducing additional thermal and quantum noise on the order of 100 mK, which would

result in a minuscule reduction of SNR.

Ultimately however, the introduction of thermal excitations in the oscillator would

lead to dephasing of the qubit via the cross-Kerr Hamiltonian in Eq. 4.1 at a rate of

Γϕ = 4n̄κχ2/(κ2 + χ2), where κ is the resonator decay rate (and coupling rate to the

transmission line, at critical coupling), and χ is the cross-Kerr interaction strength.

Thus, to mitigate the dephasing of the qubit and to preserve a quantum-based ad-

vantage, one can use an ultra-high lifetime cavity. One may also reduce the interac-

tion strength between the qubit and oscillator, without sacrificing gate speeds as was

demonstrated in Refs. [25, 32]. These could improve the dephasing rate contribution

from a thermal cavity by a factor of 100 compared to the experiment in section 4. The

requirement for a low-dephasing rates is also much less stringent in our experiment,

since an important feature of our scheme involves repeatedly measuring the qubit

throughout the dynamics (see Fig. 4.1), which projects the qubit every microsecond.

As we found in Fig. 4.2, increasing the dephasing time up to a factor of 10 produced

no detriment in the classification accuracy. To summarize, removing enough attenua-

tion so that the SNR is essentially unaffected results in a background noise that is ten

to twenty times higher than the experiments performed in section 4. However, with

sufficient mitigation strategies, we can overcome the detrimental effects of the ther-

mal population in the oscillator, and preserve the ability to perform signal processing

even on ultra-low SNR signals originating at room temperature.
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The above discussion outlines the route towards achieving a quantum

computational-sensing advantage for processing signals with very poor SNR origi-

nating at room temperature. The discussion mainly highlights modifications to the

experiment in section 4 to allow for sensing of high temperature signals with min-

imal reduction in the SNR. However, in order to demonstrate advantage, one must

compare the results achievable with this modified system with a classical receiver.

While in section 4 we showed the ability of our quantum reservoir to outperform

classical reservoir computers, exploring this advantage in the setting of sensing high-

temperature signals requires additional study.
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[12] Åke Björck. Numerical methods for least squares problems, 1996.

[13] Alexandre Blais, Arne L. Grimsmo, S.M. Girvin, and Andreas Wallraff. Circuit
quantum electrodynamics. Reviews of Modern Physics, 93(2), May 2021.

[14] Daniel J Blumenthal, Rene Heideman, Douwe Geuzebroek, Arne Leinse, and
Chris Roeloffzen. Silicon nitride in silicon photonics. Proceedings of the IEEE,
106(12):2209–2231, 2018.

[15] Mark Bohr. A 30 year retrospective on dennard’s mosfet scaling paper. IEEE
Solid-State Circuits Society Newsletter, 12(1):11–13, 2007.

[16] David J. Brady, Minghao Hu, Chengyu Wang, Xuefei Yan, Lu Fang, Yiwnheng
Zhu, Yang Tan, Ming Cheng, and Zhan Ma. Smart cameras. 2020.

[17] Earl T Campbell, Barbara M Terhal, and Christophe Vuillot. Roads towards
fault-tolerant universal quantum computation. Nature, 549(7671):172–179, 2017.

[18] M Cerezo, Guillaume Verdon, Hsin-Yuan Huang, Lukasz Cincio, and Patrick J
Coles. Challenges and opportunities in quantum machine learning. Nature
Computational Science, 2(9):567–576, 2022.

[19] Hao Chen, NingNing Yang, Chengzhi Qin, Wenwan Li, Bing Wang, Tianwen
Han, Chi Zhang, Weiwei Liu, Kai Wang, Hua Long, et al. Real-time observation
of frequency Bloch oscillations with fibre loop modulation. Light: Science &
Applications, 10(1):48, 2021.

[20] Jiayin Chen, Hendra I. Nurdin, and Naoki Yamamoto. Temporal information
processing on noisy quantum computers. Phys. Rev. Appl., 14:024065, Aug 2020.

[21] Kevin S Chou. Teleported operations between logical qubits in circuit quantum elec-
trodynamics. PhD thesis, Yale University, 2018.

[22] Andrew J Daley, Immanuel Bloch, Christian Kokail, Stuart Flannigan, Natalie

126



Pearson, Matthias Troyer, and Peter Zoller. Practical quantum advantage in
quantum simulation. Nature, 607(7920):667–676, 2022.

[23] Jean Dalibard, Yvan Castin, and Klaus Mølmer. Wave-function approach to
dissipative processes in quantum optics. Phys. Rev. Lett., 68:580–583, Feb 1992.

[24] Xiaowei Deng, Sai Li, Zi-Jie Chen, Zhongchu Ni, Yanyan Cai, Jiasheng Mai,
Libo Zhang, Pan Zheng, Haifeng Yu, Chang-Ling Zou, Song Liu, Fei Yan, Yuan
Xu, and Dapeng Yu. Heisenberg-limited quantum metrology using 100-photon
fock states. 2023.

[25] Asaf A. Diringer, Eliya Blumenthal, Avishay Grinberg, Liang Jiang, and Shay
Hacohen-Gourgy. Conditional-not displacement: Fast multioscillator control
with a single qubit. Phys. Rev. X, 14:011055, Mar 2024.

[26] Akash V. Dixit, Srivatsan Chakram, Kevin He, Ankur Agrawal, Ravi K. Naik,
David I. Schuster, and Aaron Chou. Searching for dark matter with a supercon-
ducting qubit. Phys. Rev. Lett., 126:141302, Apr 2021.

[27] Avik Dutt, Qian Lin, Luqi Yuan, Momchil Minkov, Meng Xiao, and Shanhui
Fan. A single photonic cavity with two independent physical synthetic dimen-
sions. Science, 367(6473):59–64, 2020.

[28] Avik Dutt, Momchil Minkov, Qian Lin, Luqi Yuan, David AB Miller, and Shan-
hui Fan. Experimental band structure spectroscopy along a synthetic dimen-
sion. Nature communications, 10(1):3122, 2019.

[29] Avik Dutt, Luqi Yuan, Ki Youl Yang, Kai Wang, Siddharth Buddhiraju, Jelena
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